Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Yeast Products
3. Immunity and Metabolism
3.1. Modulation of Immune Function by Yeast
3.2. Yeast Effects on Metabolism and Potential Modes of Action
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broadway, P.R.; Carroll, J.A.; Sanchez, N.C. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review (dagger), (double dagger). Microorganisms 2015, 3, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Burdick Sanchez, N.C.; Young, T.R.; Carroll, J.A.; Corley, J.R.; Rathmann, R.J.; Johnson, B.J. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate Immun. 2013, 19, 411–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, T.R.; Ribeiro, F.R.B.; Sanchez, N.C.B.; Carroll, J.A.; Jennings, M.A.; Cribbs, J.T.; Rathmann, R.J.; Corley, J.R.; Johnson, B.J. Yeast cell wall supplementation alters the performance and health of beef heifers during the receiving period. Prof. Anim. Sci. 2017, 33, 166–175. [Google Scholar] [CrossRef]
- Burdick Sanchez, N.; Carroll, J.; Broadway, P.; Schell, T.; Puntenney, S.; McLean, D. Supplementation of Omnigen-AF alters the metabolic response to a glucose tolerance test in beef heifers. J. Anim. Sci. 2017, 95, 215. [Google Scholar] [CrossRef] [Green Version]
- Doležal, P.; Dvořáček, J.; Doležal, J.; Čermáková, J.; Zeman, L.; Szwedziak, K. Effect of feeding yeast culture on ruminal fermentation and blood indicators of Holstein dairy cows. Acta Vet. Brno 2011, 80, 139–145. [Google Scholar] [CrossRef]
- Goff, J.P. Transition cow immune function and interaction with metabolic diseases. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 22–23 April 2008; pp. 45–57. [Google Scholar]
- Rauw, W.M. Immune response from a resource allocation perspective. Front. Genet. 2012, 3, 267. [Google Scholar] [CrossRef] [Green Version]
- Lochmiller, R.L.; Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos 2000, 88, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Fernandez, M.V.; Baumgard, L.H. Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2360–2374. [Google Scholar] [CrossRef] [Green Version]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Sanz Fernandez, M.V.; Baumgard, L.H. Technical note: A procedure to estimate glucose requirements of an activated immune system in steers. J. Anim. Sci. 2016, 94, 4591–4599. [Google Scholar] [CrossRef]
- FDA. Evaluating the safety of antimicrobial new animal drugs with regard to their microbiological effects on bacteria of human health concern. Fed. Regist. 2002, 67, 58058–58060. [Google Scholar]
- Thrune, M.; Bach, A.; Ruiz-Moreno, M.; Stern, M.D.; Linn, J.G. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows Yeast supplementation on rumen fermentation. Livest Sci. 2009, 124, 261–265. [Google Scholar] [CrossRef]
- AlZahal, O.; Dionissopoulos, L.; Laarman, A.H.; Walker, N.; McBride, B.W. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 2014, 97, 7751–7763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, R.H.; Erasmus, L.J. Effects of analyzable diet components on responses of lactating dairy cows to Saccharomyces cerevisiae based yeast products: A systematic review of the literature. Anim. Feed Sci. Tech. 2009, 149, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Bontempo, V.; Di Giancamillo, A.; Savoini, G.; Dell’Orto, V.; Domeneghini, C. Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Anim. Feed Sci. Tech. 2006, 129, 224–236. [Google Scholar] [CrossRef]
- Di Giancamillo, A.; Bontempo, V.; Savoini, G.; Dellorto, V.; Vitari, F.; Domeneghini, C. Effects of live yeast dietary supplementation to lactating sows and weaning piglets. Int. J. Prob. Preb. 2007, 2, 55–66. [Google Scholar]
- Ma, J.; Shah, A.M.; Shao, Y.; Wang, Z.; Zou, H.; Kang, K. Dietary supplementation of yeast cell wall improves the gastrointestinal development of weaned calves. Anim. Nutr. 2020, 6, 507–512. [Google Scholar] [CrossRef]
- Pan, L.; Zhao, P.F.; Ma, X.K.; Shang, Q.H.; Xu, Y.T.; Long, S.F.; Wu, Y.; Yuan, F.M.; Piao, X.S. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J. Anim. Sci. 2017, 95, 2627–2639. [Google Scholar] [CrossRef] [Green Version]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef]
- Pinloche, E.; McEwan, N.; Marden, J.-P.; Bayourthe, C.; Auclair, E.; Newbold, C.J. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 2013, 8, e67824. [Google Scholar] [CrossRef] [Green Version]
- Lean, I.J.; Wade, L.K.; Curtis, M.A.; Porter, J. New approaches to control of ruminal acidosis in dairy cattle. Asian Austral. J. Anim. Sci. 2000, 13, 266–269. [Google Scholar]
- Xiao, J.X.; Alugongo, G.M.; Ji, S.K.; Wu, Z.H.; Dong, S.Z.; Li, S.G.; Yoon, I.; Chung, R.; Cao, Z. Effects of Saccharomyces Cerevisiae Fermentation Products on the Microbial Community throughout the Gastrointestinal Tract of Calves. Animals 2019, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Terre, M.; Maynou, G.; Bach, A.; Gauthier, M. Effect of Saccharomyces cerevisiae CNCM I-1077 supplementation on performance and rumen microbiota of dairy calves. Prof. Anim. Sci. 2015, 31, 153–158. [Google Scholar] [CrossRef]
- Hassan, A.A.; Salem, A.Z.M.; Kholif, A.E.; Samir, M.; Yacout, M.H.; Abu Hafsa, S.H.; Mendoza, G.D.; Elghandour, M.M.Y.; Ayala, M.; Lopez, S. Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: Intake, digestion, ruminal fermentation, blood parameters and faecal pathogenic bacteria. J. Agric. Sci. 2016, 154, 1488–1498. [Google Scholar] [CrossRef] [Green Version]
- Fomenky, B.E.; Do, D.N.; Talbot, G.; Chiquette, J.; Bissonnette, N.; Chouinard, Y.P.; Lessard, M.; Ibeagha-Awemu, E.M. Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci. Rep. 2018, 8, 14147. [Google Scholar] [CrossRef]
- Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J. Dairy Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef]
- Bach, A.; Guasch, I.; Elcoso, G.; Chaucheyras-Durand, F.; Castex, M.; Fabregas, F.; Garcia-Fruitos, E.; Aris, A. Changes in gene expression in the rumen and colon epithelia during the dry period through lactation of dairy cows and effects of live yeast supplementation. J. Dairy Sci. 2018, 101, 2631–2640. [Google Scholar] [CrossRef] [Green Version]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Alnaimy Mostafa Habeeb, A. Importance of Yeast in Ruminants Feeding on Production and Reproduction. Ecol. Evol. Biol. 2017, 2, 49–58. [Google Scholar] [CrossRef]
- Fomenky, B.E.; Chiquette, J.; Bissonnette, N.; Talbot, G.; Chouinard, P.Y.; Ibeagha-Awemu, E.M. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Anim. Feed Sci. Technol. 2017, 234, 151–161. [Google Scholar] [CrossRef]
- Posadas, G.A.; Broadway, P.R.; Thornton, J.A.; Carroll, J.A.; Lawrence, A.; Corley, J.R.; Thompson, A.; Donaldson, J.R. Yeast pro-and paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease. Transl. Anim. Sci. 2017, 1, 60–68. [Google Scholar] [CrossRef]
- Do Anjos, C.M.; Gois, F.D.; dos Anjos, C.M.; Rocha, V.D.S.; Castro, D.E.D.S.E.; Allaman, I.B.; Silva, F.L.; de Carvalho, P.L.O.; Meneghetti, C.; Costa, L.B. Effects of dietary beta-glucans, glucomannans and mannan oligosaccharides or chlorohydroxyquinoline on the performance, diarrhea, hematological parameters, organ weight and intestinal health of weanling pigs. Livest Sci. 2019, 223, 39–46. [Google Scholar] [CrossRef]
- He, Z.X.; Ferlisi, B.; Eckert, E.; Brown, H.E.; Aguilar, A.; Steele, M.A. Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. Anim. Feed Sci. Technol. 2017, 226, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Peters, A. The energy request of inflammation. Endocrinology 2006, 147, 4550–4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantzer, R. Cytokine-induced sickness behavior: Where do we stand? Brain Behav. Immun. 2001, 15, 7–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantzer, R. Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity. Eur. J. Pharmacol. 2004, 500, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Kvidera, S.K.; Horst, E.A.; Mayorga, E.J.; Sanz-Fernandez, M.V.; Abuajamieh, M.; Baumgard, L.H. Estimating glucose requirements of an activated immune system in growing pigs. J. Anim. Sci. 2017, 95, 5020–5029. [Google Scholar] [CrossRef] [PubMed]
- van Eerden, E.; van den Brand, H.; de Vries Reilingh, G.; Parmentier, H.K.; de Jong, M.C.; Kemp, B. Residual feed intake and its effect on Salmonella enteritidis infection in growing layer hens. Poult. Sci. 2004, 83, 1904–1910. [Google Scholar] [CrossRef] [Green Version]
- Hotamisligil, G.S.; Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 2008, 8, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Huntley, N.F.; Nyachoti, C.M.; Patience, J.F. 145 Immune system stimulation increases nursery pig maintenance energy requirements. J. Anim. Sci. 2017, 95, 68–69. [Google Scholar] [CrossRef] [Green Version]
- Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity 2013, 38, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Caro-Maldonado, A.; Gerriets, V.A.; Rathmell, J.C. Matched and mismatched metabolic fuels in lymphocyte function. Semin. Immunol. 2012, 24, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh-Choudhary, S.; Liu, J.; Finkel, T. Metabolic Regulation of Cell Fate and Function. Trends Cell Biol. 2020, 30, 201–212. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.; Pearce, E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 2016, 213, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fu, J.; Zhou, Y. Metabolism Controls the Balance of Th17/T-Regulatory Cells. Front. Immunol. 2017, 8, 1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, R.J.; Joosten, L.A.; Netea, M.G. Immunometabolic circuits in trained immunity. Semin. Immunol. 2016, 28, 425–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.H.; Seo, J.K.; Yun, C.H.; Kang, S.J.; Ko, J.Y.; Ha, J.K. Effects of hydrolyzed yeast supplementation in calf starter on immune responses to vaccine challenge in neonatal calves. Animal 2011, 5, 953–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdick Sanchez, N.C.; Carroll, J.A.; Broadway, P.R.; Edrington, T.S.; Yoon, I.; Belknap, C.R. Some aspects of the acute phase immune response to a lipopolysaccharide (LPS) challenge are mitigated by supplementation with a Saccharomyces cerevisiae fermentation product in weaned beef calves. Transl. Anim. Sci. 2020, 4, txaa156. [Google Scholar] [CrossRef]
- Lei, C.L.; Dong, G.Z.; Jin, L.; Zhang, S.; Zhou, J. Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livest Sci. 2013, 158, 57–63. [Google Scholar] [CrossRef]
- Ryman, V.E.; Nickerson, S.C.; Kautz, F.M.; Hurley, D.J.; Ely, L.O.; Wang, Y.Q.; Forsberg, N.E. Effect of dietary supplementation on the antimicrobial activity of blood leukocytes isolated from Holstein heifers. Res. Vet. Sci 2013, 95, 969–974. [Google Scholar] [CrossRef]
- Fomenky, B.E.; Chiquette, J.; Lessard, M.; Bissonnette, N.; Talbot, G.; Chouinard, Y.P.; Ibeagha-Awemu, E.M. Saccharomyces cerevisiae var. boulardii CNCM I-1079 and Lactobacillus acidophilus BT1386 influence innate immune response and serum levels of acute-phase proteins during weaning in Holstein calves. Can. J. Anim. Sci. 2018, 98, 576–588. [Google Scholar] [CrossRef]
- Shen, Y.B.; Carroll, J.A.; Yoon, I.; Mateo, R.D.; Kim, S.W. Effects of supplementing Saccharomyces cerevisiae fermentation product in sow diets on performance of sows and nursing piglets. J. Anim. Sci. 2011, 89, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Burdick Sanchez, N.C.; Carroll, J.A.; Corley, J.R.; Broadway, P.R.; Callaway, T.R. Changes in the Hematological Variables in Pigs Supplemented With Yeast Cell Wall in Response to a Salmonella Challenge in Weaned Pigs. Front. Vet. Sci. 2019, 6, 246. [Google Scholar] [CrossRef] [PubMed]
- Collier, C.T.; Carroll, J.A.; Ballou, M.A.; Starkey, J.D.; Sparks, J.C. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J. Anim. Sci. 2011, 89, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.B.; Piao, X.S.; Kim, S.W.; Wang, L.; Liu, P.; Yoon, I.; Zhen, Y.G. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J. Anim. Sci. 2009, 87, 2614–2624. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.W.; Lohakare, J.D.; Lee, S.L.; Moon, W.K.; Chae, B.J. Effects of supplementation of beta-glucans on growth performance, nutrient digestibility, and immunity in weanling pigs. J. Anim. Sci. 2006, 84, 1422–1428. [Google Scholar] [CrossRef]
- Burdick Sanchez, N.C.; Carroll, J.A.; Broadway, P.R.; Bass, B.E.; Frank, J.W. Modulation of the acute phase response following a lipopolysaccharide challenge in pigs supplemented with an all-natural Saccharomyces cerevisiae fermentation product. Livest Sci. 2018, 208, 1–4. [Google Scholar] [CrossRef]
- Che, T.M.; Johnson, R.W.; Kelley, K.W.; Van Alstine, W.G.; Dawson, K.A.; Moran, C.A.; Pettigrew, J.E. Mannan oligosaccharide improves immune responses and growth efficiency of nursery pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J. Anim. Sci. 2011, 89, 2592–2602. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, D.F.; Xing, J.J.; Cheng, Z.B.; Lai, C.H. Effects of beta-glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci. 2006, 84, 2374–2381. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xing, J.; Li, D.; Wang, X.; Zhao, L.; Lv, S.; Huang, D. Effects of beta-glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Arch. Anim. Nutr. 2005, 59, 303–312. [Google Scholar] [CrossRef]
- Lessard, M.; Dupuis, M.; Gagnon, N.; Nadeau, E.; Matte, J.J.; Goulet, J.; Fairbrother, J.M. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim. Sci. 2009, 87, 922–934. [Google Scholar] [CrossRef] [Green Version]
- Word, A.B.; Broadway, P.R.; Burdick Sanchez, N.C.; Roberts, S.L.; Richeson, J.T.; Liang, Y.L.; Holland, B.P.; Cravey, M.D.; Corley, J.R.; Ballou, M.A.; et al. Immune and metabolic responses of beef heifers supplemented with Saccharomyces cerevisiae to a combined viral-bacterial respiratory disease challenge. Transl. Anim. Sci. 2019, 3, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.A.; Burdick Sanchez, N.C.; Hulbert, L.E.; Ballou, M.A.; Dailey, J.W.; Caldwell, L.C.; Vann, R.C.; Welsh, T.H., Jr.; Randel, R.D. Sexually dimorphic innate immunological responses of pre-pubertal Brahman cattle following an intravenous lipopolysaccharide challenge. Vet. Immunol. Immunopathol. 2015, 166, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E.; Maxwell, C.V.; Erf, G.F.; Brown, D.C.; Wistuba, T.J. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J. Anim. Sci. 2004, 82, 1882–1891. [Google Scholar] [CrossRef]
- Dritz, S.S.; Shi, J.; Kielian, T.L.; Goodband, R.D.; Nelseen, J.L.; Tokach, M.D.; Chengappa, M.M.; Smith, J.E.; Blecha, F. Influence of dietary B-Glucan on growth performance, nonspecific immunity, and resistance to streptococcus suis infection in weanling pigs. J. Anim. Sci. 1995, 73, 3341–3350. [Google Scholar] [CrossRef] [PubMed]
- Gruys, E.; Toussaint, M.J.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied. Sci. 2011, 3, 118–127. [Google Scholar] [CrossRef]
- Trckova, M.; Faldyna, M.; Alexa, P.; Sramkova Zajacova, Z.; Gopfert, E.; Kumprechtova, D.; Auclair, E.; D’Inca, R. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci. 2014, 92, 767–774. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, S.; Wang, Z.; Zhu, C.; Hu, S.; Zheng, C.; Chen, Z.; Hu, Y.; Wang, L.; Ma, X.; et al. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets. J. Anim. Sci. Biotechnol. 2015, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.D.; Kang, K.W.; Piao, L.G.; Jeong, T.S.; Auclair, E.; Jonvel, S.; D’Inca, R.; Kim, Y.Y. Effects of live yeast supplementation to gestation and lactation diets on reproductive performance, immunological parameters and milk composition in sows. Livest Sci. 2013, 152, 167–173. [Google Scholar] [CrossRef]
- Fröhdeová, M.; Mlejnková, V.; Lukešová, K.; Doležal, P. Effect of Prepartum Supplementation of Yeast Culture (Saccharomyces Cerevisiae) on Biochemical Parameters of Dairy Cows and Their Newborn Calves. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Wafa, W.M.; Farag, M.; El-Kishk, M.A. Productive and Reproductive Performances of Primi-parous Friesian Cows Treated with Yeast Culture. J. Anim. Poult. Prod. 2020, 11, 331–337. [Google Scholar] [CrossRef]
- Galvao, K.N.; Santos, J.E.; Coscioni, A.; Villasenor, M.; Sischo, W.M.; Berge, A.C. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 2005, 45, 427–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villot, C.; Ma, T.; Renaud, D.L.; Ghaffari, M.H.; Gibson, D.J.; Skidmore, A.; Chevaux, E.; Guan, L.L.; Steele, M.A. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J. Dairy Sci. 2019, 102, 7011–7025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhaes, V.J.; Susca, F.; Lima, F.S.; Branco, A.F.; Yoon, I.; Santos, J.E. Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. J. Dairy Sci. 2008, 91, 1497–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdick Sanchez, N.C.; Young, T.R.; Carroll, J.A.; Corley, J.R.; Rathmann, R.J.; Johnson, B.J. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate Immun. 2014, 20, 104–112. [Google Scholar] [CrossRef]
- Dehghan-Banadaky, M.; Ebrahimi, M.; Motameny, R.; Heidari, S.R. Effects of live yeast supplementation on mid-lactation dairy cows performances, milk composition, rumen digestion and plasma metabolites during hot season. J. Appl. Anim. Res. 2013, 41, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, A.H.; Towhidi, A.; Shakeri, M.; Zhandi, M.; Dehghan-Banadaky, M.; Pooyan, H.R.; Sehati, F.; Rostami, F.; Karamzadeh, A.; Khani, M.; et al. Effects of saccharomyces cerevisiae supplementation on milk production, insulin sensitivity and immune response in transition dairy cows during hot season. Anim. Feed Sci. Technol. 2019, 251, 112–123. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J.; Wang, J. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J. Anim. Sci. Biotechnol. 2017, 8, 36. [Google Scholar] [CrossRef]
- Kumprechtova, D.; Illek, J.; Julien, C.; Homolka, P.; Jancik, F.; Auclair, E. Effect of live yeast (Saccharomyces cerevisiae) supplementation on rumen fermentation and metabolic profile of dairy cows in early lactation. J. Anim. Physiol. Anim. Nutr. (Berl.) 2019, 103, 447–455. [Google Scholar] [CrossRef]
- Takemura, K.; Shingu, H.; Ikuta, K.; Sato, S.; Kushibiki, S. Effects of Saccharomyces cerevisiae supplementation on growth performance, plasma metabolites and hormones, and rumen fermentation in Holstein calves during pre- and post-weaning periods. Anim. Sci. J. 2020, 91, e13402. [Google Scholar] [CrossRef]
- Accorsi, P.A.; Govoni, N.; Gaiani, R.; Pezzi, C.; Seren, E.; Tamanini, C. Leptin, GH, PRL, insulin and metabolic parameters throughout the dry period and lactation in dairy cows. Reprod. Domest. Anim. 2005, 40, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Petri, R.M.; Neubauer, V.; Humer, E.; Kroger, I.; Reisinger, N.; Zebeli, Q. Feed Additives Differentially Impact the Epimural Microbiota and Host Epithelial Gene Expression of the Bovine Rumen Fed Diets Rich in Concentrates. Front. Microbiol. 2020, 11, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Yeast Product | Effect on Immune Function | Reference |
---|---|---|---|
Beef cattle | Hydrolyzed yeast | Prevented decrease in WBC 1 | [47] |
Beef cattle | SCFP 2 | Increased WBC and platelets; decreased pro-inflammatory cytokines; decreased fibrinogen | [48] |
Beef cattle | YCW 3 | Reduced IL-6 concentrations | [2] |
Beef cattle | YCW | Decreased acute phase proteins | [49] |
Dairy calves | Yeast | Increased neutrophil function | [50,51] |
Sows | SCFP | Reduced leukocyte concentrations | [52] |
Weaned pigs | YCW | Reduced leukocyte concentrations | [53] |
Weaned pigs | Yeast | Increased WBC; reduced pro-inflammatory cytokine concentrations | [54] |
Weaned pigs | Yeast culture | Decreased IFN-γ concentrations and CD4+ T cells | [55] |
Weaned pigs | β-glucan | Increased CD4+ T cells | [56] |
Weaned pigs | SCFP | Increased pro-inflammatory cytokine concentrations | [57] |
Weaned pigs | MOS 4 | Greater WBC; reduced cytokine concentrations | [58] |
Weaned pigs | β-glucan | Greater cytokine concentrations | [59] |
Weaned pigs | β-glucan | Reduced TNF-α and IL-6; Increased IL-10 | [60] |
Weaned pigs | Yeast | No change in leukocyte populations | [61] |
Species | Yeast Product | Metabolic Parameter | Reference |
---|---|---|---|
Beef calves | YCW 1 | Greater glucose and insulin; reduced NEFA 2 | [76] |
Beef calves | SCFP 3 | Greater glucose | [48] |
Beef calves | Live yeast and YCW | Similar glucose; reduced urea nitrogen | [62] |
Dairy calves | Yeast | Greater glucose | [73] |
Dairy cows | Live yeast or Yeast culture | Greater glucose; reduced urea nitrogen | [5,77] |
Dairy cows | Live yeast | No effect on glucose | [78] |
Weaned pigs | YCW | Reduced NEFA concentrations | [53] |
Sows | SCFP | Tendency for reduced urea nitrogen | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burdick Sanchez, N.C.; Broadway, P.R.; Carroll, J.A. Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals 2021, 11, 371. https://doi.org/10.3390/ani11020371
Burdick Sanchez NC, Broadway PR, Carroll JA. Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals. 2021; 11(2):371. https://doi.org/10.3390/ani11020371
Chicago/Turabian StyleBurdick Sanchez, Nicole C., Paul R. Broadway, and Jeffery A. Carroll. 2021. "Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine" Animals 11, no. 2: 371. https://doi.org/10.3390/ani11020371
APA StyleBurdick Sanchez, N. C., Broadway, P. R., & Carroll, J. A. (2021). Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals, 11(2), 371. https://doi.org/10.3390/ani11020371