Long-Term and Carryover Effects of Supplementation with Whole Oilseeds on Methane Emission, Milk Production and Milk Fatty Acid Profile of Grazing Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Diets
2.2. Grazing and Feed Management and Measurements
2.3. Animal Measurements
2.4. Methane Emissions
2.5. Milk and Feed Fatty Acid (FA) Content
2.6. Statistical Analyses
3. Results
3.1. Diet Chemical Composition and FA Profile
3.2. Pasture Characteristics
3.3. Milk Yield and Milk Composition
3.4. Milk FA Profile
3.5. Estimated Dry Matter Intake and Methane Production
3.6. Animal Health and Reproduction
4. Discussion
4.1. Effects on Methane
4.2. Effects on Milk Yield and Composition
4.3. Effects on Milk FA Profile
4.4. Effects on Health and Reproduction
4.5. Carry over Effect of Lipid Supplementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A.; Ungerfeld, E.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options1. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Morgavi, D.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Rouel, J.; Jouany, J.P.; Doreau, M.; Chilliard, Y. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil1. J. Anim. Sci. 2008, 86, 2642–2650. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef]
- Muñoz, C.; Sánchez, R.; Peralta, A.; Espíndola, S.; Yan, T.; Morales, R.; Ungerfeld, E. Effects of feeding unprocessed oilseeds on methane emission, nitrogen utilization efficiency and milk fatty acid profile of lactating dairy cows. Anim. Feed. Sci. Technol. 2019, 249, 18–30. [Google Scholar] [CrossRef]
- Givens, D.I. Saturated fats, dairy foods and health: A curious paradox? Nutr. Bull. 2017, 42, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Doreau, M.; Martin, C.; Eugene, M.; Popova, M.; Morgavi, D.P. Tools for decreasing enteric methane production by ruminants. Inra Productions Animales 2011, 24, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Livestock and the environment. Meeting the challenge. 1999. Available online: http://www.fao.org/docrep/x5304e/x5304e00.htm (accessed on 12 October 2018).
- Dong, H.; Mangino, J.; McAllister, T. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006; Volume 4. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000; p. 1018. [Google Scholar]
- Tyrrell, H.; Reid, J. Prediction of the Energy Value of Cow’s Milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Edmonson, A.; Lean, I.; Weaver, L.; Farver, T.; Webster, G. A Body Condition Scoring Chart for Holstein Dairy Cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Amory, J.; Kloosterman, P.; Barker, Z.; Wright, J.; Blowey, R.; Green, L. Risk Factors for Reduced Locomotion in Dairy Cattle on Nineteen Farms in The Netherlands. J. Dairy Sci. 2006, 89, 1509–1515. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council (AFRC). Energy and protein requirements of ruminants; CAB International: Wallingford, UK, 1993; pp. 24–159. [Google Scholar]
- Agnew, R.E.; Yan, T.; France, J.; Kebreab, E.; Thomas, C. Energy requirement and supply. In Feed into Milk: A New Applied Feeding System for Dairy Cows; Thomas, C., Ed.; Nottingham University Press: Nottingham, UK, 2004; pp. 11–20. [Google Scholar]
- Garrido, O.; Mann, E. Composición Química, Digestibilidad y Valor Energético de una Pradera Permanente de Pastoreo a Través del Año; Universidad Austral de Chile, Facultad de Ciencias Agrarias: Valdivia, Chile, 1981. [Google Scholar]
- Muñoz, C.; Letelier, P.; Ungerfeld, E.; Morales, J.; Hube, S.; Pérez-Prieto, L. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows. J. Dairy Sci. 2016, 99, 7945–7955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moate, P.; Deighton, M.; Ribaux, B.; Hannah, M.; Wales, W.; Williams, S. Michaelis–Menten kinetics predict the rate of SF6 release from permeation tubes used to estimate methane emissions from ruminants. Anim. Feed. Sci. Technol. 2014, 200, 47–56. [Google Scholar] [CrossRef]
- Alves, S.P.; Cabrita, A.R.; Fonseca, A.J.; Bessa, R.J. Improved method for fatty acid analysis in herbage based on direct transesterification followed by solid-phase extraction. J. Chromatogr. A 2008, 1209, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Hernandez, C.; Deng, Z.; Zhou, J.; Hill, A.R.; Yurawecz, M.P.; Delmonte, P.; Mossoba, M.M.; Dugan, M.E.R.; Kramer, J.K.G. Methods for Analysis of Conjugated Linoleic Acids and trans-18:1 Isomers in Dairy Fats by Using a Combination of Gas Chromatography, Silver-Ion Thin-Layer Chromatography/Gas Chromatography, and Silver-Ion Liquid Chromatography. J. AOAC Int. 2004, 87, 545–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmquist, D.; Jenkins, T. A 100-Year Review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Grainger, C.; Williams, R.; Clarke, T.; Wright, A.-D.; Eckard, R. Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J. Dairy Sci. 2010, 93, 2612–2619. [Google Scholar] [CrossRef]
- Grainger, C.; Clarke, T.; Beauchemin, K.A.; McGinn, S.M.; Eckard, R.J. Supplementation with whole cottonseed reduces methane emissions and can profitably increase milk production of dairy cows offered a forage and cereal grain diet. Aust. J. Exp. Agric. 2008, 48, 73–76. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Wales, W.J.; Moate, P.J. Supplementing the diet of dairy cows with fat or tannin reduces methane yield, and additively when fed in combination. Animal 2020, 14, s464–s472. [Google Scholar] [CrossRef] [PubMed]
- Brask, M.; Lund, P.; Hellwing, A.L.F.; Poulsen, M.; Weisbjerg, M. Enteric methane production, digestibility and rumen fermentation in dairy cows fed different forages with and without rapeseed fat supplementation. Anim. Feed. Sci. Technol. 2013, 184, 67–79. [Google Scholar] [CrossRef]
- Alstrup, L.; Hellwing, A.L.F.; Lund, P.; Weisbjerg, M.R. Effect of fat supplementation and stage of lactation on methane production in dairy cows. Anim. Feed. Sci. Technol. 2015, 207, 10–19. [Google Scholar] [CrossRef]
- Bayat, A.; Tapio, I.; Vilkki, J.; Shingfield, K.; Leskinen, H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci. 2018, 101, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.; McGinn, S.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Martin, C.; Ferlay, A.; Mosoni, P.; Rochette, Y.; Chilliard, Y.; Doreau, M. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. J. Dairy Sci. 2016, 99, 3445–3456. [Google Scholar] [CrossRef] [Green Version]
- Brask, M.; Lund, P.; Weisbjerg, M.; Hellwing, A.F.; Poulsen, M.; Larsen, M.; Hvelplund, T. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows. J. Dairy Sci. 2013, 96, 2356–2365. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Petit, H.V. Methane abatement strategies for cattle: Lipid supplementation of diets. Can. J. Anim. Sci. 2007, 87, 431–440. [Google Scholar] [CrossRef]
- Givens, D.; Kliem, K.; Humphries, D.; Shingfield, K.; Morgan, R. Effect of replacing calcium salts of palm oil distillate with rapeseed oil, milled or whole rapeseeds on milk fatty-acid composition in cows fed maize silage-based diets. Animal 2009, 3, 1067–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayourthe, C.; Enjalbert, F.; Moncoulon, R. Effects of Different Forms of Canola Oil Fatty Acids Plus Canola Meal on Milk Composition and Physical Properties of Butter. J. Dairy Sci. 2000, 83, 690–696. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.; Franco, F.; Molano, G.; Kjestrup, H.; Sandoval, E.; MacLean, S.; Battistotti, M.; Koolaard, J.; Laubach, J. Feed intake and methane emissions from cattle grazing pasture sprayed with canola oil. Livest. Sci. 2015, 184, 7–12. [Google Scholar] [CrossRef]
- Storlien, T.M.; Prestløkken, E.; Beauchemin, K.A.; McAllister, T.A.; Iwaasa, A.; Harstad, O.M. Supplementation with crushed rapeseed causes reduction of methane emissions from lactating dairy cows on pasture. Anim. Prod. Sci. 2017, 57, 81–89. [Google Scholar] [CrossRef]
- Hammond, K.; Crompton, L.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.; O’Kiely, P.; Kebreab, E.; Eugène, M.; Yu, Z.; Shingfield, K.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed. Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.; Kincaid, R.; Westberg, H.; Gaskins, C.; Lamb, B.; Cronrath, J. The Effect of Oilseeds in Diets of Lactating Cows on Milk Production and Methane Emissions. J. Dairy Sci. 2002, 85, 1509–1515. [Google Scholar] [CrossRef]
- Woodward, S.; Waghorn, G.; Thomson, N. Supplementing dairy cows with oils to improve performance and reduce methane - does it work? Proc. N. Z. Soc. Anim. Prod. 2006, 66, 176–181. [Google Scholar]
- Moate, P.; Jacobs, J.; Hannah, M.; Morris, G.; Beauchemin, K.; Hess, P.A.; Eckard, R.; Liu, Z.; Rochfort, S.; Wales, W.; et al. Adaptation responses in milk fat yield and methane emissions of dairy cows when wheat was included in their diet for 16 weeks. J. Dairy Sci. 2018, 101, 7117–7132. [Google Scholar] [CrossRef] [Green Version]
- Van Zijderveld, S.; Gerrits, W.; Dijkstra, J.; Newbold, J.; Hulshof, R.; Perdok, H. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 2011, 94, 4028–4038. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef] [Green Version]
- Lerch, S.; Ferlay, A.; Pomies, D.; Martin, B.; Pires, J.A.; Chilliard, Y. Rapeseed or linseed supplements in grass-based diets: Effects on dairy performance of Holstein cows over 2 consecutive lactations. J. Dairy Sci. 2012, 95, 1956–1970. [Google Scholar] [CrossRef]
- Rabiee, A.; Breinhild, K.; Scott, W.; Golder, H.; Block, E.; Lean, I. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. J. Dairy Sci. 2012, 95, 3225–3247. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, G.; Gagliostro, G.; Bargo, F.; Delahoy, J.; Muller, L. Effects of fat supplementation on milk production and composition by dairy cows on pasture: A review. Livest. Prod. Sci. 2004, 86, 1–18. [Google Scholar] [CrossRef]
- Jenkins, T.C.; Harvatine, K.J. Lipid Feeding and Milk Fat Depression. Veter- Clin. North Am. Food Anim. Pr. 2014, 30, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, N.L.; Harvatine, K.J. Acetate Dose-Dependently Stimulates Milk Fat Synthesis in Lactating Dairy Cows. J. Nutr. 2017, 147, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorby, J.M.; Dewhurst, R.J.; Thomas, C.; Marsden, S. The influence of dietary energy source and dietary protein level on milk protein concentration from dairy cows. Anim. Sci. 1996, 63, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kliem, K.E.; Shingfield, K.J. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. Eur. J. Lipid Sci. Technol. 2016, 118, 1661–1683. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Glasser, F.; Ferlay, A.; Chilliard, Y. Oilseed Lipid Supplements and Fatty Acid Composition of Cow Milk: A Meta-Analysis. J. Dairy Sci. 2008, 91, 4687–4703. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugère, C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017, 141, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Martin, C.; Rouel, J.; Doreau, M. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output1. J. Dairy Sci. 2009, 92, 5199–5211. [Google Scholar] [CrossRef] [PubMed]
- Benatar, J.R.; Sidhu, K.; Stewart, R.A.H. Effects of High and Low Fat Dairy Food on Cardio-Metabolic Risk Factors: A Meta-Analysis of Randomized Studies. PLoS ONE 2013, 8, e76480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Núñez, B.; Dijck-Brouwer, D.J.; Muskiet, F.A. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lean, I.; Westwood, C.; Golder, H.; Vermunt, J. Impact of nutrition on lameness and claw health in cattle. Livest. Sci. 2013, 156, 71–87. [Google Scholar] [CrossRef]
- Moallem, U. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J. Dairy Sci. 2018, 101, 8641–8661. [Google Scholar] [CrossRef] [Green Version]
Concentrates 1 in SPR 2,3 | Concentrates 1 in SMR 2,3 | Pasture3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | CTS | RPS | LNS | CON | CTS | RPS | LNS | SPR 2 | SMR 2 | AUT 2 | |
Ingredient composition on DM basis, % | |||||||||||
Steam-flaked corn | 83 | 48 | 63 | 67 | 79 | 47 | 59 | 66 | - | - | - |
Whole rapeseed | - | - | 20 | - | - | - | 21 | - | - | - | - |
Whole cottonseed | - | 48 | - | - | - | 47 | - | - | - | - | - |
Whole linseed | - | - | - | 20 | - | - | - | 20 | - | - | - |
Rapeseed cake | 14 | - | 13 | 8 | 15 | - | 13 | 8 | - | - | - |
Vitamin and mineral mixture 4 | 3.8 | 4.1 | 4.8 | 4.7 | 5.6 | 5.3 | 5.9 | 6.0 | - | - | - |
Chemical composition | |||||||||||
DM, g/kg fresh matter | 895 | 904 | 903 | 905 | 917 | 920 | 924 | 926 | 161 | 215 | 167 |
Ash, g/kg DM | 16 | 26 | 20 | 18 | 18 | 27 | 21 | 19 | 114 | 118 | 114 |
CP, g/kg DM | 100 | 143 | 122 | 111 | 103 | 143 | 121 | 112 | 210 | 177 | 192 |
ME, MJ/kg | 13.3 | 11.2 | 13.1 | 13.1 | 13.2 | 11.1 | 12.9 | 12.9 | 11.5 | 10.6 | - |
NDF, g/kg DM | 98 | 225 | 131 | 116 | 104 | 246 | 135 | 121 | 459 | 500 | 474 |
ADF, g/kg DM | 43 | 154 | 81 | 62 | 40 | 169 | 76 | 58 | 270 | 289 | 275 |
EE, g/kg DM | 53 | 138 | 135 | 123 | 47 | 119 | 132 | 121 | 33 | 31 | 33 |
Starch, g/kg DM | 583 | 337 | 444 | 475 | 549 | 317 | 419 | 448 | - | - | - |
FA profile, g/100 g of total FA | |||||||||||
16:00 | 11.5 | 16.9 | 9.7 | 10.4 | 11.9 | 18.1 | 10.0 | 10.9 | 18.2 | 24.6 | 17.5 |
18:00 | 2.0 | 2.2 | 1.9 | 2.3 | 2.0 | 2.2 | 1.9 | 2.3 | 2.1 | 4.3 | 2.4 |
9c-18:1/15t-18:1/19:0ai | 34.3 | 22.7 | 41.0 | 30.0 | 33.0 | 22.7 | 40.0 | 29.1 | 2.5 | 2.9 | 1.8 |
18:2n-6 | 46.6 | 54.4 | 40.3 | 41.2 | 46.5 | 52.4 | 39.8 | 41.5 | 13.6 | 14.3 | 13.5 |
18:3n-3 | 2.8 | 1.0 | 4.1 | 13.5 | 3.7 | 1.3 | 5.3 | 13.5 | 52.0 | 41.1 | 53.4 |
Spring 1,2 | Summer 1,2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | CON | CTS | RPS | LNS | SEM | p Value | CON | CTS | RPS | LNS | SEM | p Value |
Pregrazing herbage height, cm | 14.6 | 12.7 | 13.5 | 14.1 | 0.57 | 0.06 | 8.3 | 8.9 | 10.0 | 8.0 | 0.76 | 0.31 |
Pregrazing herbage mass, kg of DM/ha | 4276 | 3826 | 3642 | 4146 | 229 | 0.11 | 2152 | 2702 | 2698 | 2184 | 362 | 0.58 |
Herbage allowance, kg of DM/cow per d | 23.0 | 23.4 | 21.2 | 23.0 | 1.30 | 0.56 | 23.6 | 26.7 | 23.0 | 24.6 | 2.70 | 0.78 |
Postgrazing herbage height, cm | 5.6 | 5.4 | 5.4 | 5.4 | 0.12 | 0.33 | 5.1 | 5.0 | 5.5 | 5.0 | 0.25 | 0.50 |
Postgrazing herbage mass, kg of DM/ha | 1001 | 961 | 859 | 924 | 69.0 | 0.40 | 843 | 986 | 1002 | 885 | 120 | 0.75 |
Herbage removed, kg of DM/cow per d | 17.1 | 16.9 | 15.5 | 17.2 | 0.88 | 0.39 | 13.6 | 16.1 | 13.8 | 13.9 | 2.13 | 0.83 |
Spring 1,2 | Summer 1,2 | Autumn 1,2 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | CON | CTS | RPS | LNS | SEM | p Value | CON | CTS | RPS | LNS | SEM | p Value | CON | CTS | RPS | LNS | SEM | p Value |
Milk yield, kg/day | 27.2 a | 25.7 a,b | 24.9 b | 26.6 a,b | 0.52 | 0.02 | 20.8 a | 18.6 b,c | 17.4 c | 20.3 a,b | 0.51 | <0.001 | 17.2 | 16.8 | 15.5 | 17.4 | 0.66 | 0.18 |
ECMY 3, kg/d | 23.4 | 24.0 | 22.6 | 23.7 | 0.59 | 0.91 | 19.4 a | 18.5 a,b | 17.0 b | 19.7 a | 0.52 | <0.01 | 17.6 | 18.2 | 17.3 | 18.6 | 0.74 | 0.61 |
Milk protein, g/kg | 34.5 | 35.6 | 34.4 | 34.0 | 0.55 | 0.18 | 34.5 b | 36.5 a | 34.8 a,b | 34.8 a,b | 0.45 | 0.01 | 37.9 | 38.3 | 37.6 | 37.3 | 0.70 | 0.74 |
Milk protein yield, kg/d | 0.92 | 0.90 | 0.85 | 0.89 | 0.022 | 0.10 | 0.71 a | 0.68 a | 0.61 b | 0.71 a | 0.018 | <0.001 | 0.64 | 0.64 | 0.58 | 0.65 | 0.023 | 0.18 |
Milk fat, g/kg | 28.2 b | 33.3 a | 31.3 a,b | 31.2 a,b | 1.04 | 0.01 | 33.8 b | 37.3 a | 36.5 a,b | 36.5 a,b | 0.94 | 0.05 | 42.0 | 44.1 | 42.6 | 42.8 | 1.23 | 0.67 |
Milk fat yield, kg/d | 0.75 | 0.83 | 0.76 | 0.81 | 0.030 | 0.17 | 0.70 a,b | 0.69 a,b | 0.63 b | 0.74 a | 0.028 | 0.025 | 0.71 | 0.73 | 0.66 | 0.74 | 0.028 | 0.21 |
Milk lactose, g/kg | 49.2 | 49.7 | 50.1 | 49.6 | 0.30 | 0.18 | 47.6 | 47.8 | 48.4 | 48.0 | 0.28 | 0.23 | 47.5 | 47.6 | 46.7 | 47.3 | 0.39 | 0.40 |
Milk lactose yield, kg/d | 1.33 | 1.26 | 1.23 | 1.30 | 0.030 | 0.14 | 0.99 a | 0.89 a,b | 0.85 b | 0.97 a | 0.039 | <0.001 | 0.81 | 0.80 | 0.73 | 0.83 | 0.034 | 0.22 |
Milk urea N, mg/dL | 23.1 | 23.3 | 21.9 | 22.3 | 0.70 | 0.45 | 31.1 a | 30.8 a | 28.4 b | 30.3 a,b | 0.59 | 0.01 | 35.2 | 34.5 | 34.4 | 34.0 | 0.69 | 0.68 |
Milk Log SCC 4 | 1.74 | 1.68 | 1.89 | 1.62 | 0.101 | 0.25 | 1.98 | 1.86 | 2.08 | 1.89 | 0.088 | 0.27 | 2.17 | 2.01 | 2.26 | 2.07 | 0.095 | 0.25 |
SPRING 1,2 | SUMMER 1,2 | AUTUMN 1,2 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | CTS | RPS | LNS | SEM | p Value | CON | CTS | RPS | LNS | SEM | p Value | CON | CTS | RPS | LNS | SEM | p Value | |
FA, g/100 g of total FA 3,4 | ||||||||||||||||||
8:0 | 1.13 a | 0.69 b | 1.01 a | 0.85 a,b | 0.083 | <0.01 | 0.87 | 0.89 | 0.94 | 1.11 | 0.067 | 0.06 | 1.06 | 0.99 | 1.05 | 1.08 | 0.071 | 0.83 |
10:0 | 3.34 a,b | 2.04 b | 2.85 b | 3.28 a | 0.140 | <0.001 | 2.64 | 2.25 | 2.63 | 2.83 | 0.146 | 0.05 | 2.88 | 2.74 | 2.93 | 3.05 | 0.132 | 0.43 |
12:0 | 3.73 a | 2.29 b | 3.20 a | 3.74 a | 0.148 | <0.001 | 3.04 a | 2.49 b | 3.17 a | 3.07 a | 0.118 | <0.01 | 3.22 | 3.10 | 3.29 | 3.43 | 0.144 | 0.44 |
14:0 | 11.46 a,b | 8.49 c | 10.45 b | 11.87 a | 0.324 | <0.001 | 10.61 | 9.88 | 10.84 | 10.74 | 0.263 | 0.05 | 10.68 | 10.35 | 10.30 | 11.04 | 0.281 | 0.23 |
15:0 | 1.07 a,b | 0.88 c | 0.97 b,c | 1.19 a | 0.042 | <0.001 | 1.03 a,b | 1.01 b | 1.12 a | 1.04 a,b | 0.029 | 0.04 | 0.98 | 1.01 | 0.99 | 1.01 | 0.020 | 0.69 |
16:0 | 24.57 | 24.55 | 23.03 | 25.11 | 0.789 | 0.30 | 24.80 b | 28.01 a | 26.59 a,b | 26.54 a,b | 0.713 | 0.02 | 24.01 | 24.65 | 23.84 | 25.30 | 0.517 | 0.19 |
Total 16:1 cis | 1.89 a | 1.48 b | 1.83 a | 1.77 a | 0.067 | <0.01 | 1.89 | 1.95 | 1.90 | 1.97 | 0.069 | 0.82 | 2.10 | 2.02 | 1.96 | 2.13 | 0.063 | 0.22 |
18:0 | 11.80 b | 14.97 a | 13.80 a | 11.23 b | 0.440 | <0.001 | 12.72 a | 11.04 b | 12.19 a,b | 10.94 b | 0.393 | <0.01 | 11.07 | 11.65 | 12.08 | 11.03 | 0.328 | 0.081 |
10t-18:1 | 0.41 b | 0.63 a | 0.40 b | 0.41 b | 0.030 | <.0001 | 0.38 b | 0.56 a | 0.32 c | 0.31 c | 0.015 | <0.001 | 0.39 | 0.37 | 0.39 | 0.38 | 0.011 | 0.34 |
11t-18:1 | 1.72 b | 2.50 a | 1.71 b | 2.14 a,b | 0.120 | <0.001 | 1.64 b | 2.04 a | 1.75 a,b | 1.59 b | 0.086 | <0.01 | 1.97 | 1.90 | 1.98 | 1.94 | 0.089 | 0.93 |
9c-18:1 | 23.09 a,b | 23.81 a,b | 25.35 a | 21.66 b | 0.825 | 0.03 | 25.49 | 24.30 | 23.95 | 23.95 | 0.747 | 0.42 | 25.07 | 25.22 | 24.71 | 23.57 | 0.688 | 0.33 |
18:2 n-6 | 1.59 b | 2.08 a | 1.49 b | 1.45 b | 0.061 | <0.001 | 1.50 a | 1.56 a | 1.19 b | 1.28 b | 0.041 | <0.001 | 1.67 | 1.56 | 1.72 | 1.51 | 0.060 | 0.06 |
9c,11t-18:2 | 0.87 b | 0.98 a | 0.81 b | 1.09 a,b | 0.067 | 0.03 | 0.84 b | 1.11 a | 0.88 b | 0.94 a,b | 0.053 | <0.01 | 1.16 | 1.05 | 1.05 | 1.08 | 0.060 | 0.56 |
18:3 n-3 | 0.80 b | 0.58 c | 0.87 b | 1.15 a | 0.027 | <0.001 | 0.76 b | 0.67 c | 0.71 b,c | 0.93 a | 0.025 | <0.001 | 0.99 | 0.92 | 1.00 | 0.91 | 0.029 | 0.06 |
Total SFA 5 | 60.82 | 57.90 | 58.93 | 60.82 | 1.067 | 0.14 | 59.41 | 58.71 | 61.07 | 59.66 | 0.848 | 0.25 | 57.33 | 57.88 | 57.90 | 59.34 | 0.812 | 0.35 |
Total BCFA 6 | 2.40 a | 2.03 b | 2.33 a | 2.23 a,b | 0.066 | <0.01 | 2.36 a | 2.08 b | 2.23 a,b | 2.16 a,b | 0.065 | 0.02 | 2.21 | 2.15 | 2.21 | 2.14 | 0.045 | 0.55 |
Total MUFA 7 | 32.82 a,b | 36.15 a | 35.00 a,b | 32.17 b | 1.048 | 0.03 | 34.76 | 34.92 | 33.15 | 33.67 | 0.797 | 0.33 | 35.46 | 35.30 | 35.03 | 33.96 | 0.732 | 0.48 |
Total PUFA 8 | 3.93 b | 4.19 a,b | 3.86 b | 4.52 a | 0.131 | <0.01 | 3.76 a,b | 3.95 a | 3.45 b | 3.92 a | 0.097 | <0.01 | 4.59 | 4.28 | 4.59 | 4.24 | 0.120 | 0.07 |
Total HUFA 9 | 0.41 | 0.36 | 0.42 | 0.41 | 0.021 | 0.22 | 0.43 a | 0.35 b | 0.40 a | 0.40 a | 0.018 | 0.03 | 0.46 | 0.46 | 0.50 | 0.43 | 0.019 | 0.10 |
Total n6 | 1.76 b | 2.27 a | 1.66 b | 1.59 b | 0.065 | <0.001 | 1.67 a | 1.75 a | 1.35 b | 1.42 b | 0.043 | <0.001 | 1.85 | 1.74 | 1.90 | 1.66 | 0.064 | 0.05 |
Total n3 | 1.06 b | 0.77 c | 1.15 b | 1.44 a | 0.032 | <0.001 | 1.04 b | 0.86 c | 0.97 b | 1.21 a | 0.029 | <0.001 | 1.30 a,b | 1.22 b | 1.35 a | 1.21 b | 0.033 | 0.01 |
Total CLA 10 | 1.04 b | 1.10 a,b | 0.97 b | 1.33 a | 0.072 | 0.01 | 1.00 b | 1.28 a | 1.05 b | 1.16 a,b | 0.055 | <0.01 | 1.36 | 1.24 | 1.26 | 1.29 | 0.062 | 0.54 |
Unknown FA | 1.25 a | 0.77 b | 1.06 a,b | 0.86 b | 0.085 | <0.01 | 0.91 | 1.01 | 1.17 | 1.30 | 0.144 | 0.26 | 1.22 | 1.22 | 1.14 | 1.09 | 0.113 | 0.80 |
Spring 1,2 | Summer 1,2 | Autumn 1,2 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | CTS | RPS | LNS | SEM | p Value | CON | CTS | RPS | LNS | SEM | p Value | CON | CTS | RPS | LNS | SE | p Value | |
Dry matter intake, kg/day | ||||||||||||||||||
Concentrate | 5.1 | 5.2 | 4.6 | 4.8 | - | - | 3.5 | 3.8 | 3.4 | 3.4 | - | - | 4.0 | 4.0 | 4.0 | 4.0 | - | - |
Grass intake 3 | 12.6 | 12.9 | 12.6 | 12.6 | 0.51 | 0.97 | 14.5 a | 14.1 a,b | 12.8 b | 13.4 a,b | 0.42 | 0.04 | 13.8 | 13.5 | 13.2 | 13.4 | 0.48 | 0.85 |
Total intake | 18.0 | 18.3 | 17.3 | 17.6 | 0.51 | 0.46 | 18.0 a | 17.9 a | 16.2 b | 16.7 a,b | 0.42 | <0.01 | 17.8 | 17.5 | 17.2 | 17.4 | 0.48 | 0.85 |
Methane | ||||||||||||||||||
CH4, g/day | 412 | 359 | 393 | 401 | 16.1 | 0.12 | 469 | 484 | 455 | 454 | 17.7 | 0.61 | 450 | 432 | 439 | 472 | 17.4 | 0.40 |
CH4, g/kg DMI 4 | 22.7 a | 19.5 b | 23.0 a | 22.9 a | 0.78 | 0.01 | 26.2 | 27.3 | 28.5 | 27.3 | 0.97 | 0.41 | 24.6 | 25.0 | 26.0 | 27.2 | 0.90 | 0.19 |
CH4, g/kg milk yield | 16.4 | 15.4 | 17.7 | 15.5 | 0.87 | 0.20 | 22.5 | 25.0 | 25.0 | 21.8 | 1.08 | 0.09 | 28.0 | 26.5 | 29.5 | 27.9 | 1.92 | 0.77 |
Ym, % 5 | 7.2 a | 6.2 b | 7.3 a | 7.3 a | 0.25 | <0.01 | 8.3 | 8.6 | 9.0 | 8.6 | 0.31 | 0.41 | 7.8 | 7.9 | 8.3 | 8.6 | 0.29 | 0.19 |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
Item | CON | CTS | RPS | LNS | SEM | p Value |
3-week submission rate, % | 20.0 a | 13.3 a,b | 33.3 a | 0.0 b | - | 0.042 |
100-day in-calf rate, % | 53.3 | 33.3 | 46.7 | 33.3 | - | 0.60 |
Conception rate to first service, % | 66.7 | 66.7 | 46.2 | 85.7 | - | 0.18 |
Conception rate to second service, % | 86.7 | 93.3 | 92.3 | 92.9 | - | 0.92 |
Cumulative conception rate, % | 93.3 | 93.3 | 73.3 | 80.0 | - | 0.31 |
Calving to first service interval, days | 88.6 | 97.2 | 80.2 | 102.4 | 6.23 | 0.08 |
Calving to conception interval, days | 98.6 | 110.4 | 100.8 | 105.8 | 7.85 | 0.70 |
N° of services to conception, weighted means | 1.32 | 1.30 | 1.52 | 1.08 | - | 0.13 |
Clinical mastitis, % | 6.7 | 0.0 | 20.0 | 13.3 | - | 0.18 |
N° treatments per mastitis, weighted means | 1.00 | - | 2.00 | 1.00 | - | 0.15 |
Spring 2 | ||||||
Body mass, kg | 532 | 541 | 532 | 535 | 2.62 | 0.09 |
Body condition score | 3.12 | 3.10 | 3.10 | 3.06 | 0.083 | 0.97 |
Locomotion score, weighted means | 1.51 a,b | 1.34 b | 1.59 a | 1.44 a,b | 0.044 | <0.01 |
Summer 2 | ||||||
Body mass, kg | 551 | 562 | 553 | 552 | 4.40 | 0.21 |
Body condition score | 3.11 | 3.07 | 3.08 | 3.12 | 0.089 | 0.98 |
Locomotion score, weighted means | 1.7 a | 1.5 b | 1.5 b | 1.5 b | 0.041 | 0.04 |
Autumn 2 | ||||||
Body mass, kg | 555 | 564 | 562 | 560 | 5.52 | 0.67 |
Body condition score | 3.09 | 3.03 | 3.09 | 3.07 | 0.097 | 0.97 |
Locomotion score, weighted means | 1.7 | 1.5 | 1.5 | 1.4 | 0.079 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, C.; Villalobos, R.; Peralta, A.M.T.; Morales, R.; Urrutia, N.L.; Ungerfeld, E.M. Long-Term and Carryover Effects of Supplementation with Whole Oilseeds on Methane Emission, Milk Production and Milk Fatty Acid Profile of Grazing Dairy Cows. Animals 2021, 11, 2978. https://doi.org/10.3390/ani11102978
Muñoz C, Villalobos R, Peralta AMT, Morales R, Urrutia NL, Ungerfeld EM. Long-Term and Carryover Effects of Supplementation with Whole Oilseeds on Methane Emission, Milk Production and Milk Fatty Acid Profile of Grazing Dairy Cows. Animals. 2021; 11(10):2978. https://doi.org/10.3390/ani11102978
Chicago/Turabian StyleMuñoz, Camila, Rodrigo Villalobos, Alejandra María Teresa Peralta, Rodrigo Morales, Natalie Louise Urrutia, and Emilio Mauricio Ungerfeld. 2021. "Long-Term and Carryover Effects of Supplementation with Whole Oilseeds on Methane Emission, Milk Production and Milk Fatty Acid Profile of Grazing Dairy Cows" Animals 11, no. 10: 2978. https://doi.org/10.3390/ani11102978
APA StyleMuñoz, C., Villalobos, R., Peralta, A. M. T., Morales, R., Urrutia, N. L., & Ungerfeld, E. M. (2021). Long-Term and Carryover Effects of Supplementation with Whole Oilseeds on Methane Emission, Milk Production and Milk Fatty Acid Profile of Grazing Dairy Cows. Animals, 11(10), 2978. https://doi.org/10.3390/ani11102978