Preharvest Management and Postharvest Intervention Strategies to Reduce Escherichia coli Contamination in Goat Meat: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prevalence of E. coli in Goats
3. Pre-Harvest Intervention
3.1. Meat Goat Management and Productivity
3.2. Dietary Regimens and E. coli Populations
3.3. Feed Withdrawal and E. coli Populations
3.4. Tannin-Containing Feed Supplements
3.5. Essential Oil-Containing Feed Supplements
3.6. Spray Washing
3.7. Animal Behavior and Physiology
4. Postharvest Intervention
4.1. Organic Acids
4.2. Ozonated Water
4.3. Electrolyzed Water
Meat Type | Intervention Method | Microorganism | Reduction | Reference |
---|---|---|---|---|
Beef carcasses | Water wash + aqueous ozone was sprayed on the surface of inoculated sample surface | E. coli O157:H7 | No effect | [84] |
Beef trimmings | 1% ozonated water treatment for 7 or 15 min and effect was observed for 0 to 7 days. | E. coli | 0.64 to 1.05 log CFU g−1 | [85] |
Pork | Meat samples were treated with LcEW * (pH: 6.8; ORP: 700 mV; Chlorine concentration: 100.1 ppm) for 5 min at 23 °C | E. coli O157:H7 | 1.7 log CFU g−1 | [32] |
Beef | Beef samples were treated with AEW ** (pH: 2.3–2.7; ORP ***: 110–1200 mV; Chlorine concentration: 50 ppm) for 3 min at 23 °C | E. coli O157:H7 | 1.6 log CFU g−1 | [86] |
Ground beef | Ground beef samples were treated with 0.5% and 1% citral (essential oil extract of Melissa officinalis leaf) for 30 s and stored at 4 °C | E. coli cocktail | 0.5–1.0 log CFU g−1 | [87] |
Beef patties | Samples were treated with 0.2% of ginger and basilica essential oils | E. coli | Significantly lower E. coli numbers compared to control | [88] |
4.4. Ultraviolet Light
4.5. Sonication
4.6. Low-Voltage Direct Electric Current
4.7. Organic Essential Oils
4.8. Hurdle Technologies
5. Combination of Pre- and Post-Harvest Interventions
6. Recommendations
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, L.J.; Stiles, M.E. Reliability of Escherichia coli counts for vacuum packaged ground beef. J. Food Prot. 1992, 55, 266–270. [Google Scholar] [CrossRef]
- Agricultural Marketing Service-USDA. Microbial Testing of AMS Purchased Meat, Poultry and Egg Commodities. 2013. Available online: http://www.ams.usda.gov/resources/microbial-testing (accessed on 1 September 2021).
- Callaway, T.R.; Elder, R.O.; Keen, J.E.; Anderson, R.C.; Nisbe, D.J. Forage feeding to reduce preharvest Escherichia coli populations in cattle, a review. J. Dairy Sci. 2003, 86, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Shukla, R.; Slack, R.; George, A.; Cheasty, T.; Rowe, B.; Scutter, J. Escherichia coli O157 infection associated with a farm visitor center. Commun. Dis. Rep. CDR Rev. 1995, 5, R86–R90. [Google Scholar] [PubMed]
- Dulo, F.; Feleke, A.; Szonyi, B.; Fries, R.; Bauman, M.P.O.; Grace, D. Isolation of multidrug-resistant Escherichia coli 0157 from goats in the Somali Region of Ethiopia: A cross-sectional, abattoir-based study. PLoS ONE 2015, 10, e0142905. [Google Scholar] [CrossRef] [PubMed]
- Bekele, T.; Zeede, G.; Tefera, G.; Feleke, A.; Zerom, K. Escherichia coli O157:H7 in raw meat in Addis Ababa, Ethiopia: Prevalence at an abattoir and retailers and antimicrobial susceptibility. Int. J. Food Contam. 2014, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Tabashsum, Z.; Nazneen, M.; Ahsan, C.R.; Bari, M.L.; Yasmin, M. Isolation and characterization of Escherichia coli O157:H7 in raw goat meat in Dhaka city using conventional and molecular based technique. In Proceedings of the 2nd AFSSA Conference on Food Safety and Food Security, Dong Nai Province, Vietnam, 15–18 August 2014; pp. 89–95. [Google Scholar]
- Islam, K.; Ahad, A.; Barua, M.; Islam, A.; Chakma, S.; Dorji, C.; Uddin, M.A.; Islam, S.; Lutful Ahasan, A.S.M. Isolation and epidemiology of multidrug resistant Escherichia coli from goats in Coxs Bazar, Bangladesh. J. Adv. Vet. Anim. Res. 2016, 3, 166–172. [Google Scholar] [CrossRef]
- Novotna, R.; Alexa, P.; Hamrik, J.; Madanat, A.; Smola, J.; Cizek, A. Isolation and characterization Shiga toxin-producing Escherichia coli from sheep and goats in Jordan with evidence of multiresistant serotype O157:H7. Vet. Med.—Czech. 2005, 50, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Kannan, G.; Jenkins, A.K.; Eega, K.R.; Kouakou, B.; McCommon, G.W. Preslaughter spray-washing effects on physiological stress responses and skin and carcass microbial counts in goats. Small Rumin. Res. 2007, 67, 14–19. [Google Scholar] [CrossRef]
- Kannan, G.; Gutta, V.R.; Lee, J.H.; Kouakou, B.; Getz, W.R.; McCommon, G.W. Preslaughter diet management in sheep and goats: Effects on physiological responses and microbial loads on skin and carcass. J. Anim. Sci. Biotechnol. 2014, 5, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Mechineni, A.; Kommuru, D.S.; Terrill, T.H.; Kouakou, B.; Lee, J.H.; Gujja, S.; Burke, J.M.; Kannan, G. Forage type and transportation stress effects on gut microbial counts and meat quality in goats. Can. J. Anim. Sci. 2021, 101, 126–133. [Google Scholar] [CrossRef]
- Gutta, V.R.; Kannan, G.; Lee, J.H.; Kouakou, B.; Getz, W.R. Influences of short-term pre-slaughter dietary manipulation in sheep and goats on pH and microbial loads of gastrointestinal tract. Small Rumin. Res. 2009, 81, 21–28. [Google Scholar] [CrossRef]
- Gregory, N.G.; Jacobson, L.H.; Nagle, T.A.; Muirhead, R.W.; Leroux, G.J. Effect of preslaughter feeding system on weight loss, gut bacteria, and the physico-chemical properties of digesta in cattle. N. Z. J. Agric. Res. 2000, 43, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Behrends, L.L.; Blanton, J.R.; Miller, M.F.; Pond, K.R.; Allen, V.G. Tasco supplementation in feedlot cattle: Effects on pathogen load. J. Anim. Sci. 2000, 78, 106. [Google Scholar]
- Kannan, G.; Lee, J.H.; Kouakou, B.; Terrill, T.H. Reduction of microbial contamination in meat goats using dietary brown seaweed (Ascophyllum nodosum) supplementation and chlorinated wash. Can. J. Anim. Sci. 2019, 99, 570–577. [Google Scholar] [CrossRef]
- Al-Kassie, G.A.M. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak. Vet. J. 2009, 29, 169–173. [Google Scholar]
- Smeti, S.; Hajji, H.; Mekki, I.; Mahouachi, M.; Atti, N. Effects of dose and administration form of rosemary essential oils on meat quality and fatty acid profile of lamb. Small Rumin. Res. 2018, 158, 62–68. [Google Scholar] [CrossRef]
- Sheridan, J.J. Sources of contamination during slaughter and measures for control. J. Food Saf. 1998, 18, 321–339. [Google Scholar] [CrossRef]
- Stevens, M.P.; van Diemen, P.M.; Dziva, F.; Jones, P.W.; Wallis, T. Options for the control of enterohaemorrhagic Escherichia coli in ruminants. Microbiology 2002, 148, 3767–3778. [Google Scholar] [CrossRef] [Green Version]
- Gregory, N.G. Livestock Presentation and Welfare before Slaughter. In Animal Welfare and Meat Science; Gregory, N.G., Grandin, T., Eds.; CABI Publishing: New York, NY, USA, 1998; pp. 15–41. [Google Scholar]
- Byrne, C.M.; Bolton, D.J.; Sheridan, J.J.; McDowell, D.A.; Blair, I.S. The effects of preslaughter washing on the reduction of Escherichia coli O157:H7 transfer from cattle hides to carcasses during slaughter. Lett. Appl. Microbiol. 2000, 30, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Ba, H.V.; Seo, H.W.; Pil-Nam, S.; Kim, Y.S.; Park, B.Y.; Moon, S.S.; Kang, S.J.; Choi, Y.M.; Kim, J.H. The effects of pre- and post-slaughter spray application with organic acids on microbial population reductions on beef carcasses. Meat Sci. 2018, 137, 16–23. [Google Scholar] [CrossRef]
- James, C.; Thornton, J.; Ketteringham, L.; James, S. Effect of steam condensation, hot water or chlorinated water immersion on bacterial numbers and quality of lamb carcass. J. Food Eng. 2000, 43, 219–225. [Google Scholar] [CrossRef]
- Dorsa, W.J. New and established carcass decontamination procedures commonly used in the beef-processing industry. J. Food Prot. 1997, 60, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Smulders, F.J.M.; Greer, G.G. Integrating microbial decontamination with organic acids in HACCP programme for muscle foods: Prospects and controversies. Int. J. Food Microbiol. 1998, 44, 149–169. [Google Scholar] [CrossRef]
- Cutter, C.N.; Siragusa, G.R. Efficacy of organic acids against Escherichia coli O157:H7 attached to beef carcass tissue using a pilot scale carcass washer. J. Food Prot. 1994, 57, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Berry, E.D.; Cutter, C.N. Effects of acid adaptation of Escherichia coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Appl. Environ. Microbiol. 2000, 66, 1493–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahapatra, A.K.; Muthukumarappan, K.; Julson, J.L. Application of ozone, bacteriocins and irradiation in food processing: A review. Crit. Rev. Food Sci. Nutr. 2005, 45, 447–461. [Google Scholar] [CrossRef]
- Degala, H.L.; Mahapatra, A.K.; Demirci, A.; Kannan, G. Evaluation of non-thermal hurdle technology for ultraviolet-light to inactivate Escherichia coli K12 on goat meat surfaces. Food Control 2018, 90, 113–120. [Google Scholar] [CrossRef]
- Degala, H.L.; Scott, J.R.; Nakkiran, P.; Mahapatra, A.K.; Kannan, G. Inactivation of E. coli O157:H7 on goat meat surface using ozonated water alone and in combination with electrolyzed oxidizing water. In American Society of Agricultural and Biological Engineers; Paper No. 2462209; ASABE: St. Joseph, MI, USA, 2016. [Google Scholar] [CrossRef]
- Arya, R.; Bryant, M.; Degala, H.L.; Mahapatra, A.K.; Kannan, G. Effectiveness of a low-cost household electrolyzed water generator in reducing the populations of Escherichia coli K12 on inoculated beef, chevon, and pork surfaces. J. Food Process. Preserv. 2018, 42, e13636. [Google Scholar] [CrossRef]
- Saif, S.M.H.; Lan, Y.; Williams, L.L.; Joshee, L.; Wang, S. Reduction of Escherichia coli O157:H7 on goat meat surface with pulsed dc square wave signal. J. Food Eng. 2006, 77, 281–288. [Google Scholar] [CrossRef]
- Bryant, M.; Degala, H.L.; Mahapatra, A.K.; Gosukonda, R.M.; Kannan, G. Inactivation of Escherichia coli K12 by pulsed UV-light on goat meat and beef: Microbial responses and modeling. Int. J. Food Sci. Technol. 2020, 56, 563–572. [Google Scholar] [CrossRef]
- Jacobson, H.L.; Tanya, A.N.; Gregory, N.G.; Bell, R.G.; Roux, G.L.; Haines, J.M. Effect of feeding pasture-finished cattle different conserved forages on Escherichia coli in the rumen and faeces. Meat Sci. 2002, 62, 93–106. [Google Scholar] [CrossRef]
- Vanguru, M.; Lee, J.H.; Kouakou, B.; Terrill, T.H.; Kannan, G. Effect of feed deprivation time on bacterial contamination of skin and carcass in meat goats. Trop. Subtrop. Agroecosyst. 2009, 11, 259–261. [Google Scholar]
- Lee, J.H.; Koaukou, B.; Kannan, G. Influences of dietary regimens on microbial content in gastrointestinal tracts of meat goats. Livestock Sci. 2009, 125, 249–253. [Google Scholar] [CrossRef]
- Lee, J.H.; Vanguru, M.; Kannan, G.; Moore, D.A.; Terrill, T.H.; Kouakou, B. Influence of dietary condensed tannins from sericea lespedeza on bacterial loads in gastrointestinal tracts of meat goats. Livestock Sci. 2009, 126, 314–317. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahagoub, O.; AlKindi, A.Y.; Al-Marzooqi, W.; Al-Sakri, N.M.; Almaneay, M.; Mahmoud, I.Y. Effect of transportation at high ambient temperatures on physiological responses, carcass, and meat quality characteristics in two age groups of Omani sheep. Asian-Australas. J. Anim. Sci. 2007, 20, 124–431. [Google Scholar] [CrossRef]
- Kannan, G.; Terrill, T.H.; Kouakou, B.; Gazal, O.S.; Gelaye, S.; Amoah, E.A.; Samake, S. Transportation of goats: Effect on physiological stress responses and live weight loss. J. Anim. Sci. 2000, 78, 1450–1457. [Google Scholar] [CrossRef]
- Reid, C.A.; Avery, S.M.; Warriss, P.; Buncic, S. The effect of feed withdrawal on Escherichia coli shedding in beef cattle. Food Control 2002, 13, 393–398. [Google Scholar] [CrossRef]
- Kannan, G.; Terrill, T.H.; Kouakou, B.; Gelaye, S.; Amoah, E. Simulated Preslaughter holding and isolation effects on stress responses and live weight shrinkage in meat goats. J. Anim. Sci. 2002, 80, 1771–1780. [Google Scholar] [CrossRef]
- Huntington, G.B. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 1997, 75, 852–867. [Google Scholar] [CrossRef]
- Scott, T.; Wilson, C.; Bailey, D.; Klopfenstein, T.; Milton, T.; Moxley, R.; Smith, D.; Gray, J.; Hungerford, L. Influence of diet on total and acid resistant E. coli and colonic pH. Nebraska Beef Rep. 2000, 389, 39–41. [Google Scholar]
- Diez-Gonzalez, F.; Callaway, T.R.; Kizoulis, M.G.; Russell, J.B. Grain feeding and the dissemination of acid resistant Escherichia coli from cattle. Science 1998, 281, 1666–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.B.; Diez-Gonzalez, F.; Jarvis, G.N. Invited review: Effects of diet shifts on Escherichia coli in cattle. J. Dairy Sci. 2000, 83, 863–873. [Google Scholar] [CrossRef]
- Grauke, L.J.; Kudva, I.T.; Yoon, J.W.; Hunt, C.W.; Williams, C.J.; Hovde, C.J. Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants. Appl. Environ. Microbiol. 2002, 2269–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudva, I.T.; Hunt, C.W.; Williams, C.J.; Nance, U.M.; Hovde, C.J. Evaluation of dietary influences on Escherichia coli O157:H7 shedding by sheep. Appl. Environ. Microbiol. 1997, 63, 3878–3886. [Google Scholar] [CrossRef] [Green Version]
- Kudva, I.T.; Hatfield, P.G.; Hovde, C.J. Effect of diet on the shedding of Escherichia coli O157:H7 shedding in a sheep model. Appl. Environ. Microbiol. 1995, 61, 1363–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Smith, M.P.; Chapin, K.C.; Baik, H.S.; Bennett, G.N.; Foster, J.W. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 1996, 62, 3094–3100. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.A.; Cray, W.C.; Casey, T.A.; Whip, S.C. Rumen contents as a reservoir of enterohemorrhagic Escherichia coli. FEMS Microbiol. Lett. 1993, 114, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Chart, H. VTEC enteropathogenicity. J. Appl. Microbiol. 2000, 88, 12S–23S. [Google Scholar] [CrossRef]
- McWilliam Leitch, E.C.; Duncan, S.H.; Stanley, K.N.; Stewart, C.S. Dietary effects on the microbiological safety of food. Proc. Nutr. Soc. 2001, 60, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Barham, A.R.; Barham, B.L.; Blanton, J.R., Jr.; Allen, V.G.; Pond, K.R.; Miller, M.F. Effects of Tasco® 14 on prevalence levels of enterohemorragic Escherichia coli and Salmonella spp. in feedlot steers. J. Anim. Sci. 2001, 79, 257. [Google Scholar]
- Allen, V.G.; Pond, K.R.; Saker, K.E.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Schmidt, R.E.; Fike, J.H.; Zhang, X.; et al. Tasco: Influence of a brown seaweed on antioxidants in forages and livestock—A review. J. Anim. Sci. 2001, 79, E21–E31. [Google Scholar] [CrossRef]
- Saker, K.E.; Fike, J.H.; Veit, H.; Ward, D.L. Brown seaweed- (TascoTM) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs. J. Anim. Physiol. Anim. Nutr. 2004, 88, 122–130. [Google Scholar] [CrossRef]
- Montgomery, J.L.; Allen, V.G.; Pond, K.R.; Miller, M.F.; Wester, D.B.; Brown, C.P.; Evans, R.; Bagley, C.P.; Ivy, R.L.; Fontenot, J.P. Tasco-Forage: IV. Influence of a seaweed extract applied to tall fescue pastures on sensory characteristics, shelf-life, and vitamin E status in feedlot-finished steers. J. Anim. Sci. 2001, 79, 884–894. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Bach, S.J.; McAllister, T.A. Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Australasian. J. Anim. Sci. 2009, 22, 238–245. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins: Review article number 63. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 2002, 50, 889–893. [Google Scholar] [CrossRef] [Green Version]
- Casamiglia, S.; Busquet, M.; Cardoza, P.; Castillejos, L.; Ferrett, A. Essential oils as modifiers of rumen microbial fermentation: A review. J. Dairy Sci. 2017, 90, 2580–2595. [Google Scholar] [CrossRef] [Green Version]
- Simitzis, P.E. Enrichment of animal diets with essential oils—A great perspective in improving animal performance and quality characteristics of the derived products. Medicines 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Gustofson, R.H.; Bowen, R.E. Antibiotic use in animal agriculture. J. Appl. Microbiol. 1997, 83, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Prescott, L.M.; Harley, J.P.; Klein, D.A. Control de microorganismos por agentes fisicos y quimicos. In Microbiologia; McGraw-Hill-Interamericana de España: Madrid, Spain, 2004; pp. 145–162. [Google Scholar]
- Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.-P.; Bégin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 1997, 37, 155–162. [Google Scholar] [CrossRef]
- Wendakoon, C.N.; Sakaguchi, M. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spice. J. Food Prot. 1995, 58, 280–283. [Google Scholar] [CrossRef]
- Evans, J.D.; Martin, S.A. Effects of thymol on ruminal microorganisms. Curr. Microbiol. 2000, 41, 336–340. [Google Scholar] [CrossRef]
- Sengül, T.; Yurtseven, S.; Cetin, M.; Kocyigit, A.; Sögüt, B. Effect of thyme (T. vulgaris) extracts on fattening performance, some blood parameters, oxidative stress and DNA damage in Japanese quails. J. Anim. Feed Sci. 2008, 17, 608–620. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, J.M.; Doherty, A.M.; Finnerty, M.; Sheridan, J.J.; McGuire, L.; Blair, I.S.; MacDowell, D.A.; Harrington, D. The relationship between hide cleanliness and bacterial numbers on beef carcasses at a commercial abattoir. Lett. Appl. Microbiol. 2000, 30, 390–395. [Google Scholar] [CrossRef]
- Reid, C.A.; Small, A.; Avery, S.M.; Buncic, S. Presence of food-borne pathogens on cattle hides. Food Control 2002, 13, 411–415. [Google Scholar] [CrossRef]
- Berends, B.R.; Urlings, H.A.P.; Snijders, J.M.A.; van Knapen, F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 1996, 30, 37–53. [Google Scholar] [CrossRef]
- Wudie, A.; Zewude, G.; Ali, T.; Jibat, T. Study on effect of acetic acid spray on Escherichia coli load and meat pH at an export abattoir, Modjo, Ethiopia. Int. J. Appl. Res. Vet. Med. 2013, 11, 130–136. [Google Scholar]
- Ding, T.; Rahman, S.M.E.; Purev, U.; Oh, D.-H. Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. J. Food Eng. 2010, 97, 497–503. [Google Scholar] [CrossRef]
- Dickson, J.S.; Anderson, M.E. Microbial decontamination of food animal carcasses by washing and sanitizing systems: A review. J. Food Prot. 1992, 55, 133–140. [Google Scholar] [CrossRef]
- De Zuniga, A.G.; Anderson, M.E.; Marshall, R.T.; Iannotti, E.L. A model system for studying the penetration of microorganisms into meat. J. Food Prot. 1991, 54, 256–258. [Google Scholar] [CrossRef]
- Dubal, Z.B.; Paturkar, A.M.; Waskar, V.S.; Zende, R.J.; Latha, C.; Rawool, D.B.; Kadam, M.M. Effect of food grade organic acids on inoculated S. aureus, L. monocytogenes, E. coli, and S. typhimurium in sheep/goat meat stored at refrigeration temperature. Meat Sci. 2004, 66, 817–821. [Google Scholar] [CrossRef]
- Hung, Y.C. Reducing microbial safety risk on blueberries through innovative washing technologies. In Final Report, Grant Code: SRSFC Project # 2010-15; Department of Food Science and Technology, University of Georgia: Griffin, GA, USA, 2015. [Google Scholar]
- Khadre, M.A.; Yousef, A.E.; Kim, J.G. Microbial aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Chawla, A.S. Application of Ozonated Water Technology for Improving Quality and Safety of Peeled Shrimp Meat. Master’s Thesis, Department of Food Science, Louisiana State University, Baton Rouge, LA, USA, 2006. [Google Scholar]
- Haiti, S.; Mandal, S.; Minz, P.S.; Vij, S.; Khetra, Y.; Singh, B.P. Electrolyzed oxidizing water (EOW): Non-thermal approach for decontamination of food borne microorganisms in food industry. Food Sci. Nutr. 2012, 3, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Castillo, A.; McKenzie, K.S.; Lucia, L.M.; Acuff, G.R. Ozone treatment for reduction of Escherichia coli O157:H7 and Salmonella serotype Typhimurium on beef carcass surfaces. J. Food Protect. 2003, 66, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Stivarius, M.R.; Pohlman, F.W.; McElyea, K.S.; Apple, J.K. Microbial, instrumental color and sensory color and odor characteristics of ground beef produced from beef trimmings treated with ozone or chlorine dioxide. Meat Sci. 2002, 60, 299–305. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Wang, J.; Oh, D.-H. Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control 2013, 30, 176–183. [Google Scholar] [CrossRef]
- Chien, S.-Y.; Sheen, S.; Sommers, C.; Sheen, L.-Y. Combination effect of high-pressure processing and essential oil (Melissa officinalis Extracts) or their constituents for the inactivation of Escherichia coli in ground beef. Food Bioproc. Technol. 2019, 12, 359–370. [Google Scholar] [CrossRef]
- Dzudie, T.; Kouebou, C.P.; Essia-Ngang, J.J.; Mbofung, C.M.F. Lipid sources and essential oils effects on quality and stability of beef patties. J. Food Eng. 2004, 65, 67–72. [Google Scholar] [CrossRef]
- Gayán, E.; Monfort, S.; Álvarez, I.; Codón, S. UV-C inactivation of Escherichia coli at different temperatures. Innov. Food Sci. Emerg. Technol. 2011, 12, 531–541. [Google Scholar] [CrossRef]
- Keener, L.; Krishnamurthy, K. Shedding light on food safety: Applications of pulsed light processing. Food Saf. Mag. 2014, 20, 28–33. [Google Scholar]
- Sango, M.D.; Abela, D.; McElhatton, A.; Valdramidis, V.P. Assisted ultrasound applications for the production of safe foods. J. Appl. Microbiol. 2014, 116, 1067–1083. [Google Scholar] [CrossRef] [PubMed]
- Turantas, F.; Kilic, G.B.; Kilic, B. Ultrasound in the meat industry: General applications and decontamination efficiency. Int. J. Food Microbiol. 2015, 198, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Bilek, S.E.; Turantas, F. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. Int. J. Food Microbiol. 2013, 166, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.A.; Mason, T.J. Sonochemistry. In Kirk-Othmer Encycl. Chem. Technol. yOn-Line; Wiley Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Rastogi, R.P.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caraveo, O.; Alarcon-Rojo, A.D.; Renteria, A.; Santellano, E.; Paniwnky, L. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. J. Sci. Food Agric. 2014, 95, 2487–2493. [Google Scholar] [CrossRef]
- Dolatowski, Z.J.; Stasiak, D.M.; Giemza, S. Effects of sonication on properties of reduced pH meat. Pol. J. Food Nutr. Sci. 2001, 10, 192–196. [Google Scholar]
- Kordowska-Wiater, M.; Stasiak, D.M. Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bull. Vet. Inst. Pulawy. 2011, 55, 207–210. [Google Scholar]
- Jackman, A.S.; Maini, G.; Sharman, A.K.; Knowles, C.J. The effects of direct electric current on viability and metabolisms of acidophilic bacteria. Enzyme Microb. Technol. 1999, 24, 316–324. [Google Scholar] [CrossRef]
- Birbir, M.; Hacioglu, H.; Birbir, Y.; Altug, G. Inactivation of Escherichia coli by alternative electric current in rivers discharged into sea. J. Electrost. 2009, 67, 640–645. [Google Scholar] [CrossRef]
- Davis, C.P.; Weinberg, S.; Anderson, M.D.; Rao, G.M.; Warren, M.M. Effects of microamperage, medium, and bacterial concentration on iontophoretic killing of bacteria in fluid. Antimicrob. Agents Chemother. 1989, 33, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, A.K.; Harris, D.L.; Nguyen, C.N.; Kannan, G. Reduction of Escherichia coli O157:H7 on beef surfaces using low-voltage direct electric current and the impact on sensory properties. J. Electrost. 2011, 69, 30–35. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wood, O.B.; Bruhn, C.M. Position of the American dietetic association: Food irradiation. J. Am. Diet Assoc. 2000, 100, 246–253. [Google Scholar] [CrossRef]
- Salem, A.M.; Amin, R.A.; Afifi, G.S.A. Studies on antimicrobial and antioxidant efficiency of some essential oils in minced beef. J. Am. Sci. 2010, 6, 691–700. [Google Scholar]
- Rounds, L.; Havens, C.M.; Feinstein, Y.; Friedman, M.; Ravishankar, S. Plant extracts, spices, and essential oils inactivate Escherichia coli O157:H7 and reduce formation of potentially carcinogenic heterocyclic amines in cooked beef patties. J. Agric. Food Chem. 2012, 60, 3792–3799. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.L.C.; Cardosa, M.G.; Soares, R.A.; Ramos, E.M.; Piccoli, R.H.; Tebaldi, V.M.R. Inhibitory activity of Syzygium aromaticum and Cymbopogon citratus (DC) Stapf. Essential oils against Listeria monocytogenes inoculated in bovine ground meat. Braz. J. Microbiol. 2013, 44, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, A.I.V.; Griffiths, M.W.; Mittal, G.S.; Deeth, H.C. Combining non-thermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 2003, 89, 125–138. [Google Scholar] [CrossRef]
- Yousef, A.E. Efficacy and Limitations of Non-Thermal Preservation Technologies. In Institute of Food Technologists (IFT) Annual Meeting Book of Abstracts; Session 9-1; Institute of Food Technologists: Chicago, IL, USA, 2001. [Google Scholar]
- Cui, H.; Wu, J.; Li, C.; Lin, L. Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. J. Food Saf. 2017, 37, e12316. [Google Scholar] [CrossRef]
- Bosilevac, J.M.; Shackelford, S.D.; Bricht, D.M.; Koohmaraie, M. Efficacy of ozonated and electrolyzed oxidative waters to decontaminate hides of cattle before slaughter. J. Food Prot. 2005, 68, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
Intervention Stage | Intervention Method | Sample Type | Microorganism | Reduction | Goat Breed | Reference |
---|---|---|---|---|---|---|
Holding pens | Spray washing live goats in single file race prior to processing with potable water (0.4–0.8 ppm chlorine; approx. 12 L of water at 15–18 °C per animal) for 1 min. | Skin swab samples | Generic E. coli Aerobic plate count | No change 0.8 log10 CFU cm−2 | Spanish | [10] |
Farm/holding pens | Feed deprivation for 27 h prior to processing (compared to no feed deprivation). | Carcass swab samples | Generic E. coli Aerobic plate count | 0.8 log10 CFU cm−2 1.0 log10 CFU cm−2 | Boer × Spanish | [36] |
Farm/holding pens | Feed deprivation (in general) | - | - | Reduces gut fill and fecal contamination of carcasses | - | [21] |
Farm/holding pens | Feed deprivation for 24 h prior to processing (compared to 12 h feed deprivation) | Carcass swab samples | Generic E. coli Aerobic plate count | No change 0.5 log10 CFU cm−2 | Kiko × Spanish | [11] |
Farm | Feeding hay diet for 4 days prior to harvesting (compared to concentrate feeding). | Rectal samples | Generic E. coli Total coliform Enterobacteriaceae | 2.4 log10 CFU g−1 2.6 log10 CFU g−1 3.1 log10 CFU g−1 | Kiko × Spanish | [13] |
Farm | Feeding alfalfa hay diet for 90 days prior to processing (compared to concentrate feeding). | Rectal samples | Generic E. coli | 1.8 log10 CFU g−1 | Boer × Spanish | [37] |
Farm | Feeding ground sericea lespedeza (Lespedeza cuneata) for 14 weeks. | Fecal samples | Generic E. coli Total plate count | No change 1.6 log10 CFU g−1 | Kiko × Spanish | [38] |
Farm | Feeding brown seaweed (Ascophyllum nodosum) supplement for 14 days. | Rumen samples | Generic E. coli | 1.4 log10 CFU g−1 | Boer × Spanish | [16] |
During processing | Spray washing skin for 1 min. using potable water followed by 1 min. with chlorinated water (50 mg L−1 hypochlorite) immediately after bleeding. | Skin swab samples | Aerobic plate count | 1.0 log10 CFU cm−2 | Boer × Spanish | [16] |
Intervention Stage | Intervention Method | Sample Type | Microorganism | Reduction | Reference |
---|---|---|---|---|---|
Postharvest | 2.5% acetic acid spray for 10 sec. using low-pressure hand sprayer | Carcasses | Generic E. coli | 1.18 log10 CFU cm−2 | [75] |
Postharvest | Pulsed dc square wave electricity with 10, 20, or 30 mA cm−2 current intensities. | Inoculated goat meat samples | E. coli O157:H7 | 8.0 log10 CFU mL−1 | [33] |
Further processing | Spraying acidic electrolyzed water for 12 min. | Inoculated boneless goat meat samples | E. coli K12 | 1.2 log10 CFU mL−1 | [76] |
Further processing | Spraying alkaline electrolyzed water for 12 min. | Inoculated boneless goat meat samples | E. coli K12 | 0.9 log10 CFU mL−1 | [76] |
Further processing | Applying UV-C * for 12 min. at 200 µW cm−2 | Inoculated boneless goat meat samples | E. coli K12 | 1.2 log10 CFU mL−1 | [30] |
Further processing | Spreading 1% lemongrass oil on the surface for 8 min. | Inoculated boneless goat meat samples | E. coli K12 | 2.1 log10 CFU mL−1 | [30] |
Further processing | Dipping in ozonated water for 12 min.; pH 6.8, ORP ** (mV) 562.75, ozone concentration 0.68 mg L−1. | Inoculated boneless goat meat samples | E. coli K12 | 0.4 log10 CFU mL−1 | [31] |
Further processing | Hurdle Technology: Dipping in ozonated water for 6 min. (pH 6.8, ORP (mV) 562.75, ozone concentration 0.68 mg L−1) followed by dipping in acidic electrolyzed water for 6 min. | Inoculated boneless goat meat samples | E. coli K12 | 0.86 log10 CFU mL−1 | [31] |
Further processing | Hurdle Technology: Spreading 1% lemongrass oil on the surface for 1 min followed by applying UV-C for 1 min. at 200 µW cm−2 | Inoculated boneless goat meat samples | E. coli K12 | 6.6 log10 CFU mL−1 | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, G.; Mahapatra, A.K.; Degala, H.L. Preharvest Management and Postharvest Intervention Strategies to Reduce Escherichia coli Contamination in Goat Meat: A Review. Animals 2021, 11, 2943. https://doi.org/10.3390/ani11102943
Kannan G, Mahapatra AK, Degala HL. Preharvest Management and Postharvest Intervention Strategies to Reduce Escherichia coli Contamination in Goat Meat: A Review. Animals. 2021; 11(10):2943. https://doi.org/10.3390/ani11102943
Chicago/Turabian StyleKannan, Govind, Ajit K. Mahapatra, and Hema L. Degala. 2021. "Preharvest Management and Postharvest Intervention Strategies to Reduce Escherichia coli Contamination in Goat Meat: A Review" Animals 11, no. 10: 2943. https://doi.org/10.3390/ani11102943
APA StyleKannan, G., Mahapatra, A. K., & Degala, H. L. (2021). Preharvest Management and Postharvest Intervention Strategies to Reduce Escherichia coli Contamination in Goat Meat: A Review. Animals, 11(10), 2943. https://doi.org/10.3390/ani11102943