Effects of Bypass Fat on Buffalo Carcass Characteristics, Meat Nutrient Contents and Profitability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Statement of Animal Rights
2.2. Study Area and Experimental Animals
2.3. Experimental Design
2.4. Slaughtering Procedure and Sample Collection
2.5. Carcass Traits
2.6. Proximate Composition
2.7. Fatty Acid (FA) Analysis
2.8. Profit and Loss Analysis of Buffalo Production
2.9. Statistical Analysis
3. Results
3.1. Carcass Traits
3.2. Proximate Composition of Different Types of Muscle
3.3. Fatty Acid Composition of Meat
3.4. Profit and Loss Analysis of Buffalo Production
4. Discussion
4.1. Carcass Quality
4.2. Proximate Composition
4.3. Fatty Acid Composition
4.4. Profit and Loss Analysis of Buffalo Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FA | Fatty acid |
SS | Supraspinatus muscle |
ST | Semitendinosus muscle |
LTL | Longissimus thoracis et lumborum |
SFA | Saturated fatty acid |
UFA | Unsaturated fatty acid |
MUFA | Monounsaturated fatty acid |
PUFA | Polyunsaturated fatty acid |
kg | Kilogram |
MJ | Milli joule |
GE | Gross energy |
µg | Microgram |
mg | Milligram |
USA | United State of America |
References
- Nanda, A.S.; Nakao, T. Role of buffalo in the socioeconomic development of rural Asia: Current status and future prospectus. Anim. Sci. J. 2003, 74, 443–455. [Google Scholar] [CrossRef]
- Irurueta, M.; Cadoppi, A.; Langman, L.; Grigioni, G.; Carduza, F. Effect of aging on the characteristics of meat from water buffalo grown in the Delta del Paraná region of Argentina. Meat Sci. 2008, 79, 529–533. [Google Scholar] [CrossRef]
- Biswas, S.; Rajkumar, R.S. Buffalo as a potential food animal. Int. J. Livest. Prod. 2009, 1, 1–5. [Google Scholar]
- Neath, K.E.; Del Barrio, A.N.; Lapitan, R.M.; Herrera, J.R.V.; Cruz, L.C.; Fujihara, T.; Kanai, Y. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat Sci. 2007, 75, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Murthy, T.R.; Devadason, I.P. Buffalo meat and meat products–An overview. In Proceedings of the 4th Asian Buffalo Congress on Buffalo for Food, Security and Employment; Asian Buffalo Association: New Delhi, India, 2003; pp. 193–199. [Google Scholar]
- Guerrero, A.; Velandia Valero, M.; Campo, M.M.; Sañudo, C. Some factors that affect ruminant meat quality: From the farm to the fork. Review. Acta Scien. Anim. Sci. 2013, 35, 335–347. [Google Scholar]
- Peixoto, M.R.; Lourenço Junior, J.B.; Faturi, C.; Garcia, A.R.; Nahúm, B.D.; Lourenço, L.F.; Meller, L.H.; Oliveira, K.C. Carcass quality of buffalo (Bubalus bubalis) finished in silvopastoral system in the Eastern Amazon, Brazil. Arq. Bras. Med. Vet. Zootec. 2012, 64, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Mohd Azmi, A.F.; Ahmad, H.; Mohd Nor, N.; Meng, G.Y.; Zamri-Saad, M.; Abu Bakar, M.Z.; Salleh, A.; Abdullah, P.; Jayanegara, A.; Abu Hassim, H. The Impact of Feed Supplementations on Asian Buffaloes: A Review. Animals 2021, 11, 2033. [Google Scholar] [CrossRef] [PubMed]
- Mohd Azmi, A.F.; Abu Hassim, H.; Mohd Nor, N.; Ahmad, H.; Meng, G.Y.; Abdullah, P.; Zamri-Saad, M. Comparative Growth and Economic Performances between Indigenous Swamp and Murrah Crossbred Buffaloes in Malaysia. Animals 2021, 11, 957. [Google Scholar] [CrossRef]
- Lambertz, C.; Panprasert, P.; Holtz, W.; Moors, E.; Jaturasitha, S.; Wicke, M.; Gauly, M. Carcass characteristics and meat quality of swamp buffaloes (Bubalus bubalis) fattened at different feeding intensities. Asian-Australas. J. Anim. Sci. 2014, 27, 551. [Google Scholar] [CrossRef] [Green Version]
- Ekiz, B.; Yilmaz, A.; Yalcintan, H.; Yakan, A.; Yilmaz, I.; Soysal, I. Carcass and meat quality of male and female water buffaloes finished under an intensive production system. Ann. Anim. Sci. 2018, 18, 557–574. [Google Scholar] [CrossRef] [Green Version]
- Demirel, G.; Ozpinar, H.; Nazli, B.; Keser, O. Fatty acids of lamb meat from two breeds fed different forage: Concentrate ratio. Meat Sci. 2006, 72, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Mohd Azmi, A.F.; Ahmad, H.; Mohd Nor, N.; Meng, G.Y.; Saad, M.Z.; Abu Bakar, M.Z.; Abu Hassim, H. Effects of concentrate and bypass fat supplementations on growth performance, blood profile, and rearing cost of feedlot buffaloes. Animals 2021, 11, 2105. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.C. Recent developments in the buffalo industry of Asia. Rev. Vet. 2010, 21, 7–19. [Google Scholar]
- Shahudin, M.S.; Ghani, A.A.A.; Zamri-Saad, M.; Zuki, A.B.; Abdullah, F.F.J.; Wahid, H.; Hassim, H.A. The Necessity of a Herd Health Management Programme for Dairy Goat Farms in Malaysia. Pertanika J. Trop. Agric. Sci. 2018, 41, 1–18. [Google Scholar]
- Lapitan, R.M.; Del Barrio, A.N.; Katsube, O.; Ban-Tokuda, T.; Orden, E.A.; Robles, A.Y.; Fujihara, T.; Cruz, L.C.; Homma, H.; Kanai, Y. Comparison of carcass and meat characteristics of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis). Anim. Sci. J. 2007, 78, 596–604. [Google Scholar] [CrossRef]
- NRC National Research Council. Nutrient Requirements of Dairy Cattle; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Bulbul, T. Energy and nutrient requirements of buffaloes. Kocatepe Vet. J. 2010, 3, 55–64. [Google Scholar]
- Basra, M.J.; Nisa, M.; Khan, M.A.; Riaz, M.; Tuqeer, N.A.; Saeed, M.N. Nili-ravi buffalo III. Energy and protein requirements of 12–15 months old calves. Int. J. Agric. Biol. 2003, 5, 382–383. [Google Scholar]
- Adeyemi, K.D.; Ebrahimi, M.; Samsudin, A.A.; Sabow, A.B.; Sazili, A.Q. Carcass traits, meat yield and fatty acid composition of adipose tissues and Supraspinatus muscle in goats fed blend of canola oil and palm oil. J. Anim. Sci. Technol. 2015, 157, 42. [Google Scholar] [CrossRef] [Green Version]
- Calheiros, F.; Neves, M.J.M. Rendimentos ponderais no borrego Merino Precoce. carcaça e 5° quarto. Sep. Bol. Pecuário 1968, 37, 117–126. [Google Scholar]
- Candyrine, S.C.; Mahadzir, M.F.; Garba, S.; Jahromi, M.F.; Ebrahimi, M.; Goh, Y.M.; Samsudin, A.A.; Sazili, A.Q.; Chen, W.L.; Ganesh, S.; et al. Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period. PLoS ONE 2018, 13, e0199840. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Al-Ajmi, D.S.; Al-Maqbaly, R.S.; Al-Saqri, N.M.; Ritchie, A. An evaluation of the growth, carcass and meat quality characteristics of Omani goat breeds. Meat Sci. 2004, 66, 203–210. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2007. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Rajion, M.A.; McLean, J.G.; Cahill, R.N. Essential fatty acids in the fetal and newborn lamb. Aust. J. Biol. Sci. 1985, 38, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.S.; Ladeira, M.M.; Machado Neto, O.R.; da Silveira, A.R.M.C.; Reis, R.P.; Campos, F.R. Economical viability of finishing Nellore and Red Norte bulls in feedlot, in Lavras-MG region. Ciênc. Agrotecnologia 2011, 35, 774–780. [Google Scholar] [CrossRef]
- Raval, A.J.; Sorathiya, L.; Kharadi, V.B.; Patel, M.D.; Tyagi, K.K.; Patel, V.R.; Choubey, M. Effect of calcium salt of palm fatty acid supplementation on production performance, nutrient utilization and blood metabolites in Surti buffaloes (Bubalus bubalis). Indian J. Anim. Sci. 2017, 87, 1124–1129. [Google Scholar]
- Bardhan, D.; Kumar, S.; Kumar, S.; Kumar, N.; Singh, R.K.; Khan, R.; Mendiratta, S.K. Value chain analysis of buffalo meat (carabeef) in India. Agric. Econ. Res. Rev. 2019, 32, 149–163. [Google Scholar] [CrossRef]
- Lapitan, R.M.; Del Barrio, A.N.; Katsube, O.; Tokuda, T.; Orden, E.A.; Robles, A.Y.; Kanai, Y. Comparison of feed intake, digestibility and fattening performance of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis). Anim. Sci. J. 2004, 75, 549–555. [Google Scholar] [CrossRef]
- Iqbal, Z.M.; Abdullah, M.; Javed, K.; Jabbar, M.A.; Ahmad, N.; Ditta, Y.A.; Mustafa, H.; Shahzad, F. Effect of varying levels of concentrate on growth performance and feed economics in Nili-Ravi buffalo heifer calves. Turk. J. Vet. Anim. Sci. 2017, 41, 775–780. [Google Scholar] [CrossRef]
- Steel, R.G.R.; Torrie, J.H. Principles and Procedures of Statistics, 2nd ed.; McGraw-Hill Int. Book Company: New Delhi, India, 1980. [Google Scholar]
- Cittadini, A.; Sarriés, M.V.; Domínguez, R.; Indurain, G.; Lorenzo, J.M. Effect of breed and finishing diet on growth parameters and carcass quality characteristics of navarre autochthonous foals. Animals 2021, 11, 488. [Google Scholar] [CrossRef]
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E. Diet and genetics influence beef cattle performance and meat quality characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef] [Green Version]
- Bakker, C.E.; Blair, A.D.; Grubbs, J.K.; Taylor, A.R.; Brake, D.W.; Long, N.M.; Underwood, K.R. Effects of rumen-protected long-chain fatty acid supplementation during the finishing phase of beef steers on live performance, carcass characteristics, beef quality, and serum fatty acid profile. Transl. Anim. Sci. 2019, 3, 1585–1592. [Google Scholar] [CrossRef] [Green Version]
- Di Stasio, L.; Brugiapaglia, A. Current knowledge on river buffalo meat: A critical analysis. Animals 2021, 11, 2111. [Google Scholar] [CrossRef]
- Pimpa, O.; Binsulong, B.; Pastsart, U.; Pimpa, B.; Liang, J.B. Bypass fat enhances liveweight gain and meat quality but not profitability of smallholder cattle fattening systems based on oil palm frond. Anim. Prod. Sci. 2021, 62, 1–8. [Google Scholar]
- Honig, A.C.; Inhuber, V.; Spiekers, H.; Windisch, W.; Götz, K.U.; Ettle, T. Influence of dietary energy concentration and body weight at slaughter on carcass tissue composition and beef cuts of modern type Fleckvieh (German Simmental) bulls. Meat Sci. 2020, 169, 108209. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.D.M. Tissue growth in young and mature cull Holsteincows fed a high energy diet. J. Anim. Sci. 1983, 61, 593–599. [Google Scholar]
- Moreno, T.; Varela, A.; Portela, C.; Perez, N.; Carballo, J.A.; Montserrat, L. The effect of grazing on the fatty acid profile of longissimus thoracis muscle in Galician Blond calves. Animal 2007, 1, 1227–1235. [Google Scholar] [CrossRef] [Green Version]
- Manso, T.; Castro, T.; Mantecon, A.R.; Jimeno, V. Effects of palm oiland calcium soaps of palm oil fatty acids in fattening diets ondigestibility, performance and chemical body composition of lambs. Anim. Feed Sci. Technol. 2006, 127, 175–186. [Google Scholar] [CrossRef]
- Clinquart, A.; Micol, D.; Brundseaux, C.; Dufrasne, I.; Istasse, L. Utilisation des matierres grasses chez les bovines avec a I’engraisse-ment. INRA Prod. Anim. 1995, 8, 29–42. [Google Scholar] [CrossRef]
- Salinas, J.; Ramirez, R.G.; Dominguez, M.M.; Reyes- Bernal, N.; Trinidad-Larraga, N.; Montano, M.F. Effect of calcium soaps of tallow ongrowth performance and carcass characteristics of Pelibuey lambs. Small Rumin. Res. 2006, 66, 135–139. [Google Scholar] [CrossRef]
- Field, R.A.; Prasad, V.S.S.; Riley, M.L. Characteristics of lean fromculled breeding ewes. J. Anim. Sci. 1987, 64, 1648–1649. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, Y.; Tan, L.; Leng, J.; Lu, Q.; Tian, S.; Shao, S.; Duan, C.; Li, W.; Mao, H. Effects of age on slaughter performance and meat quality of Binlangjang male buffalo. Saudi J. Biol. Sci. 2018, 25, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Arshadullah, M.; Suhaib, M.; Raheel Baber, M.U.; Badar-uz-Zaman, I.A.; Hyder, S.I. Growth of Chenopodium quiona wild under naturally salt affected soils. Malays. J. Sustain. Agric. 2017, 1, 1–3. [Google Scholar] [CrossRef]
- Manafiazar, G.; Mohsenourazary, A.; Afsharihamidi, B.; Mahmoodi, B. Comparison carcass traits of Azeri buffalo, native and crossbred (native* Holstein) male calves in west Azerbaijan-Iran. Ital. J. Anim. Sci. 2007, 6, 1167–1170. [Google Scholar] [CrossRef]
- Alemneh, T.; Getabalew, M. Factors influencing the growth and development of meat animals. Int. J. Anim. Sci. 2019, 3, 1048. [Google Scholar]
- Ziauddin, K.S.; Mahendrakar, N.S.; Rao, D.N.; Ramesh, B.S.; Amla, B.L. Observations on some chemical and physical characteristics of buffalo meat. Meat Sci. 1994, 37, 103–113. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Gonzalez, O.J.; Chiofalo, B.; Grossi, M.; Tudisco, R.; Infascelli, F. Meat quality of buffalo young bulls fed faba bean as protein source. Meat Sci. 2014, 96, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Gecgel, U.; Yilmaz, I.; Soysal, M.I.; Gurcan, E.K.; Kok, S. Investigating proximate composition and fatty acid profile of Longissimus dorsi from Anatolian Water Buffaloes (Bubalus bubalis) raised in similar conditions. J. Food Sci. Technol. 2019, 39, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Johnson, D.D.; Mitchell, G.E.J.; Tucker, R.E.; Hemken, R.W. Plasma glucose and insulin responses to propionate in preruminating calves. J. Anim. Sci. 1982, 55, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- Behan, A.A.; Loh, T.C.; Fakurazi, S.; Kaka, U.; Kaka, A.; Samsudin, A.A. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals 2019, 9, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveena, B.M.; Mendiratta, S.K.; Anjaneyulu, A.S. Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Sci. 2004, 68, 363–369. [Google Scholar] [CrossRef]
- Lawrie, R.A.; Ledward, D. Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2014. [Google Scholar]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Kim, E.K.; Jeon, B.T.; Tang, Y.; Kim, M.S.; Seong, H.J.; Moon, S.H. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut. Meat Sci. 2016, 119, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Rao, V.K.; Kowale, B.N. Changes in phospholipids of buffalo meat during processing and storage. Meat Sci. 1991, 30, 115–129. [Google Scholar] [CrossRef]
- Budimir, K.; Mozzon, M.; Toderi, M.; D’Ottavio, P.; Trombetta, M.F. Effect of breed on fatty acid composition of meat and subcutaneous adipose tissue of light lambs. Animals 2020, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Tamburrano, A.; Tavazzi, B.; Callà, C.A.M.; Amorini, A.M.; Lazzarino, G.; Vincenti, S.; Laurenti, P. Biochemical and nutritional characteristics of buffalo meat and potential implications on human health for a personalized nutrition. Ital. J. Food Saf. 2019, 8, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Peixoto Joele, M.R.S.; Lourenço Júnior, J.B.; Lourenço, L.F.H.; Amaral Ribeiro, S.C.; Meller, L.H. Buffalo meat from animals fed with agro industrial in Eastern Amazon. Arch. Zootec. 2014, 63, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Behan, A.A.; Akhtar, M.T.; Loh, T.C.; Fakurazi, S.; Kaka, U.; Muhamad, A.; Samsudin, A.A. Meat quality, fatty acid content and nmr metabolic profile of dorper sheep supplemented with bypass fats. Foods 2021, 10, 1133. [Google Scholar] [CrossRef]
- Da Silva Lima, E.; Valente, T.N.; de Oliveira Roça, R.; Cezário, A.S.; dos Santos, W.B.; Deminicis, B.B.; Ribeiro, J.C. Effect of whole cottonseed or protected fat dietary additives on carcass characteristics and meat quality of beef cattle: A review. J. Agric. Sci. 2017, 9, 175–189. [Google Scholar]
- Andrade, E.N.; Neto, A.P.; Roça, R.D.; Faria, M.D.; Resende, F.D.; Siqueira, G.R.; Pinheiro, R.S. Beef quality of young Angus x Nellore cattle supplemented with rumen-protected lipids during rearing and fatting periods. Meat Sci. 2014, 98, 591–598. [Google Scholar] [CrossRef]
- Lock, A.L.; Harvatine, K.J.; Drackley, J.K.; Bauman, D.E. Concepts in fat and fatty acid digestion in ruminants. In Proc. Intermountain Nutr. Conf.; Utah State Univ.: Logan, UT, USA, 2006; pp. 85–100. [Google Scholar]
- Nieto, G.; Ros, G. Modification of fatty acid composition in meat through diet: Effect on lipid peroxidation and relationship to nutritional quality—A review. Lipid Peroxid. 2012, 12, 239–258. [Google Scholar]
- Lanza, M.; Fabro, C.; Scerra, M.; Bella, M.; Pagano, R.; Brogna, D.M.R.; Pennisi, P. Lamb meat quality and intramuscular fatty acid composition as affected by concentrates including different legume seeds. Ital. J. Anim. Sci. 2011, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida-Mendoza, M.; Arenas de Moreno, L.; Huerta-Leidenz, N.; Uzcátegui-Bracho, S.; Valero-Leal, K.; Romero, S.; Rodas-González, A. Cholesterol and fatty acid composition of longissimus thoracis from water buffalo (Bubalus bubalis) and Brahman-influenced cattle raised under savannah conditions. Meat Sci. 2015, 106, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Department of Health. Nutritional Aspects of Cardiovascular Disease; Report on Health and Social Subjects, 46; HMSO: London, UK, 1994.
- Cifuni, G.F.; Contò, M.; Amici, A.; Faill, S. Physical and nutritional properties of buffalo meat finished on hay or maize silage-based diets. Anim Sci. 2014, 85, 405–410. [Google Scholar] [CrossRef]
- Woods, V.B.; Fearon, A.M. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livest. Sci. 2009, 126, 1–20. [Google Scholar] [CrossRef]
- Lima, E.D.; Morais, J.P.; Roça, R.D.; Costa, Q.P.; Andrade, E.N.; Vaz, V.P.; Valente, T.N.; Costa, D.P. Meat characteristics of Nellore cattle fed different levels of lipid-based diets. J. Agric. Sci. 2015, 7, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.D.; Leme, P.R.; Putrino, S.M.; Pereira, A.S.; Valinote, A.C.; Nogueira Filho, J.C.; Lanna, D.P. Fatty acid composition of intramuscular fat from Nellore steers fed dry or high moisture corn and calcium salts of fatty acids. Livest. Sci. 2009, 122, 290–295. [Google Scholar] [CrossRef]
- Souza, N.E.; Silva, R.R.; Prado, I.M.; Prado, J.M.; Wada, F.Y.; Prado, I.N. Grãos de linhaça e canola sobre a composição do músculo Longissimus de novilhas confinadas. Arch. Zootec. 2007, 56, 863–874. [Google Scholar]
- Machado Neto, O.R.; Ladeira, M.M.; Chizzotti, M.L.; Jorge, A.M.; Oliveira, D.M.; Carvalho, J.R.; Ribeiro, J.D. Performance, carcass traits, meat quality and economic analysis of feedlot of young bulls fed oilseeds with and without supplementation of vitamin E. Rev. Bras. Zootec. 2012, 41, 1756–1763. [Google Scholar] [CrossRef] [Green Version]
- Adegbola, A.A.; Okonkwo, A.C. Nutrient intake, digestibility and growth rate of rabbits fed varying levels of cassava leaf meal. Niger. J. Anim. Prod. 2000, 29, 21–26. [Google Scholar] [CrossRef]
- Boughalmi, A.; Araba, A. Effect of feeding management from grass to concentrate feed on growth, carcass characteristics, meat quality and fatty acid profile of Timahdite lamb breed. Small Rumin. Res. 2016, 144, 158–163. [Google Scholar] [CrossRef]
- Jenkins, G.P.; Miklyaev, M. Cost-Benefit analysis of small ruminants fattening with feed concentrates in the highlands of Ethiopia. JDI Exec. Programs 2014, 1, 2013-12. [Google Scholar]
- Naik, P.K. Bypass fat in dairy ration-a review. Anim. Nutr. Feed Technol. 2013, 13, 147–163. [Google Scholar]
Feedstuffs | |||
---|---|---|---|
Fatty Acids Composition (% Total FA) † | Grass | Concentrate | Bypass Fat |
C12:0 Lauric acid | 0.75 | 6.70 | 0.51 |
C14:0 Myristic acid | 0.3 | 1.96 | 0.16 |
C16:0 Palmitic acid | 2.03 | 51.47 | 51.23 |
C18:0 Stearic acid | 8.43 | 10.12 | 0.43 |
C18:1 n-9, Oleic acid | 45.87 | 19.90 | 47.44 |
C18:2 n-6, Linoleic acid | 40.44 | 8.10 | 0.10 |
C18:3 n-3, Alpha linoleic acid | 1.93 | 1.37 | 0.10 |
C20:0 Eicosanoic acid | 0.24 | 0.38 | 0.05 |
Total fatty acid (µg/mg) | 192.35 | 556.40 | 2861.57 |
Σ SFA 1 | 11.75 | 70.63 | 52.39 |
Σ UFA 2 | 88.25 | 29.37 | 47.65 |
Σ PUFA n-3 3 | 1.93 | 1.37 | 0.10 |
Σ PUFA n-6 4 | 40.44 | 8.10 | 0.10 |
Σ PUFA 5 | 42.38 | 9.47 | 0.20 |
PUFA n-6/n-3 ratio | 20.91 | 5.90 | 1.05 |
Σ MUFA 6 | 45.87 | 19.90 | 47.44 |
Diets | ||
---|---|---|
Ingredient (%) | Diet A | Diet B |
Brachiaria decumbens (G) | 70 | 70 |
Concentrate (C) | 30 | 26 |
Bypass fat (B) | - | 4 |
Total | 100 | 100 |
Fatty acids composition (% total FA) † | ||
C12:0 Lauric acid | 2.60 | 2.13 |
C14:0 Myristic acid | 1.01 | 0.76 |
C16:0 Palmitic acid | 11.02 | 59.60 |
C18:0 Stearic caid | 55.90 | 18.83 |
C18:1 n-9, Oleic acid | 13.26 | 9.58 |
C18:2 n-6, Linoleic acid | 13.67 | 8.65 |
C18:3 n-3, Alpha linoleic acid | 1.04 | 0.46 |
C20:0 Eicosanoic acid | 0.22 | 0.04 |
Total fatty acid (µg/mg) | 543.10 | 674.09 |
Σ SFA 1 | 70.75 | 81.35 |
Σ UFA 2 | 29.25 | 18.39 |
Σ PUFA n-3 3 | 1.04 | 0.46 |
Σ PUFA n-6 4 | 13.67 | 8.65 |
Σ PUFA 5 | 14.71 | 9.11 |
PUFA n-6/n-3 ratio | 13.19 | 18.87 |
Σ MUFA 6 | 13.26 | 9.58 |
Breed | Murrah Cross | Swamp | p-Value | Interaction | ||||
---|---|---|---|---|---|---|---|---|
Diets | Diet A 1 | Diet B | Diet A | Diet B | SEM 2 | Diet | Breed | Diet × Breed |
Pre-slaughter weight (kg) | 330.75 aY | 451.70 bY | 281.75 aZ | 353.78 bZ | 16.15 | * | * | 0.035 |
Hot carcass (kg) | 157.08 aY | 204.10 bY | 131.33 aZ | 150.28 bZ | 7.23 | * | * | 0.047 |
Cold carcass (kg) | 144.53 aY | 192.60 bY | 120.28 aZ | 139.40 bZ | 7.19 | * | * | 0.041 |
Carcass yield (%) | 47.50 a | 45.17 b | 46.66 a | 42.41 b | 0.70 | * | ns | ns |
Shrinkage (%) | 7.99 | 5.62 | 8.40 | 7.30 | 0.46 | ns | ns | ns |
Fat (%) | 12.35 a | 6.49 b | 8.23 a | 5.54 b | 0.78 | * | ns | ns |
Bone (%) | 21.85 Y | 23.85 Y | 19.02 Z | 18.12 Z | 1.01 | ns | * | ns |
Meat (%) | 59.01 a | 59.20 b | 56.91 a | 60.75 b | 0.81 | * | ns | ns |
Meat:bone ratio | 2.74 Y | 2.45 Y | 3.22 Z | 3.43 Z | 0.18 | ns | * | ns |
Meat:fat ratio | 5.05 a | 9.43 b | 6.98 a | 11.33 b | 0.75 | * | ns | ns |
Offal (% BW) | 6.87 | 6.92 | 6.79 | 6.81 | 0.16 | ns | ns | ns |
pH (0 h) | 6.77 | 6.69 | 6.67 | 6.81 | 0.06 | ns | ns | ns |
pH (24 h) | 5.51 a | 5.87 b | 5.43 a | 5.56 b | 0.06 | * | ns | ns |
pH (48 h) | 5.48 | 5.38 | 5.43 | 5.35 | 0.03 | ns | ns | ns |
Nutrient Composition of Different Type of Muscles | Breeds | Dietary Treatments | ||||||
---|---|---|---|---|---|---|---|---|
Murrah Cross | Swamp | SEM | p-Value | Diet A 1 | Diet B | SEM 2 | p-Value | |
Longissimus thoracis et lumborum (LTL) | ||||||||
Moisture (%) | 73.75 | 73.61 | 0.05 | ns | 71.37 b | 75.99 a | 1.63 | * |
Ash (%) | 1.39 Z | 1.78 Y | 0.14 | * | 1.64 | 1.53 | 0.04 | ns |
Ether extract (%) | 2.82 | 2.90 | 0.03 | ns | 2.13 b | 3.59 a | 0.52 | * |
Crude protein (%) | 24.31 Z | 25.58 Y | 0.45 | * | 24.39 b | 25.49 a | 0.39 | * |
Carbohydrates (%) | nd | nd | - | ns | nd 3 | Nd | - | ns |
Gross energy (MJ/kg) | 21.18 | 20.66 | 0.18 | ns | 20.35 | 21.48 | 0.40 | ns |
Semitendinosus (ST) | ||||||||
Moisture (%) | 70.27 | 73.08 | 1.00 | ns | 70.64 b | 72.71 a | 0.73 | * |
Ash (%) | 1.29 | 1.28 | 0.01 | ns | 1.64 a | 0.93 b | 0.25 | * |
Ether extract (%) | 3.04 | 2.00 | 0.37 | ns | 1.52 b | 3.52 a | 0.71 | * |
Crude protein (%) | 22.62 Z | 26.57 Y | 1.40 | * | 23.42 b | 25.77 a | 0.83 | * |
Carbohydrates (%) | 4.71 | 1.24 | 1.23 | ns | 2.98 | nd 3 | - | ns |
Gross energy (MJ/kg) | 21.27 | 20.96 | 0.11 | ns | 20.80 | 21.44 | 0.23 | ns |
Supraspinatus (SS) | ||||||||
Moisture (%) | 73.96 | 74.71 | 0.27 | ns | 72.53 b | 76.13 a | 1.27 | * |
Ash (%) | 1.81 | 1.60 | 0.08 | ns | 1.67 | 1.74 | 0.02 | ns |
Ether extract (%) | 2.96 | 2.15 | 0.29 | ns | 2.38 b | 2.73 a | 0.12 | * |
Crude protein (%) | 26.38 | 24.38 | 0.71 | ns | 23.76 b | 27.00 a | 1.14 | * |
Carbohydrates (%) | 0.72 | 1.83 | 0.39 | ns | 1.28 | nd3 | - | ns |
Gross energy (MJ/kg) | 21.19 | 21.02 | 0.06 | ns | 21.24 | 20.97 | 0.10 | ns |
Fatty Acid Composition (% Total FA) † | Dietary Treatments | SEM 9 | p-Value | |
---|---|---|---|---|
Diet A 1 | Diet B | |||
C14:0 Myristic acid | 0.56 | 2.33 | 0.63 | ns |
C15:0 Pentadecanoic acid | 1.55 | 0.77 | 0.28 | ns |
C15:1 Pentadecanoic acid (cis-10) | 1.29 | 2.36 | 0.38 | ns |
C16:0 Palmitic acid | 3.36 B | 15.04 A | 4.13 | * |
C16:1 Palmitoleic acid | 1.09 B | 1.87 A | 0.28 | * |
C17:0 Heptadecanoic acid | 2.10 | 3.09 | 0.35 | ns |
C17:1 Heptadecenoic acid | 2.47 | 2.07 | 0.14 | ns |
C18:0 Stearic acid | 2.04 | 2.32 | 0.10 | ns |
C18:1 n9c, Oleic acid | 4.01 B | 13.18 A | 3.24 | * |
C18:2 n6c, Linoleic acid | 20.33 | 18.36 | 0.70 | ns |
C18:3 n3c, Alpha linoleic acid | 53.85 A | 28.63 B | 8.92 | * |
C20:0 Eicosanoic acid | 0.45 | 0.32 | 0.05 | ns |
C20:1 n9c, Eicosenoic acid | 0.19 | 0.28 | 0.03 | ns |
C20:2 n6c, Eicosadienoic acid | 1.20 | 0.62 | 0.21 | ns |
C20:3 n6c, Dihomo-γ-linoleic acid | 2.55 | 4.22 | 0.59 | ns |
C20:4 n6c, Arachidonic acid | 1.17 | 2.83 | 0.59 | ns |
C20:5 n3c, Eicosapentanoic acid | 1.52 | 0.61 | 0.32 | ns |
C22:0 Docosanoic acid | 0.11 | 0.17 | 0.02 | ns |
C22:1 n9c, Erucic acid | 0.56 | 0.69 | 0.05 | ns |
C22:2 n6c, Docosadienoic acid | 0.14 | 0.26 | 0.04 | ns |
C22:6 n3c, Docosahexanoic acid | 0.38 | 0.25 | 0.05 | ns |
Total fatty acid (µg/mg) | 766.75 | 727.90 | 13.74 | ns |
Total SFA 2 | 9.65 | 22.96 | 4.71 | ns |
Total UFA 3 | 81.10 | 72.48 | 3.05 | ns |
Total PUFA n-3 4 | 55.66 A | 29.44 B | 9.27 | * |
Total PUFA n-6 5 | 18.58 | 2 3.66 | 1.80 | ns |
Total PUFA n-9 6 | 3.41 | 13.43 | 3.54 | ns |
Total PUFA 7 | 77.66 | 66.52 | 3.94 | ns |
PUFA n-6/n-3 ratio | 0.35 B | 0.93 A | 0.21 | * |
UFA/SFA | 10.19 A | 4.17 B | 2.13 | * |
PUFA/SFA | 9.80 A | 3.91 B | 2.08 | * |
Total MUFA 8 | 6.16 B | 18.50 A | 4.36 | * |
Fatty Acid Composition (% Total FA) † | Breed | SEM 9 | p-Value | |
---|---|---|---|---|
MC 1 | SW | |||
C14:0 Myristic acid | 1.17 | 1.70 | 0.19 | ns |
C15:0 Pentadecanoic acid | 0.74 | 1.36 | 0.22 | ns |
C15:1 Pentadecanoic acid (cis-10) | 1.81 | 1.61 | 0.07 | ns |
C16:0 Palmitic acid | 8.30 | 10.78 | 0.88 | ns |
C16:1 Palmitoleic acid | 0.94 | 2.46 | 0.54 | ns |
C17:0 Heptadecanoic acid | 1.85 | 3.54 | 0.60 | ns |
C17:1 Heptadecenoic acid | 1.34 | 2.92 | 0.56 | ns |
C18:0 Stearic acid | 3.04 | 2.63 | 0.14 | ns |
C18:1 n9c, Oleic acid | 10.69 | 11.02 | 0.12 | ns |
C18:2 n6c, Linoleic acid | 25.18 y | 13.19 z | 4.24 | * |
C18:3 n3c, Alpha linoleic acid | 36.58 | 39.47 | 1.02 | ns |
C20:0 Eicosanoic caid | 0.30 | 0.39 | 0.03 | ns |
C20:1 n9c, Eicosenoic acid | 0.23 | 0.26 | 0.01 | ns |
C20:2 n6c, Eicosadienoic acid | 0.72 | 1.24 | 0.18 | ns |
C20:3 n6c, Dihomo-γ-linoleic acid | 2.95 | 3.78 | 0.29 | ns |
C20:4 n6c, Arachidonic acid | 2.27 | 1.90 | 0.13 | ns |
C20:5 n3c, Eicosapentanoic acid | 0.69 | 1.47 | 0.28 | ns |
C22:0 Docosanoic acid | 0.15 | 0.16 | 0.00 | ns |
C22:1 n9c, Erucic acid | 0.57 | 0.65 | 0.03 | ns |
C22:2 n6c, Docosadienoic acid | 0.24 | 0.16 | 0.03 | ns |
C22:6 n3c, Docosahexanoic acid | 0.42 | 0.22 | 0.07 | ns |
Total fatty acid (µg/mg) | 811.75 y | 610.48 z | 71.16 | * |
Total SFA 2 | 14.29 | 20.40 | 2.16 | ns |
Total UFA 3 | 75.44 | 77.79 | 0.83 | ns |
Total PUFA n-3 4 | 37.55 | 41.14 | 1.27 | ns |
Total PUFA n-6 5 | 24.66 | 19.11 | 1.96 | ns |
Total PUFA n-9 6 | 9.45 | 11.91 | 0.87 | ns |
Total PUFA 7 | 71.66 | 72.16 | 0.18 | ns |
PUFA n-6/n-3 ratio | 0.81 | 0.67 | 0.05 | ns |
UFA/SFA | 7.98 | 5.26 | 0.96 | ns |
PUFA/SFA | 7.63 | 4.99 | 0.93 | ns |
Total MUFA 8 | 12.56 | 16.65 | 1.45 | ns |
Fatty Acid Composition (% Total FA) † | Type of Muscle | SEM 9 | p-Value | ||
---|---|---|---|---|---|
LTL 1 | ST | SS | |||
C14:0 Myristic acid | 0.84 b | 2.55 a | 0.93 b | 0.47 | * |
C15:0 Pentadecanoic acid | 1.38 | 0.75 | 1.03 | 0.08 | ns |
C15:1 Pentadecanoic acid (cis-10) | 1.85 | 0.91 | 2.36 | 0.42 | ns |
C16:0 Palmitic acid | 6.76 c | 12.80 a | 9.06 b | 1.08 | * |
C16:1 Palmitoleic acid | 1.03 | 3.86 | 0.23 | 1.05 | ns |
C17:0 Heptadecanoic acid | 2.69 | 2.93 | 2.47 | 0.13 | ns |
C17:1 Heptadecenoic acid | 1.46 | 3.34 | 1.58 | 0.51 | ns |
C18:0 Stearic acid | 4.91 | 2.14 | 1.45 | 0.20 | ns |
C18:1 n9c, Oleic acid | 12.02 b | 14.26 a | 6.28 c | 2.30 | * |
C18:2 n6c, Linoleic acid | 19.14 b | 10.54 c | 27.87 a | 5.00 | * |
C18:3 n3c, Alpha linoleic acid | 40.17 | 36.08 | 37.82 | 0.50 | ns |
C20:0 Eicosanoic acid | 0.43 | 0.34 | 0.28 | 0.02 | ns |
C20:1 n9c, Eicosenoic acid | 0.22 | 0.28 | 0.23 | 0.01 | ns |
C20:2 n6c, Eicosadienoic acid | 1.94 | 0.54 | 0.46 | 0.02 | ns |
C20:3 n6c, Dihomo- γ-linoleic acid | 2.81 | 3.89 | 3.40 | 0.14 | ns |
C20:4 n6c, Arachidonic acid | 1.66 | 1.86 | 2.74 | 0.25 | ns |
C20:5 n3c, Eicosapentanoic acid | 1.17 | 1.32 | 0.75 | 0.16 | ns |
C22:0 Docosanoic acid | 0.17 | 0.10 | 0.19 | 0.03 | ns |
C22:1 n9c, Erucic acid | 0.44 | 1.06 | 0.32 | 0.21 | ns |
C22:2 n6c, Docosadienoic acid | 0.19 | 0.16 | 0.25 | 0.03 | ns |
C22:6 n3c, Docosahexanoic acid | 0.36 | 0.30 | 0.32 | 0.01 | ns |
Total fatty acid (µg/mg) | 652.74 b | 628.02 b | 852.59 a | 64.83 | * |
Total SFA 2 | 17.00 | 20.92 | 14.11 | 1.97 | ns |
Total UFA 3 | 83.00 | 71.37 | 75.49 | 1.19 | ns |
Total PUFA n-3 4 | 41.64 | 37.58 | 38.82 | 0.36 | ns |
Total PUFA n-6 5 | 24.86 | 14.65 | 26.14 | 3.32 | ns |
Total PUFA n-9 6 | 12.62 | 12.66 | 6.77 | 1.70 | ns |
Total PUFA 7 | 79.11 | 64.89 | 71.73 | 1.97 | ns |
PUFA n-6/n-3 ratio | 0.88 | 0.60 | 0.74 | 0.04 | ns |
UFA/SFA | 6.29 | 5.91 | 7.65 | 0.50 | ns |
PUFA/SFA | 6.01 | 5.54 | 7.37 | 0.53 | ns |
Total MUFA 8 | 15.90 | 17.95 | 9.97 | 2.30 | ns |
Breed | Murrah Cross | Swamp | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Diets | Diet A | Diet B | Diet A | Diet B | Diet | Breed | Interaction | |
Revenue | ||||||||
A. Meat sales (MYR) | 2874.50 aY | 3754.31 bY | 2321.33 aZ | 2824.85 bZ | 257.80 | * | * | * |
B. Bone sales (MYR) | 893.10 | 1266.72 | 646.88 | 708.50 | 120.80 | * | * | * |
C. Offal sales (MYR) | 795.2 | 1094.10 | 669.55 | 843.15 | 77.14 | * | * | * |
D. Head sales (MYR) | 70.00 | 70.00 | 70.00 | 70.00 | - | - | - | - |
E. Skin sales (MYR) | 65.00 | 65.00 | 65.00 | 65.00 | - | - | - | - |
F. Tail sales (MYR) | 10.00 | 10.00 | 10.00 | 10.00 | - | - | - | - |
G. Total revenue (MYR) (A + B + C + D + E + F) | 4707.80 aY | 6260.13 bY | 3782.76 aZ | 4521.50 bZ | 901.60 | * | * | * |
Operating Expenses (2 years) | ||||||||
Variable cost | ||||||||
Cost of feeding (MYR/day) | ||||||||
Brachiaria grass | 0.71 a | 0.80 b | 0.66 a | 0.68 b | 0.03 | * | ns | ns |
Concentrate | 1.46 | 1.43 | 1.36 | 1.23 | 0.04 | ns | ns | ns |
Bypass fat | - | 0.75 | - | 0.65 | 0.03 | ns | ns | ns |
H. Total cost of average daily DMI (MYR/day/animal) | 2.17 a | 2.98 b | 2.02 a | 2.56 b | 0.19 | * | ns | ns |
I. Total feed cost in 2 years (MYR/animal) | 1580.44 a | 2171.62 b | 1477.74 a | 1867.33 b | 135.10 | * | ns | ns |
Fixed cost | ||||||||
Management cost | ||||||||
Deworming | 0.50 | 0.50 | 0.50 | 0.50 | - | - | - | - |
ID tag | 2.00 | 2.00 | 2.00 | 2.00 | - | - | - | - |
Fertilizer | 156.00 | 156.00 | 156.00 | 156.00 | - | - | - | - |
Transportation | 83.33 | 83.33 | 83.33 | 83.33 | - | - | - | - |
Labor cost | 152.00 | 152.00 | 152.00 | 152.00 | - | - | - | - |
J. Total management cost (MYR/2 year/animal) | 393.83 | 393.83 | 393.83 | 393.83 | - | - | - | - |
K. Pre- and post-inspection of slaughter services/animal (MYR) | 5.00 | 5.00 | 5.00 | 5.00 | - | - | - | - |
L. Total cost (I + J + K) | 1979.27 a | 2570.45 b | 1876.57 a | 2266.16 b | 135.10 | * | ns | ns |
Total net profit (MYR) (G-L) | 2728.53 aY | 3689.68 bY | 1906.19 aZ | 2255.34 bZ | 335.04 | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Azmi, A.F.; Mat Amin, F.; Ahmad, H.; Mohd Nor, N.; Meng, G.Y.; Zamri Saad, M.; Abu Bakar, M.Z.; Abdullah, P.; Irawan, A.; Jayanegara, A.; et al. Effects of Bypass Fat on Buffalo Carcass Characteristics, Meat Nutrient Contents and Profitability. Animals 2021, 11, 3042. https://doi.org/10.3390/ani11113042
Mohd Azmi AF, Mat Amin F, Ahmad H, Mohd Nor N, Meng GY, Zamri Saad M, Abu Bakar MZ, Abdullah P, Irawan A, Jayanegara A, et al. Effects of Bypass Fat on Buffalo Carcass Characteristics, Meat Nutrient Contents and Profitability. Animals. 2021; 11(11):3042. https://doi.org/10.3390/ani11113042
Chicago/Turabian StyleMohd Azmi, Amirul Faiz, Fhaisol Mat Amin, Hafandi Ahmad, Norhariani Mohd Nor, Goh Yong Meng, Mohd Zamri Saad, Md Zuki Abu Bakar, Punimin Abdullah, Agung Irawan, Anuraga Jayanegara, and et al. 2021. "Effects of Bypass Fat on Buffalo Carcass Characteristics, Meat Nutrient Contents and Profitability" Animals 11, no. 11: 3042. https://doi.org/10.3390/ani11113042
APA StyleMohd Azmi, A. F., Mat Amin, F., Ahmad, H., Mohd Nor, N., Meng, G. Y., Zamri Saad, M., Abu Bakar, M. Z., Abdullah, P., Irawan, A., Jayanegara, A., & Abu Hassim, H. (2021). Effects of Bypass Fat on Buffalo Carcass Characteristics, Meat Nutrient Contents and Profitability. Animals, 11(11), 3042. https://doi.org/10.3390/ani11113042