Monitoring and Characteristics of Major Mastitis Pathogens from Bulk Tank Milk in Korea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. IBC and SCC
2.3. Bacterial Identification
2.4. Antimicrobial Susceptibility Testing
2.5. Statistical Analysis
3. Results
3.1. Comparison of IBC and SCC
3.2. Distribution of Major Mastitis Pathogens
3.3. Antimicrobial Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwarz, D.; Diesterbeck, U.S.; Failing, K.; König, S.; Brügemann, K.; Zschöck, M.; Wolter, W.; Czerny, C.P. Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany—A longitudinal study. J. Dairy Sci. 2010, 93, 5716–5728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, D.P.; Brien, B.O.; Callaghan, E.J.O.; Sullivan, K.O.; Meaney, W.J. Temporal Trends in Bulk Tank Somatic Cell Count and Total Bacterial Count in Irish Dairy Herds During the Past Decade. J. Dairy Sci. 2006, 89, 4083–4093. [Google Scholar] [CrossRef]
- Cicconi-Hogan, K.M.; Gamroth, M.; Richert, R.; Ruegg, P.L.; Stiglbauer, K.E.; Schukken, Y.H. Associations of risk factors with somatic cell count in bulk tank milk on organic and conventional dairy farms in the United States. J. Dairy Sci. 2013, 96, 3689–3702. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; Keefe, G.P.; Roy, J.; Stryhn, H.; Dohoo, I.R.; Mckenna, S.L. Evaluation of selective dry cow treatment following on-farm culture: Milk yield and somatic cell count in the subsequent lactation. J. Dairy Sci. 2015, 98, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Syring, C.; Boss, R.; Reist, M.; Bodmer, M.; Hummerjohann, J.; Gehrig, P.; Graber, H.U. Bovine mastitis: The diagnostic properties of a PCR-based assay to monitor the Staphylococcus aureus genotype B status of a herd, using bulk tank milk. J. Dairy Sci. 2012, 95, 3674–3682. [Google Scholar] [CrossRef] [Green Version]
- Riekerink, R.G.M.O.; Barkema, H.W.; Scholl, D.T.; Poole, D.E.; Kelton, D.F. Management practices associated with the bulk-milk prevalence of Staphylococcus aureus in Canadian dairy farms. Prev. Vet. Med. 2010, 97, 20–28. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, Y.J.; Qin, Y.; Vallverdú, R.G.; García, J.M.; Sun, W.; Li, S.; Cao, Z. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China. PLoS ONE 2016, 11, e0155621. [Google Scholar] [CrossRef]
- Lopes Júnior, J.E.F.; Lange, C.C.; Brito, M.A.V.P.; Santos, F.R.; Silva, M.A.S.; de Moraes, L.C.D.; de Souza, G.N. Relationship between total bacteria counts and somatic cell counts from mammary quarters infected by mastitis pathogens. Ciência Rural 2012, 42, 691–696. [Google Scholar] [CrossRef]
- Gillespie, B.E.; Lewis, M.J.; Boonyayatra, S.; Maxwell, M.L.; Saxton, A.; Oliver, S.P.; Almeida, R.A. Short communication: Evaluation of bulk tank milk microbiological quality of nine dairy farms in Tennessee. J. Dairy Sci. 2012, 95, 4275–4279. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Food and Drug Safety (MFDS). Livestock Products Sanitary Control Act; Ministry of Food and Drug Safety: Cheongju, Korea, 2017.
- Rysanek, D.; Zouharova, M.; Babak, V. Monitoring major mastitis pathogens at the population level based on examination of bulk tank milk samples. J. Dairy Res. 2009, 76, 117–123. [Google Scholar] [CrossRef]
- Nam, H.-M.; Lee, A.; Jung, S.; Kim, M.; Jang, G.; Wee, S.-H.; Lim, S.-K. Antimicrobial Susceptibility of Staphylococcus aureus and Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Bovine Mastitis in Korea. Foodborne Pathog. Dis. 2011, 8, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Qu, W.; Barkema, H.W.; Nobrega, D.B.; Gao, J.; Liu, G.; Buck, J.D.; Kastelic, J.P.; Sun, H.; Han, B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J. Dairy Sci. 2019, 102, 2416–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos, J.M.; Ellington, B.A.; Varela, M.F. Presence of Multidrug Resistant Enteric Bacteria in Dairy Farm Topsoil. J. Dairy Sci. 2008, 88, 1391–1398. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Food and Drug Safety (MFDS). Processing Standards and Ingredient Specifications for Livestock Products; Ministry of Food and Drug Safety: Cheongju, Korea, 2018.
- Candrian, U.; Furrer, B.; Höfelein, C.; Meyer, R.; Jermini, M.; Lüthy, J. Detection of Escherichia coli and identification of enterotoxigenic strains by primer-directed enzymatic amplification of specific DNA sequences. Int. J. Food Microbiol. 1991, 12, 339–351. [Google Scholar] [CrossRef]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 1434. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H.; Khan, M.; Morin, D.E.; Hurley, W.L.; Tripathy, D.N.; Kehrli, M.; Oluoch, A.O.; Kakoma, I. Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk. J. Dairy Sci. 2001, 84, 74–83. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.; Wang, S.; Liu, L.; Lee, M.; Chuang, S.; Shy, Y.; Chang, C.; Wu, M.; Chi, C. Development of a novel biochip for rapid multiplex detection of seven mastitis-causing pathogens in bovine milk samples. J. Vet. Diagn. Investig. 2008, 20, 463–471. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Pourmand, M.R.; Hassanzadeh, S.; Mashhadi, R.; Askari, E. Comparison of four diagnostic methods for detection of methicillin resistant Staphylococcus aureus. Iran. J. Microbiol. 2014, 6, 341–344. [Google Scholar]
- Magiorakos, A.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2011, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Banos, G.; Wall, E.; Coffey, M.P.; Bagnall, A.; Gillespie, S.; Russell, G.C.; Mcneilly, T.N. Identification of Immune Traits Correlated with Dairy Cow Health, Reproduction and Productivity. PLoS ONE 2013, 8, e65766. [Google Scholar] [CrossRef] [Green Version]
- Dufour, S.; Fréchette, A.; Barkema, H.W.; Mussell, A.; Scholl, D.T. Invited review: Effect of udder health management practices on herd somatic cell count. J. Dairy Sci. 2011, 94, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Korea Agro-Fisheries & Food Trade Corporation Food Information Statistics System (ATFIS). Available online: https://www.atfis.or.kr/ (accessed on 1 August 2020).
- Kandasamy, S.; Park, W.S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.-H.; Oh, M.-H.; Ham, J.S. Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea. Asian Aust. J. Anim. Sci. 2020, 33, 1002–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, J.J.; Wildman, E.E.; Pankey, J.W.; Kunkel, J.R.; Howard, D.B.; Murphy, B.M. The Influence of Intensively Managed Rotational Grazing, Traditional Continuous Grazing, and Confinement Housing on Bulk Tank Milk Quality and Udder Health. J. Dairy Sci. 1992, 75, 96–104. [Google Scholar] [CrossRef]
- Jayarao, B.M.; Pillai, S.R.; Sawant, A.A.; Wolfgang, D.R.; Hegde, N. V Guidelines for Monitoring Bulk Tank Milk Somatic Cell and Bacterial Counts. J. Dairy Sci. 2004, 87, 3561–3573. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.C.; Soboleva, T.K.; Jamieson, P.; French, N.P. Estimating Bacterial Pathogen Levels in New Zealand Bulk Tank Milk. J. Food Prot. 2016, 79, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Koo, H.C.; Kim, S.H.; Hwang, S.Y.; Jung, W.K.; Kim, J.M.; Shin, S.; Kim, R.T.; Park, Y.H. The Analysis of Milk Components and Pathogenic Bacteria Isolated from Bovine Raw Milk in Korea. J. Dairy Sci. 2007, 90, 5405–5414. [Google Scholar] [CrossRef] [Green Version]
- Petzer, I.-M.; Karzis, J.; Donkin, E.F.; Webb, E.C.; Etter, E.M.C. Validity of somatic cell count as indicator of pathogen-specific intramammary infections. J. S. Afr. Vet. Assoc. 2017, 88, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fenlon, D.R.; Logue, D.N.; Gunn, J.; Wilson, J. A study of mastitis bacteria and herd management practices to identify their relationship to high somatic cell counts in bulk tank milk. Br. Vet. J. 1995, 151, 17–25. [Google Scholar] [CrossRef]
- Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A. Short communication: Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count. J. Dairy Sci. 2010, 93, 2569–2573. [Google Scholar] [CrossRef] [Green Version]
- Sears, P.M.; Smith, B.S.; English, P.B.; Herer, P.S.; Gonzalez, R.N. Shedding Pattern of Staphylococcus aureus from Bovine Intramammary Infections. J. Dairy Sci. 1990, 73, 2785–2789. [Google Scholar] [CrossRef]
- Sampimon, O.; Van Den Borne, B.H.P.; Santman-berends, I.; Barkema, H.W.; Lam, T. Effect of coagulase-negative staphylococci on somatic cell count in Dutch dairy herds. J. Dairy Res. 2010, 77, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, R.; Fitzpatrick, J. Changing trends in mastitis. Ir. Vet. J. 2009, 62, 59–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, H.M.; Lim, S.K.; Moon, J.S.; Kang, H.M.; Kim, J.M.; Jang, K.C.; Kim, J.M.; Kang, M.I.; Joo, Y.S.; Jung, S.C. Antimicrobial Resistance of Enterococci Isolated from Mastitic Bovine Milk Samples in Korea. Zoonoses Public Health 2010, 57, e59–e64. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Lim, S.; Kang, H.; Kim, J.; Moon, J.; Jang, K.; Joo, Y.; Kang, M.; Jung, S. Antimicrobial resistance of streptococci isolated from mastitic bovine milk samples in Korea. J. Vet. Diagn. Investig. 2009, 701, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Moon, D.C.; Park, S.-C.; Kang, H.Y.; Na, S.H.; Lim, S.-K. Antimicrobial resistance and genetic characterization of coagulase- negative staphylococci from bovine mastitis milk samples in Korea. J. Dairy Sci. 2019, 102, 11439–11448. [Google Scholar] [CrossRef]
- National Institute of Food and Drug Safety Evaluation (NIFDS). National Antimicrobial Resistance Surveillance on the Domestic and Imported Meat and Fishery Products; National Institute of Food and Drug Safety Evaluation: Cheongju, Korea, 2019. [Google Scholar]
- Caierao, J.; Musskopf, M.; Superti, S.; Roesch, E.; Dias, C.G.; D’Azevedo, P.A. Evaluation of phenotypic methods for methicillin resistance characterization in coagulase-negative staphylococci (CNS). J. Med. Microbiol. 2004, 53, 1195–1199. [Google Scholar] [CrossRef]
- Jung, W.K.; Lim, J.Y.; Kwon, N.H.; Kim, J.M.; Hong, S.K.; Koo, H.C.; Kim, S.H.; Park, Y.H. Vancomycin-resistant enterococci from animal sources in Korea. Int. J. Food Microbiol. 2007, 113, 102–107. [Google Scholar] [CrossRef]
- Denamiel, G.; Llorente, P.; Carabella, M.; Rebuelto, M.; Gentilini, E. Anti-microbial Susceptibility of Streptococcus spp. Isolated from Bovine Mastitis in Argentina. J. Vet. Med. 2005, 52, 125–128. [Google Scholar] [CrossRef]
- Tark, D.; Moon, D.C.; Kang, H.Y.; Kim, S.; Nam, H.; Lee, H. Antimicrobial susceptibility and characterization of extended-spectrum β-lactamases in Escherichia coli isolated from bovine mastitic milk in South Korea from 2012 to 2015. J. Dairy Sci. 2017, 100, 3463–3469. [Google Scholar] [CrossRef]
- Nam, H.M.; Lim, S.K.; Kang, H.M.; Kim, J.M.; Moon, J.S.; Jang, K.C.; Kim, J.M.; Joo, Y.S.; Jung, S.C. Prevalence and antimicrobial susceptibility of gram-negative bacteria isolated from bovine mastitis between 2003 and 2008 in Korea. J. Dairy Sci. 2009, 92, 2020–2026. [Google Scholar] [CrossRef] [Green Version]
- Kehrenberg, C.; Schwarz, S.; Jacobsen, L.; Hansen, L.H.; Vester, B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: Methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 2005, 57, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- White, D.G.; Hudson, C.; Maurer, J.J.; Ayers, S.; Zhao, S.; Lee, M.D.; Bolton, L.; Foley, T.; Sherwood, J. Characterization of Chloramphenicol and Florfenicol Resistance in Escherichia coli Associated with Bovine Diarrhea. J. Clin. Microbiol. 2000, 38, 4593–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhao, Z.; Avillan, J.J.; Call, D.R.; Davis, M.; Sischo, W.M.; Zhang, A. Dairy farm soil presents distinct microbiota and varied prevalence of antibiotic resistance across housing areas. Environ. Pollut. 2019, 254, 113058. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Fan, C.; Zhang, Z.; Li, S.; Xu, C.; Zhao, Y.; Han, L.; Zhang, D.; Liu, M. Microbial Pathogenesis Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution. Microb. Pthogenes. 2019, 129, 82–87. [Google Scholar] [CrossRef] [PubMed]
Target Microorganism | Target Gene | Primer | Sequence (5′–3′) | Amplicon Size (bp) | Annealing Temperature (°C) | References |
---|---|---|---|---|---|---|
E. coli | malB | malBF | TCGCCACACGCTGACGCTGACCA | 585 | 55 | [16] |
malBR | TTACATGACCTCGGTTTAGTTCACAGA | |||||
E. faecalis | ddl1 | ddl1F | TGTTGTATGGCGGCAGAAGT | 941 | 54 | [17] |
ddl1R | TCAGGTGTTTGTGCCCAAGT | |||||
E. faecium | ddl2 | ddl2F | ATGGGACCCAAGTGGACAGA | 550 | 54 | [17] |
ddl2R | ATTTCGCGCGCTTCAATTCC | |||||
S. aureus | nuc | NucF | GCGATTGATGGTGATACGGTT | 279 | 55 | [18] |
NucR | AGCCAAGCCTTGACGAACTAAAGC | |||||
Streptococcus | 16S-23S rRNA | SU-F2 | AGCCGCCTAAGGTGGGAT | 220–230 | 60 | [19] |
SU-R | ATGGAGCCTAGCGGGATC |
Company | Dairy Factory | Number of Bulk Tank Milk Samples a | Log10IBC | Geometric Mean of IBC (cells/mL) | log10SCC | Geometric Mean of SCC (cells/mL) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean b | SD c | CI d | Mean e | SD c | CI d | |||||
A | A-1 | 200 | 4.38 | 0.53 | 4.23–4.53 | 24,039 | 5.02 | 0.48 | 4.88–5.16 | 105,024 |
A-2 | 224 | 4.48 | 0.66 | 4.30–4.65 | 30,135 | 5.06 | 0.64 | 4.89–5.23 | 115,320 | |
B | B-1 | 480 | 4.57 | 0.41 | 4.49–4.64 | 36,939 | 5.10 | 0.46 | 5.01–5.18 | 124,517 |
C | C-1 | 188 | 4.51 | 0.37 | 4.40–4.62 | 32,598 | 5.01 | 0.40 | 4.89–5.13 | 102,245 |
D | D-1 | 232 | 4.43 | 0.37 | 4.33–4.53 | 26,955 | 4.94 | 0.39 | 4.83–5.04 | 86,570 |
D-2 | 132 | 4.40 | 0.44 | 4.25–4.56 | 25,405 | 4.97 | 0.43 | 4.82–5.12 | 92,614 | |
D-3 | 128 | 4.43 | 0.53 | 4.24–4.62 | 26,651 | 4.95 | 0.48 | 4.78–5.13 | 89,975 | |
Total | 1588 | 4.48 | 0.48 | 4.43–4.53 | 30,197 | 5.03 | 0.48 | 4.98–5.07 | 107,261 |
Genus. | Species | No. of Pathogens Isolated (%) among Farms a | Total (%) (n = 396) | ||||||
---|---|---|---|---|---|---|---|---|---|
A-1 (n = 50) | A-2 (n = 56) | B-1 (n = 120) | C-1 (n = 47) | D-1 (n = 58) | D-2 (n = 33) | D-3 (n = 32) | |||
Escherichia coli | 0 (0.0) * | 0 (0.0) * | 37 (30.8) | 28 (59.6) * | 29 (50.0) | 26 (78.8) * | 29 (90.6) * | 149 (37.6) | |
Enterococcus spp. | 20 (40.0) | 19 (33.9) * | 69 (57.5) | 30 (63.8) | 38 (65.5) | 23 (69.7) | 32 (100.0) * | 231 (58.3) | |
Enterococcus faecalis | 18 (36.0) | 19 (33.9) * | 64 (53.3) | 25 (53.2) | 35 (60.3) | 21 (63.6) | 31 (96.9) * | 213 (53.8) | |
Enterococcus faecium | 2 (4.0) | 2 (3.6) | 6 (5.0) | 11 (23.4) * | 6 (10.3) | 2 (6.1) | 1 (3.1) | 30 (7.6) | |
Staphylococcus spp. | 48 (96.0) * | 52 (92.9) * | 40 (33.3) * | 24 (51.1) | 48 (82.8) * | 18 (54.5) | 8 (25.0) * | 238 (60.1) | |
Staphylococcus aureus | 19 (38.0) | 52 (92.9) * | 0 (0.0) * | 3 (6.4) * | 5 (8.6) * | 13 (39.4) | 3 (9.4) | 95 (24.0) | |
Coagulase-negative staphylococci | 37 (74.0) * | 8 (14.3) * | 40 (33.3) | 22 (46.8) | 44 (75.9) * | 8 (24.2) | 5 (15.6) * | 164 (41.4) | |
Staphylococcus chromogenes | 35 (70.0) * | 6 (10.7) | 3 (2.5) * | 2 (4.3) | 12 (20.7) | 4 (12.1) | 1 (3.1) | 63 (15.9) | |
Staphylococcus saprophyticus | 0 (0.0) | 1 (1.8) | 17 (14.2) | 12 (25.5) * | 14 (24.1) * | 1 (3.0) | 0 (0.0) | 45 (11.4) | |
Staphylococcus xylosus | 1 (2.0) | 1 (1.8) | 6 (5.0) | 3 (6.4) | 6 (10.3) | 0 (0.0) | 0 (0.0) | 17 (4.3) | |
Staphylococcus haemolyticus | 0 (0.0) | 0 (0.0) | 5 (4.2) | 1 (2.1) | 4 (6.9) | 1 (3.0) | 0 (0.0) | 11 (2.8) | |
Staphylococcus simulans | 1 (2.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (1.7) | 2 (6.1) | 2 (6.3) | 6 (1.5) | |
Staphylococcus sciuri | 0 (0.0) | 0 (0.0) | 2 (1.7) | 2 (4.3) | 1 (1.7) | 0 (0.0) | 0 (0.0) | 5 (1.3) | |
Staphylococcus capitis | 0 (0.0) | 0 (0.0) | 2 (1.7) | 0 (0.0) | 1 (1.7) | 0 (0.0) | 0 (0.0) | 3 (0.8) | |
Staphylococcus cohnii | 0 (0.0) | 0 (0.0) | 1 (0.8) | 0 (0.0) | 1 (1.7) | 0 (0.0) | 0 (0.0) | 2 (0.5) | |
Staphylococcus epidermidis | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (2.1) | 0 (0.0) | 0 (0.0) | 1 (3.1) | 2 (0.5) | |
Staphylococcus equorum | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (2.1) | 1 (1.7) | 0 (0.0) | 0 (0.0) | 2 (0.5) | |
Staphylococcus gallinarum | 0 (0.0) | 0 (0.0) | 1 (0.8) | 0 (0.0) | 1 (1.7) | 0 (0.0) | 0 (0.0) | 2 (0.5) | |
Staphylococcus succinus | 0 (0.0) | 0 (0.0) | 2 (1.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (0.5) | |
Staphylococcus hyicus | 0 (0.0) | 0 (0.0) | 1 (0.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (3.1) | 2 (0.5) | |
Staphylococcus arlettae | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0 (0.0) | 0 (0.0) | 1 (0.3) | |
Staphylococcus lentus | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0 (0.0) | 0 (0.0) | 1 (0.3) | |
Streptococcus spp. | 6 (12.0) | 9 (16.1) | 27 (22.5) | 10 (21.3) | 16 (27.6) | 18 (54.5) * | 3 (9.4) | 89 (22.5) | |
Streptococcus bovis | 0 (0.0) | 0 (0.0) | 14 (11.7) | 0 (0.0) | 3 (5.2) | 8 (24.2) * | 0 (0.0) | 25 (6.3) | |
Streptococcus uberis | 1 (2.0) | 9 (16.1) * | 3 (2.5) | 3 (6.4) | 1 (1.7) | 0 (0.0) | 2 (6.3) | 19 (4.8) | |
Streptococcus oralis | 3 (6.0) | 0 (0.0) | 0 (0.0) | 2 (4.3) | 4 (6.9) | 6 (18.2) * | 1 (3.1) | 16 (4.0) | |
Streptococcus infantarius | 0 (0.0) | 0 (0.0) | 4 (3.3) | 0 (0.0) | 0 (0.0) | 3 (9.1) * | 0 (0.0) | 7 (1.8) | |
Streptococcus agalactiae | 1 (2.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.3) | |
Streptococcus intermedius | 0 (0.0) | 0 (0.0) | 1 (0.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.3) | |
Unidentified | 1 (2.0) | 0 (0.0) | 5 (4.2) | 5 (10.6) | 8 (13.8) * | 1 (3.0) | 0 (0.0) | 20 (5.1) |
Antibiotic (Abbreviation) | No. of Resistant Isolates (%) | ||||
---|---|---|---|---|---|
E. coli (n = 183) | Enterococcus spp. (n = 333) | S. aureus (n = 95) | CNS a (n = 214) | Streptococcus spp. (n = 93) | |
β-Lactams | |||||
Penicillin (P) | N/A b | 5 (1.5) | 27 (28.4) | 86 (40.2) | N/A |
Ampicillin (AM) | 24 (13.1) | 2 (0.6) | 3 (3.2) | 19 (8.9) | N/A |
Amoxicillin/clavulanate (AMC) | 5 (2.7) | N/A | 2 (2.1) | 12 (5.6) | N/A |
Oxacillin (OX) | N/A | N/A | 3 (3.2) | 14 (6.5) | N/A |
Methicillin (MET) | N/A | N/A | 3 (3.2) | 7 (3.3) | N/A |
Cephems | |||||
Cefazolin (CZ) | 9 (4.9) | N/A | 3 (3.2) | 3 (1.4) | N/A |
Cefadroxil (CDX) | 5 (2.7) | N/A | N/A | N/A | N/A |
Cephalothin (CF) | 25 (14) | N/A | 1 (1.1) | 2 (0.9) | N/A |
Cefuroxime (CXM) | 3 (1.6) | N/A | 1 (1.1) | 3 (1.4) | N/A |
Cefoxitin (FOX) | 3 (1.6) | N/A | 3 (3.2) | 7 (3.3) | N/A |
Ceftazidime (CAZ) | 5 (2.7) | N/A | 1 (1.1) | 2 (0.9) | N/A |
Cefotaxime (CTX) | 3 (1.6) | N/A | 1 (1.1) | 3 (1.4) | 23 (24.7) |
Cefepime (FEP) | 3 (1.6) | N/A | 1 (1.1) | 3 (1.4) | 21 (22.6) |
Glycopeptides | |||||
Vancomycin (VA) | N/A | 2 (0.6) | 0 (0.0) | 0 (0.0) | N/A |
Teicoplanin (TEC) | N/A | N/A | 0 (0.0) | 1 (0.5) | N/A |
Imipenem (IPM) | 0 (0.0) | N/A | N/A | N/A | N/A |
Aminoglycosides | |||||
Gentamicin (G) | 19 (10) | NA | 1 (1.1) | 3 (1.4) | N/A |
Amikacin (A) | 0 (0.0) | N/A | 0 (0.0) | 0 (0.0) | N/A |
Kanamycin (K) | 4 (2.2) | N/A | 2 (2.1) | 12 (5.6) | N/A |
Macrolides | |||||
Erythromycin (E) | N/A | 155 (46.5) | 2 (2.1) | 13 (6.1) | 17 (18.3) |
Tetracyclines | |||||
Tetracycline (TE) | 26 (14.2) | 246 (73.9) | 2 (2.1) | 65 (30.4) | 46 (49.5) |
Doxycycline (DOX) | 9 (4.9) | 170 (51.1) | 0 (0.0) | 12 (5.6) | N/A |
Quinolones | |||||
Nalidixic acid (Na) | 2 (1.1) | N/A | N/A | N/A | N/A |
Fluoroquinolones | |||||
Ciprofloxacin (CIP) | 2 (1.1) | 13 (3.9) | 1 (1.1) | 1 (0.5) | N/A |
Levofloxacin (LVX) | N/A | 5 (1.5) | 1 (1.1) | 1 (0.5) | 1 (1.1) |
Norfloxacin (NOR) | N/A | 5 (1.5) | 2 (2.1) | 1 (0.5) | N/A |
Ofloxacin (OFX) | N/A | N/A | 1 (1.1) | 1 (0.5) | 2 (2.2) |
Nitrofurantoins | |||||
Nitrofurantoin (F/M) | N/A | 0 (0.0) | 0 (0.0) | 0 (0.0) | N/A |
Lincosamides | |||||
Clindamycin (CC) | N/A | N/A | 1 (1.1) | 8 (3.7) | 33 (35.5) |
Folate pathway inhibitors | |||||
Trimethoprim/sulfamethoxazole (SXT) | 7 (3.8) | N/A | 1 (1.1) | 1 (0.5) | 0 (0.0) |
Phenicols | |||||
Chloramphenicol (C) | 11 (6.0) | 87 (26.1) | 2 (2.1) | 45 (21.0) | 21 (22.6) |
Ansamycins | |||||
Rifampin (RA) | N/A | 63 (18.9) | 0 (0.0) | 1 (0.5) | 0 (0.0) |
Polymyxins | |||||
Colistin (CL) | 16 (8.7) | N/A | N/A | N/A | N/A |
No. of Resistant Antimicrobial Classes | No. of Isolates (%) | ||||
---|---|---|---|---|---|
E. coli (n = 183) | Enterococcus spp. (n = 333) | S. aureus (n = 95) | CNS a (n = 214) | Streptococcus spp. (n = 93) | |
0 | 119 (65.0) | 39 (11.7) | 65 (68.4) | 76 (35.5) | 37 (39.8) |
1 | 36 (19.7) | 102 (30.6) | 23 (24.2) | 64 (29.9) | 20 (21.5) |
2 | 12 (6.6) | 111 (33.3) | 5 (5.3) | 39 (18.2) | 9 (9.7) |
3 | 11 (6.0) | 72 (21.6) | 1 (1.1) | 19 (8.9) | 10 (10.8) |
4 | 2 (1.1) | 8 (2.4) | 0 (0.0) | 10 (4.7) | 11 (11.8) |
5 | 1 (0.5) | 1 (0.3) | 0 (0.0) | 5 (2.3) | 6 (6.5) |
6 | 2 (1.1) | 0 (0.0) | 1 (1.1) | 1 (0.5) | 0 (0.0) |
No. (%) of MDR b | 16 (8.7) | 81 (24.3) | 2 (2.1) | 35 (16.4) | 27 (29.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, M.-J.; Yoon, S.; Lee, Y.J. Monitoring and Characteristics of Major Mastitis Pathogens from Bulk Tank Milk in Korea. Animals 2020, 10, 1562. https://doi.org/10.3390/ani10091562
Yun M-J, Yoon S, Lee YJ. Monitoring and Characteristics of Major Mastitis Pathogens from Bulk Tank Milk in Korea. Animals. 2020; 10(9):1562. https://doi.org/10.3390/ani10091562
Chicago/Turabian StyleYun, Mun-Jo, Sunghyun Yoon, and Young Ju Lee. 2020. "Monitoring and Characteristics of Major Mastitis Pathogens from Bulk Tank Milk in Korea" Animals 10, no. 9: 1562. https://doi.org/10.3390/ani10091562
APA StyleYun, M.-J., Yoon, S., & Lee, Y. J. (2020). Monitoring and Characteristics of Major Mastitis Pathogens from Bulk Tank Milk in Korea. Animals, 10(9), 1562. https://doi.org/10.3390/ani10091562