Effects of Flaxseed Oil and Vitamin E Supplementation on Digestibility and Milk Fatty Composition and Antioxidant Capacity in Water Buffaloes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows, Animals, and Experimental Diets
2.2. Sampling and Measurements
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística—IBGE). Herd Numbers on 31 December and Annual Variation According to Categories; Brazilian Institute of Geography and Statistics: Rio de Janeiro, Brazil, 2018. Available online: https://sidra.ibge.gov.br/tabela/3939#resultado (accessed on 15 July 2020).
- Bernardes, O. Buffaloes breeding in Brazil. Ital. J. Anim. Sci. 2007, 6, 162–167. [Google Scholar] [CrossRef]
- Silva, L.F.; Casella, T.; Gomes, E.S.; Nogueira, M.C.L.; De Dea Lindner, J.; Penna, A.L.B. Diversity of lactic acid bacteria isolated from Brazilian water buffalo mozzarella cheese. J. Food Sci. 2015, 80, M411–M417. [Google Scholar] [CrossRef]
- Santillo, A.; Caroprese, M.; Marino, R.; Sevi, A.; Albenzio, M. Quality of buffalo milk as affected by dietary protein level and flaxseed supplementation. J. Dairy Sci. 2016, 99, 7725–7732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef] [PubMed]
- Catalá, A. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects. J. Lipids. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.Y.; Hackman, R.M.; Ensunsa, J.L.; Holt, R.R.; Keen, C.L. Antioxidative activities of oolong tea. J. Agric. Food Chem. 2002, 50, 6929–6934. [Google Scholar] [CrossRef]
- Fortin, É.; Blouin, R.; Lapointe, J.; Petit, H.V.; Palin, M.F. Linoleic acid, α-linolenic acid and enterolactone affect lipid oxidation and expression of lipid metabolism and antioxidant-related genes in hepatic tissue of dairy cows. Br. J. Nutr. 2017, 117, 1199–1211. [Google Scholar] [CrossRef] [Green Version]
- Santos, N.W.; Yoshimura, E.H.; Machado, E.; Matumoto-Pintro, P.T.; Montanher, P.F.; Visentainer, J.V.; dos Santos, G.T.; Zeoula, L.M. Antioxidant effects of a propolis extract and vitamin E in blood and milk of dairy cows fed diet containing flaxseed oil. Livest. Sci. 2016, 191, 132–138. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2007, 91, 303–314. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Corl, B.A.; Dwyer, D.A.; Saebø, A.; Bauman, D.E. Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R179–R184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauteux, M.C.; Gervais, R.; Rico, D.E.; Lebeuf, Y.; Chouinard, P.Y. Production, composition, and oxidative stability of milk highly enriched in polyunsaturated fatty acids from dairy cows fed alfalfa protein concentrate or supplemental vitamin E. J. Dairy Sci. 2016, 99, 4411–4426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.S.; Lal, D. Nutrient Requeriments of Buffaloes; Satish Serial Publishing House: New Delhi, India, 2010; pp. 1–147. [Google Scholar]
- National Research Council-NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001; p. 13. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in Situ Techniques for Ruminant Feedstuff Evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; pp. 70–82. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000; pp. 17–26. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Santos, N.W.; dos Santos, G.T.; Silva-Kazama, D.C.; Grande, P.A.; Pintro, P.M.; Marchi, F.E.; Jobim, C.C.; Petit, H.V. Production, composition and antioxidants in milk of dairy cows fed diets containing soybean oil and grape residue silage. Livest. Sci. 2014, 159, 37–45. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; de Brito, E.S.; Morais, S.S.; Sampaio, C.G.; Péres-Jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS+ [Determination of total antioxidant activity in fruits by capturing the free radical ABTS+.]. Embrapa Agroind. Trop. Téc. 2007, 128, 1–4. [Google Scholar]
- Kiokias, S.N.; Dimakou, C.P.; Tsaprouni, I.V.; Oreopoulou, V. Effect of compositional factors against the thermal oxidative deterioration of novel food emulsions. Food Biophys. 2006, 1, 115–123. [Google Scholar] [CrossRef]
- Vyncke, W. Direct Determination of the Thiobarbituric Acid Value in Trichloracetic Acid Extracts of Fish as a Measure of Oxidative Rancidity. Fette. Seifen. Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Standley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pr. 1973, 22, 475–477. [Google Scholar]
- Maia, E.L.; Rodriguez-Amaya, D. Evaluation of a simple and economical method for methylation of fatty acids from lipids of several species of fish. Rev. Inst. Adolfo Lutz 1993, 53, 27–35. [Google Scholar]
- Martin, C.A.; Oliveira, C.C.; Visenteiner, J.V.; Matsushita, M.; De Souza, N. Optimization of the selectivity of a cyanopropyl stationary phase for gas chromatographic analysis of trans fatty acids. J. Chromatogr. A 2008, 1194, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.D.; Ackman, R. Capillary column gas chromatography method for analysis of encapsulated fish oil and fish oil ethyl esters: Collaborative study. J. AOAC Int. 1992, 75, 488–506. [Google Scholar] [CrossRef]
- Visentainer, J.V. Analytical aspects of the flame ionization detector response of fatty acid esters in biodiesels and foods. Quim. Nova 2012, 35, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Schennink, A.; Heck, J.M.L.; Bovenhuis, H.; van Valenberg, H.J.F.; van Arendonk, J.A.M. Milk fatty acid unsaturation: Genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1). J. Dairy Sci. 2008, 91, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Benchaar, C.; Romero-Pérez, G.A.; Chouinard, P.Y.; Hassanat, F.; Eugene, M.; Petit, H.V.; Côrtes, C. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J. Dairy Sci. 2012, 95, 4578–4590. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, T.C. Lipid Metabolism in the Rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Yoshimura, E.H.; Santos, N.W.; Machado, E.; Agustinho, B.C.; Pereira, L.M.; de Aguiar, S.C.; Sá-Nalanishi, A.; Mareze-da-Costa, C.E.; Zeoula, L.M. Functionality of cow milk naturally enriched with polyunsaturated fatty acids and polyphenols in diets for diabetic rats. PLoS ONE 2018, 13, e0195839. [Google Scholar] [CrossRef] [PubMed]
- Naziroğlu, M.; Güler, T.; Yüce, A. Effect of vitamin E on ruminal fermentation in vitro. J. Vet. Med. Ser. A 2002, 49, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Pottier, J.; Focant, M.; Debier, C.; De Buysser, G.; Goffe, C.; Mignolet, E.; Froidmont, E.; Larondelle, Y. Effect of Dietary Vitamin E on Rumen Biohydrogenation Pathways and Milk Fat Depression in Dairy Cows Fed High-Fat Diets. J. Dairy Sci. 2006, 89, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urrutia, N.L.; Harvatine, K.J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 2017, 147, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Focant, M.; Mignolet, E.; Marique, M.; Clabots, F.; Breyne, T.; Dalemans, D.; Larondelle, Y. The effect of vitamin E supplementation of cow diets containing rapeseed and linseed on the prevention of milk fat oxidation. J. Dairy Sci. 1998, 81, 1095–1101. [Google Scholar] [CrossRef]
- Lima, L.S.; Palin, M.F.; Santos, G.T.; Benchaar, C.; Lima, L.C.R.; Chouinard, P.Y.; Petit, H.V. Effect of flax meal on the production performance and oxidative status of dairy cows infused with flax oil in the abomasum. Livest. Sci. 2014, 170, 53–62. [Google Scholar] [CrossRef]
- Lanier, J.S.; Corl, B.A. Challenges in enriching milk fat with polyunsaturated fatty acids. J. Anim. Sci. Biotechnol. 2015, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Korotkova, M.; Lundberg, I.E. The skeletal muscle arachidonic acid cascade in health and inflammatory disease. Nat. Rev. Rheumatol. 2014, 10, 295–303. [Google Scholar] [CrossRef]
- Palmquist, D.L. Milk fat: Origin of fatty acids and influence of nutritional factors thereon. In Advanced Dairy Chemistry Volume 2: Lipids; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2006; Volume 2, pp. 43–92. [Google Scholar]
- Ntambi, J.M. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J. Lipid Res. 1999, 40, 1549–1558. [Google Scholar]
- Zingg, J.M.; Azzi, A. Non-Antioxidant Activities of Vitamin E. Curr. Med. Chem. 2004, 11, 1113–1133. [Google Scholar] [CrossRef] [PubMed]
Item | No Flaxseed Oil | With Flaxseed Oil | ||
---|---|---|---|---|
No Vitamin E | With Vitamin E | No Vitamin E | With Vitamin E | |
Ingredients (g/kg DM, unless otherwise stated) | ||||
Corn silage | 700 | 700 | 700 | 700 |
Ground corn | 112.9 | 112.9 | 40.0 | 40.0 |
Soybean meal (48%, solvent-extracted) | 61.3 | 61.3 | 53.3 | 53.3 |
Wheat meal | 92.6 | 92.6 | 148.5 | 148.5 |
Flaxseed oil 1 | - | - | 25.0 | 25.0 |
Vitamin E (IU/kg DM) 2 | - | 375 | - | 375 |
Mineral and vitamin supplement 3 | 20.0 | 20.0 | 20.0 | 20.0 |
Limestone | 8.8 | 8.8 | 8.8 | 8.8 |
Urea | 4.0 | 4.0 | 4.0 | 4.0 |
Ammonium sulfate | 0.4 | 0.4 | 0.4 | 0.4 |
Chemical composition | ||||
Dry matter (g/kg fresh weight) | 472.6 | 472.6 | 476.4 | 476.4 |
Organic matter (g/kg DM) | 928.2 | 928.2 | 922.5 | 922.5 |
Crude protein (g/kg DM) | 116.3 | 116.3 | 116.7 | 116.7 |
Ether extract (g/kg DM) | 26.4 | 26.4 | 50.7 | 50.7 |
Neutral detergent fiber (g/kg DM) | 497.9 | 497.9 | 507 | 507 |
Acid detergent fiber (g/kg DM) | 252.9 | 252.9 | 256.7 | 256.7 |
Non-fibrous carbohydrates (g/kg DM) | 299.1 | 299.1 | 263.2 | 263.2 |
Net energy for lactation (Mcal/kg DM) 4 | 1.46 | 1.46 | 1.52 | 1.52 |
Fatty acids (g/kg DM of diet) | ||||
16:0 | 5.79 | 5.79 | 7.28 | 7.28 |
18:0 | 0.45 | 0.45 | 1.77 | 1.77 |
18:1n-9 | 5.56 | 5.56 | 10.51 | 10.51 |
18:2n-6 | 3.86 | 3.86 | 7.01 | 7.01 |
18:3n-3 | 0.49 | 0.49 | 13.56 | 13.56 |
n-6 | 4.45 | 4.45 | 7.58 | 7.58 |
n-3 | 0.49 | 0.49 | 12.56 | 12.56 |
n-6/n-3 | 9.04 | 9.04 | 0.60 | 0.60 |
Flaxseed oil fatty acid composition (mg/g of total fatty acids) | ||||
16:0 | 62 | |||
18:0 | 53 | |||
18:1n-9 | 201 | |||
18:2n-3 | 137 | |||
18:3n-3 | 483 |
Item | No Flaxseed Oil | With Flaxseed Oil | SEM | p Value 1 | ||||
---|---|---|---|---|---|---|---|---|
No Vit. E | With Vit. E | No Vit. E | With Vit. E | Oil | Vit. E | Interaction | ||
Intake (kg DM/day) | ||||||||
Dry matter | 13.30 | 13.59 | 12.76 | 12.88 | 0.306 | 0.35 | 0.75 | 0.89 |
Organic matter | 14.20 | 11.33 | 10.98 | 12.35 | 0.305 | 0.15 | 0.72 | 0.87 |
Crude protein | 1.59 | 1.61 | 1.59 | 1.58 | 0.052 | 0.79 | 0.90 | 0.80 |
NDF | 6.42 | 6.61 | 6.26 | 6.36 | 0.173 | 0.55 | 0.68 | 0.89 |
ADF | 3.34 | 3.33 | 3.24 | 3.17 | 0.091 | 0.42 | 0.79 | 0.88 |
Ether extract | 0.37 | 0.38 | 0.63 | 0.66 | 0.039 | 0.01 | 0.62 | 0.98 |
Total Apparent Digestibility (g/kg of DM) | ||||||||
Dry matter | 684.3 | 690.2 | 666.8 | 679.0 | 3.41 | 0.02 | 0.08 | 0.49 |
Organic matter | 697.3 | 702.1 | 668.3 | 680.9 | 4.43 | <0.01 | 0.07 | 0.37 |
Crude protein | 667.7 | 650.9 | 692.4 | 698.0 | 8.84 | 0.07 | 0.75 | 0.53 |
NDF | 582.7 | 605.9 | 551.9 | 570.4 | 7.94 | <0.01 | 0.02 | 0.73 |
ADF | 586.3 | 573.7 | 530.5 | 535.0 | 11.40 | <0.01 | 0.75 | 0.51 |
Ether extract | 853.0 | 847.7 | 897.3 | 925.1 | 11.81 | <0.01 | 0.32 | 0.16 |
IVDMD (kg/kg) | 566.0 | 581.9 | 501.2 | 507.3 | 12.03 | <0.01 | 0.59 | 0.81 |
No Flaxseed Oil | With Flaxseed Oil | SEM | p Value 1 | |||||
---|---|---|---|---|---|---|---|---|
No Vit. E | With Vit. E | No Vit. E | With Vit. E | Oil | Vit. E | Interaction | ||
Density (g/mL) | 1.0318 | 1.0313 | 1.0325 | 1.0321 | <0.001 | 0.02 | 0.82 | 0.45 |
Milk yield (kg/day) | ||||||||
Actual | 6.53 | 5.88 | 6.91 | 6.96 | 0.540 | 0.18 | 0.55 | 0.50 |
4% Fat-corrected 2 | 8.86 | 8.40 | 8.77 | 9.18 | 0.678 | 0.66 | 0.97 | 0.58 |
Energy-corrected 3 | 9.39 | 8.83 | 9.44 | 9.82 | 0.727 | 0.51 | 0.91 | 0.55 |
Yield (kg/day) | ||||||||
Fat | 0.42 | 0.40 | 0.40 | 0.43 | 0.031 | 0.93 | 0.88 | 0.62 |
Protein | 0.26 | 0.23 | 0.28 | 0.28 | 0.022 | 0.12 | 0.60 | 0.45 |
Lactose | 0.32 | 0.29 | 0.34 | 0.35 | 0.026 | 0.12 | 0.64 | 0.43 |
Defatted dry extract | 0.62 | 0.57 | 0.67 | 0.68 | 0.052 | 0.11 | 0.60 | 0.45 |
Total solids | 1.04 | 0.97 | 1.070 | 1.11 | 0.082 | 0.32 | 0.82 | 0.51 |
Concentration (g/kg) | ||||||||
Fat | 64.84 | 68.20 | 59.24 | 61.23 | 1.672 | 0.04 | 0.29 | 0.77 |
Protein | 39.89 | 39.83 | 40.07 | 40.42 | 0.114 | 0.18 | 0.59 | 0.45 |
Lactose | 48.96 | 48.83 | 49.21 | 49.92 | 0.181 | 0.13 | 0.48 | 0.31 |
Defatted dry extract | 96.13 | 95.88 | 96.88 | 97.78 | 0.323 | 0.11 | 0.67 | 0.45 |
Total solids | 161.0 | 164.1 | 156.1 | 159.0 | 1.645 | 0.08 | 0.25 | 0.96 |
Antioxidants | ||||||||
Reducing power 4 | 20.67 | 22.50 | 19.29 | 27.71 | 1.239 | 0.25 | 0.01 | 0.07 |
TAC (TE µM/L) | 236.6 | 222.2 | 230.1 | 249.9 | 5.780 | 0.23 | 0.75 | 0.07 |
Oxidation products | ||||||||
TBARS (MDA mg/L) | 27.69 | 24.73 | 39.15 | 28.59 | 0.337 | < 0.01 | 0.02 | 0.13 |
CD (mmol/kg fat) | 20.34 | 24.37 | 42.20 | 38.85 | 2.665 | < 0.01 | 0.87 | 0.12 |
Fatty Acid | No Flaxseed Oil | With Flaxseed Oil | SEM | p Value 1 | ||||
---|---|---|---|---|---|---|---|---|
No Vit. E | With Vit. E | No Vit. E | With Vit. E | Oil | Vit. E | Interaction | ||
8:0 | 8.73 | 5.96 | 4.49 | 3.31 | 0.63 | <0.01 | 0.03 | 0.28 |
10:0 | 17.95 | 14.67 | 9.38 | 13.75 | 1.32 | 0.17 | 0.87 | 0.26 |
11:0 | 0.64 | 0.83 | 0.50 | 0.51 | 0.06 | 0.08 | 0.37 | 0.41 |
12:0 | 22.33 | 21.72 | 13.60 | 17.03 | 1.27 | 0.03 | 0.56 | 0.41 |
13:0 | 0.85 | 0.64 | 0.62 | 0.69 | 0.07 | 0.52 | 0.65 | 0.35 |
14:0 | 98.88 | 96.50 | 75.04 | 70.80 | 4.41 | 0.02 | 0.67 | 0.90 |
14:1n-9 | 7.98 | 9.56 | 4.22 | 6.52 | 0.69 | <0.01 | 0.04 | 0.64 |
14:1n-7 | 4.20 | 4.92 | 3.49 | 4.26 | 0.26 | 0.11 | 0.09 | 0.95 |
15:0 | 8.02 | 9.22 | 5.00 | 6.43 | 0.52 | <0.01 | 0.04 | 0.82 |
15:1n-7 | 3.49 | 3.30 | 2.85 | 3.20 | 0.21 | 0.25 | 0.80 | 0.39 |
16:0 | 251.66 | 259.97 | 194.45 | 198.03 | 9.07 | <0.01 | 0.66 | 0.86 |
16:1n-11 | 0.48 | 0.50 | 0.58 | 0.76 | 0.05 | 0.09 | 0.29 | 0.40 |
16:1n-9 | 1.52 | 1.73 | 1.40 | 1.76 | 0.06 | 0.67 | 0.03 | 0.53 |
16:1n-7 | 14.53 | 20.39 | 8.83 | 10.65 | 1.34 | <0.01 | 0.02 | 0.17 |
16:1n-5 | 2.41 | 3.07 | 2.26 | 2.60 | 0.17 | 0.34 | 0.15 | 0.61 |
17:0 | 4.42 | 5.44 | 3.62 | 4.54 | 0.23 | 0.03 | 0.02 | 0.87 |
17:1n-9 | 1.41 | 1.78 | 1.98 | 1.21 | 0.19 | 0.99 | 0.56 | 0.14 |
18:0 | 87.82 | 88.54 | 118.47 | 125.02 | 5.88 | 0.02 | 0.74 | 0.79 |
trans-11 18:1 | 5.14 | 5.87 | 11.09 | 11.14 | 1.25 | 0.04 | 0.87 | 0.88 |
cis-9 18:1 | 161.96 | 195.27 | 180.72 | 185.37 | 7.31 | 0.75 | 0.21 | 0.33 |
18:1n-7 | 3.09 | 4.53 | 3.61 | 2.66 | 0.41 | 0.42 | 0.77 | 0.18 |
trans-6 18:2 | 1.52 | 1.57 | 3.53 | 4.75 | 0.50 | <0.01 | 0.16 | 0.19 |
18:2n-6 | 15.91 | 20.10 | 13.41 | 14.84 | 8.49 | <0.01 | 0.02 | 0.17 |
18:3n-3 | 3.83 | 2.81 | 7.68 | 12.24 | 1.45 | 0.01 | 0.40 | 0.20 |
cis-9, trans-11 18:2 | 3.33 | 3.40 | 4.12 | 5.12 | 0.34 | 0.06 | 0.37 | 0.43 |
trans-10, cis-12 18:2 | 2.00 | 1.52 | 1.40 | 1.77 | 0.11 | 0.42 | 0.78 | 0.08 |
20:1n-9 | 1.32 | 0.88 | 1.93 | 0.97 | 0.13 | 0.38 | 0.24 | 0.17 |
20:3n-6 | 0.79 | 0.67 | 0.40 | 0.41 | 0.08 | 0.10 | 0.75 | 0.70 |
20:4n-6 | 0.93 | 1.57 | 1.58 | 0.79 | 0.19 | 0.86 | 0.85 | 0.11 |
20:5n-3 | 0.24 | 0.47 | 0.21 | 0.39 | 0.07 | 0.66 | 0.14 | 0.83 |
21:0 | 0.13 | 0.44 | 0.11 | 0.29 | 0.05 | 0.36 | 0.02 | 0.44 |
22:0 | 0.75 | 0.68 | 0.74 | 0.82 | 0.10 | 0.79 | 0.97 | 0.76 |
22:4n-6 | 0.71 | 1.16 | 0.85 | 1.42 | 0.18 | 0.44 | 0.08 | 0.81 |
22:5n-6 | 0.23 | 0.38 | 0.46 | 0.22 | 0.06 | 0.77 | 0.70 | 0.12 |
22:6n-3 | 0.16 | 0.39 | 0.69 | 1.14 | 0.16 | 0.05 | 0.40 | 0.69 |
24:0 | 0.46 | 0.49 | 0.86 | 0.40 | 0.11 | 0.43 | 0.29 | 0.23 |
24:1n-9 | 0.60 | 0.84 | 1.12 | 0.69 | 0.09 | 0.33 | 0.60 | 0.09 |
Fatty Acid | No Flaxseed Oil | With Flaxseed Oil | SEM | p Value 1 | ||||
---|---|---|---|---|---|---|---|---|
No Vit. E | With Vit. E | No Vit. E | With Vit. E | Oil | Vit. E | Interaction | ||
Total CLA 2 | 5.33 | 4.91 | 5.52 | 6.90 | 0.51 | 0.16 | 0.33 | 0.91 |
Short-chain FA 3 | 50.48 | 43.82 | 28.59 | 35.29 | 3.03 | 0.04 | 0.99 | 0.30 |
MCFA 4 | 399.0 | 416.4 | 303.7 | 310.7 | 15.17 | < 0.01 | 0.57 | 0.81 |
Long-chain FA 5 | 290.9 | 338.6 | 351.8 | 370.4 | 12.07 | 0.06 | 0.23 | 0.64 |
SFA 6 | 502.6 | 505.1 | 426.8 | 441.6 | 14.77 | 0.08 | 0.80 | 0.86 |
MUFA 7 | 208.1 | 252.6 | 223.1 | 231.8 | 8.95 | 0.85 | 0.13 | 0.29 |
PUFA 8 | 29.62 | 34.00 | 34.31 | 43.08 | 1.70 | 0.03 | 0.04 | 0.43 |
n-6 | 20.07 | 25.44 | 20.22 | 22.43 | 1.14 | 0.20 | <0.01 | 0.16 |
n-3 | 4.22 | 3.66 | 8.57 | 13.76 | 1.62 | 0.01 | 0.30 | 0.21 |
n-6/n-3 | 9.65 | 8.94 | 2.64 | 2.24 | 1,51 | 0.01 | 0.74 | 0.93 |
Δ9-desaturase enzyme activity | ||||||||
cis-9 14:1/14:0 | 8.13 | 6.89 | 6.41 | 8.60 | 0.46 | <0.01 | 0.01 | 0.06 |
cis-9 16:1/16:0 | 7.98 | 6.91 | 6.69 | 8.20 | 0.40 | 0.03 | <0.01 | 0.24 |
cis-9 18:1/18:0 | 66.61 | 60.24 | 62.76 | 64.09 | 1.27 | 0.01 | 0.47 | 0.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustinho, B.C.; Zeoula, L.M.; Santos, N.W.; Machado, E.; Yoshimura, E.H.; Ribas, J.C.R.; Bragatto, J.M.; Stemposki, M.R.; Santos, V.J.d.; Faciola, A.P. Effects of Flaxseed Oil and Vitamin E Supplementation on Digestibility and Milk Fatty Composition and Antioxidant Capacity in Water Buffaloes. Animals 2020, 10, 1294. https://doi.org/10.3390/ani10081294
Agustinho BC, Zeoula LM, Santos NW, Machado E, Yoshimura EH, Ribas JCR, Bragatto JM, Stemposki MR, Santos VJd, Faciola AP. Effects of Flaxseed Oil and Vitamin E Supplementation on Digestibility and Milk Fatty Composition and Antioxidant Capacity in Water Buffaloes. Animals. 2020; 10(8):1294. https://doi.org/10.3390/ani10081294
Chicago/Turabian StyleAgustinho, Bruna C., Lucia M. Zeoula, Nadine W. Santos, Erica Machado, Emerson H. Yoshimura, Jessyca C. R. Ribas, Janaina M. Bragatto, Mariana R. Stemposki, Vanessa J. dos Santos, and Antonio P. Faciola. 2020. "Effects of Flaxseed Oil and Vitamin E Supplementation on Digestibility and Milk Fatty Composition and Antioxidant Capacity in Water Buffaloes" Animals 10, no. 8: 1294. https://doi.org/10.3390/ani10081294