Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009–2019)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Samples and Study Area
2.3. Clinical Signs, Postmortem Lesions, and Histopathological Examination
2.4. Laboratory Testing
2.4.1. Primers Design
2.4.2. RNA Extraction, cDNA Synthesis, Real Time and Conventional RT-PCR
RNA Extraction
cDNA Synthesis
Real-Time RT-PCR
Conventional RT-PCR
2.4.3. Sequencing, GenBank Accession Numbers, and Phylogenetic Analysis of the Selected Samples
3. Results
3.1. Clinical Signs and Postmortem Lesions
3.2. Histopathological Examination
3.3. Real Time PCR and Conventional PCR
3.4. Sequencing and Phylogenetic Analysis of the AIV H5 Gene Fragment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Engelhardt, O.; Fodor, E. Functional association between viral and cellular transcription during influenza virus infection. Rev. Med. Virol. 2006, 16, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Röhm, C.; Zhou, N.; Süss, J.; Mackenzie, J.; Webster, R. Characterization of a Novel Influenza Hemagglutinin, H15: Criteria for Determination of Influenza A Subtypes. Virology 1996, 217, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Hampson, A.W.; Mackenzie, J.S. The influenza viruses. Med. J. Aust. 2006, 185, S39–S43. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.C.; Brunck, M.E.; Boyd, V.; Lai, R.; Virtue, E.; Chen, W.; Bletchly, C.; Heine, H.G.; Barnard, R. A broad spectrum, one-step reverse-transcription PCR amplification of the neuraminidase gene from multiple subtypes of influenza A virus. Virol. J. 2008, 5, 77. [Google Scholar] [CrossRef] [Green Version]
- Medina, R.A.; Garcia-Sastre, A. Influenza A viruses: New research developments. Nat. Rev. Microbiol. 2011, 9, 590–603. [Google Scholar] [CrossRef]
- De Graaf, M.; Fouchier, R.A. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 2014, 33, 823–841. [Google Scholar] [CrossRef] [Green Version]
- Lloren, K.K.S.; Lee, T.; Kwon, J.J.; Song, M.S. Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int. J. Mol. Sci. 2017, 18, 2706. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Shi, Y. Molecular mechanisms on interspecies transmission of avian influenza viruses. Chin. Bull. Life Sci. 2015, 27, 539–548. [Google Scholar]
- Guan, Y.; Smith, G.J. The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res. 2013, 178, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Arzey, G.G.; Kirkland, P.D.; Arzey, K.E.; Frost, M.; Maywood, P.; Conaty, S.; Hurt, A.C.; Deng, Y.M.; Iannello, P.; Barr, I.; et al. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg. Infect. Dis. 2012, 18, 814–816. [Google Scholar] [CrossRef]
- Cheng, V.C.; Chan, J.F.; Wen, X.; Wu, W.L.; Que, T.L.; Chen, H.; Chan, K.H.; Yuen, K.Y. Infection of immunocompromised patients by avian H9N2 influenza A virus. J. Infect. 2011, 62, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Fouchier, R.A.; Schneeberger, P.M.; Rozendaal, F.W.; Broekman, J.M.; Kemink, S.A.; Munster, V.; Kuiken, T.; Rimmelzwaan, G.F.; Schutten, M.; Van Doornum, G.J.; et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA 2004, 101, 1356–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Zhang, L.; Kan, X.; Jiang, L.; Yang, J.; Guo, Z.; Ren, Q. Origin and Molecular Characteristics of a Novel 2013 Avian Influenza A(H6N1) Virus Causing Human Infection in Taiwan. Clin. Infect. Dis. 2013, 57, 1367–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Cowling, B.J.; Feng, L.; Lau, E.H.; Liao, Q.; Tsang, T.K.; Peng, Z.; Wu, P.; Liu, F.; Fang, V.J.; et al. Human infection with avian influenza A H7N9 virus: An assessment of clinical severity. Lancet 2013, 382, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Cao, H.; Liu, H.; Sun, H.; Martin, B.; Zhao, Y.; Wang, Q.; Deng, G.; Xue, J.; Zong, Y.; et al. Identification of the source of A (H10N8) virus causing human infection. Infect. Genet. Evol. 2015, 30, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tan, Y.; Kang, M.; Liu, F.; Ren, R.; Wang, Y.; Chen, T.; Yang, Y.; Li, C.; Wu, J.; et al. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017. Emerg. Infect. Dis. 2017, 23, 1355–1359. [Google Scholar] [CrossRef] [Green Version]
- Abdelwhab, E.M.; Abdel-Moneim, A.S. Epidemiology, ecology and gene pool of influenza A virus in Egypt: Will Egypt be the epicentre of the next influenza pandemic? Virulence 2015, 6, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Kruy, S.L.; Buisson, Y.; Buchy, P. Asia: Avian influenza H5N1. Bull. Soc. Pathol. Exot. 2008, 101, 238–242. [Google Scholar]
- Li, Z.; Jiang, Y.; Jiao, P.; Wang, A.; Zhao, F.; Tian, G.; Wang, X.; Yu, K.; Bu, Z.; Chen, H. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 2006, 80, 11115–11123. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, R.A.; Naughtin, M.J.; Horm, S.V.; San, S.; Buchy, P. A (H5N1) Virus Evolution in South East Asia. Viruses 2009, 1, 335–361. [Google Scholar] [CrossRef] [Green Version]
- Tolba, H.M.N.; Abou Elez, R.M.M.; Elsohaby, I.; Ahmed, H.A. Molecular identification of avian influenza virus subtypes H5N1 and H9N2 in birds from farms and live bird markets and in respiratory patients. PeerJ 2018, 6, e5473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandeil, A.; Hicks, J.T.; Young, S.G.; El Taweel, A.N.; Kayed, A.S.; Moatasim, Y.; Kutkat, O.; Bagato, O.; McKenzie, P.P.; Cai, Z.; et al. Active surveillance and genetic evolution of avian influenza viruses in Egypt, 2016-2018. Emerg. Microbes Infect. 2019, 8, 1370–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandeil, A.; Kayed, A.; Moatasim, Y.; Webby, R.J.; McKenzie, P.P.; Kayali, G.; Ali, M.A. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt. J. Gen. Virol. 2017, 98, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Moatasim, Y.; Kandeil, A.; Aboulhoda, B.E.; El-Shesheny, R.; Alkhazindar, M.; AbdElSalam, E.T.; Kutkat, O.; Kamel, M.N.; El Taweel, A.N.; Mostafa, A.; et al. Comparative Virological and Pathogenic Characteristics of Avian Influenza H5N8 Viruses Detected in Wild Birds and Domestic Poultry in Egypt during the Winter of 2016/2017. Viruses 2019, 11, 990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, K.; Gu, M.; Zhong, L.; Duan, Z.; Zhang, Y.; Zhu, Y.; Zhao, G.; Zhao, M.; Chen, Z.; Hu, Z.; et al. Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet. Microbiol. 2013, 163. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, K.; Klimov, A.; Katz, J.; Regnery, H.; Lim, W.; Hall, H.; Perdue, M.; Swayne, D.; Bender, C.; Huang, J.; et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 1998, 279, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Antigenic and Genetic Characteristics of Zoonotic Influenza Viruses and Candidate Vaccine Viruses Developed for Potential Use in Human Vaccines. Development of Candidate Vaccine Viruses for Pandemic Preparedness. February 2020, pp. 1–8. Available online: https://www.who.int/influenza/vaccines/virus/characteristics_virus_vaccines/en/ (accessed on 19 April 2020).
- World Health Organization. Cumulative Number of Confirmed Human Cases of Avian Influenza A (H5N1) Reported to WHO. Available online: http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/ (accessed on 15 April 2020).
- Melidou, A.; Gioula, G.; Exindari, M.; Chatzidimitriou, D.; Diza, E. Influenza A (H5N1): An overview of the current situation. Eur. Commun. Dis. Bull. 2009, 14. [Google Scholar] [CrossRef] [Green Version]
- Riedel, S. Crossing the Species Barrier: The Threat of an Avian Influenza Pandemic. Bayl. Univ. Med. Cent. Proc. 2006, 19, 16–20. [Google Scholar] [CrossRef]
- Erfan, A. Endemic Status and Zoonotic Potential of Avian Influenza Viruses in Egypt, 2006-2019. Adv. Anim. Vet. Sci. 2020, 7, 154–162. [Google Scholar]
- Hagag, N.M.; Erfan, A.M.; El-Husseiny, M.; Shalaby, A.G.; Saif, M.A.; Tawakol, M.M.; Nour, A.A.; Selim, A.A.; Arafa, A.S.; Hassan, M.K.; et al. Isolation of a Novel Reassortant Highly Pathogenic Avian Influenza (H5N2) Virus in Egypt. Viruses 2019, 11, 565. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Collecting, Preserving and Shipping Specimens for the Diagnosis of Avian Influenza A (H5N1) Virus Infection: Guide for Field Operations; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Perkins, L.E.; Swayne, D.E. Varied pathogenicity of a Hong Kong-origin H5N1 avian influenza virus in four passerine species and budgerigars. Vet. Pathol. 2003, 40, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yao, L.; Zhai, F.; Chen, Y.; Lei, J.; Bi, Z.; Hu, J.; Xiao, Q.; Song, S.; Yan, L.; et al. Development and application of a triplex real-time PCR assay for the simultaneous detection of avian influenza virus subtype H5, H7 and H9. J. Virol. Methods 2018, 252, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Van Borm, S.; Steensels, M.; Ferreira, H.L.; Boschmans, M.; De Vriese, J.; Lambrecht, B.; van den Berg, T. A universal avian endogenous real-time reverse transcriptase-polymerase chain reaction control and its application to avian influenza diagnosis and quantification. Avian Dis. 2007, 51, 213–220. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Rauw, F.; Palya, V.; Van Borm, S.; Welby, S.; Tatar-Kis, T.; Gardin, Y.; Dorsey, K.M.; Aly, M.M.; Hassan, M.K.; Soliman, M.A.; et al. Further evidence of antigenic drift and protective efficacy afforded by a recombinant HVT-H5 vaccine against challenge with two antigenically divergent Egyptian clade 2.2.1 HPAI H5N1 strains. Vaccine 2011, 29, 2590–2600. [Google Scholar] [CrossRef] [PubMed]
- Wibawa, H.; Bingham, J.; Nuradji, H.; Lowther, S.; Payne, J.; Harper, J.; Wong, F.; Lunt, R.; Junaidi, A.; Middleton, D.; et al. The pathobiology of two Indonesian H5N1 avian influenza viruses representing different clade 2.1 sublineages in chickens and ducks. Comp. Immunol. Microbiol. Infect. Dis 2013, 36, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Perkins, L.E.; Swayne, D.E. Pathobiology of A/chicken/Hong Kong/220/97 (H5N1) avian influenza virus in seven gallinaceous species. Vet. Pathol. 2001, 38, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Horimoto, T.; Kawaoka, Y.; Alexander, D.J.; Itakura, C. Pathological studies of chickens experimentally infected with two highly pathogenic avian influenza viruses. Avian Pathol. 1996, 25, 285–304. [Google Scholar] [CrossRef] [Green Version]
- Abou-Rawash, A.-R.; Abd EL-Hamed, S.; Abd-Ellatieff, H.A.; Elsamanoudy, S.M. Recent Outbreaks of Highly Pathogenic Avian Influenza Virus in Chickens and Ducks in Egypt: Pathological Study. Med. Biol. Eng. Comput. 2012, 6. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakamura, K.; Yamada, M.; Mase, M. Comparative Pathology of Chickens and Domestic Ducks Experimentally Infected with Highly Pathogenic Avian Influenza Viruses (H5N1) Isolated in Japan in 2007 and 2008. Jpn. Agric. Res. Q. 2010, 44. [Google Scholar] [CrossRef] [Green Version]
- Bakeer, A.; Khattab, M.; Aly, M.; Arafa, A.; Amer, F.; Hafez, H.; Afify, M. Estimation of Pathological and Molecular Findings in Vaccinated and Non-Vaccinated Chickens Challenged with Highly Pathogenic Avian Influenza H5N1 Virus. Pak. Vet. J. 2019, 39. [Google Scholar] [CrossRef]
- Swayne, D.E. Overview of Avian Influenza. In The Merck Veterinary Manual; Aiello, S.E., Moses, M.A., Eds.; Merck and Co.: Whitehouse Station, NJ, USA, 2014; Available online: http://www.merckmanuals.com/mvm/poultry/avian_influenza/overview_of_avian_influenza.html (accessed on 26 May 2020).
- Akanbi, O.B.; Taiwo, V.O. Mortality and Pathology Associated with Highly Pathogenic Avian Influenza H5N1 Outbreaks in Commercial Poultry Production Systems in Nigeria. Int. Sch. Res. Not. 2014, 2014, 415418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suba, S.; Nagarajan, S.S.; Saxena, V.; Kumar, M.; Pothukuchi, V.; Rajukumar, K.; Vasudevan, G.; Jain, V.; Singh, D.; Dubey, S. Pathology of a H5N1, highly pathogenic avian influenza virus, in two Indian native chicken breeds and a synthetic broiler line. Indian J. Exp. Biol. 2015, 53, 202–207. [Google Scholar] [PubMed]
- Bae, Y.; Joh, S.; Park, S.; Kwon, H.; Lee, Y.; Lee, E.; Song, B.; Lee, Y.; Heo, G.; Lee, H.; et al. Pathological lesions and antigen localization in chicken, ducks and Japanese quail naturally infected by novel highly pathogenic avian influenza (H5N6), Korea, 2016. J. Prev. Vet. Med. 2018, 42, 91–98. [Google Scholar] [CrossRef]
- Pantin-Jackwood, M.J.; Swayne, D.E. Pathogenesis and pathobiology of avian influenza virus infection in birds. Rev. Sci. Tech. 2009, 28, 113–136. [Google Scholar] [CrossRef]
- Luczo, J.M.; Tachedjian, M.; Harper, J.A.; Payne, J.S.; Butler, J.M.; Sapats, S.I.; Lowther, S.L.; Michalski, W.P.; Stambas, J.; Bingham, J. Evolution of high pathogenicity of H5 avian influenza virus: Haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens. Sci. Rep. 2018, 8, 11518. [Google Scholar] [CrossRef]
- Rhyoo, M.Y.; Lee, K.H.; Moon, O.K.; Park, W.H.; Bae, Y.C.; Jung, J.Y.; Yoon, S.S.; Kim, H.R.; Lee, M.H.; Lee, E.J.; et al. Analysis of signs and pathology of H5N1-infected ducks from the 2010-2011 Korean highly pathogenic avian influenza outbreak suggests the influence of age and management practices on severity of disease. Avian Pathol. 2015, 44, 175–181. [Google Scholar] [CrossRef]
- Isihak, F.; Ismail, H.; Wahid, A. Diagnosis and histopathological study of avian influenza virus-H5 (AIV-H5) in broiler farms. Iraqi J. Vet. Sci. 2020, 34, 101–107. [Google Scholar] [CrossRef]
- Zulfikhar, Z.; Wasito, R.; Wuryastuti, H. Immunopathological immunohistochemical study of low pathogenic avian influenza virus H5N1 infection in lovebirds (Agapornis spp.) in Indonesia. Vet. World 2019, 12, 1472–1477. [Google Scholar] [CrossRef] [Green Version]
- Prokopyeva, E.A.; Zinserling, V.A.; Bae, Y.C.; Kwon, Y.; Kurskaya, O.G.; Sobolev, I.A.; Kozhin, P.M.; Komissarov, A.; Fadeev, A.; Petrov, V.; et al. Pathology of A(H5N8) (Clade 2.3.4.4) Virus in Experimentally Infected Chickens and Mice. Interdiscip. Perspect. Infect. Dis. 2019, 2019, 4124865. [Google Scholar] [CrossRef]
- Vascellari, M.; Granato, A.; Trevisan, L.; Basilicata, L.; Toffan, A.; Milani, A.; Mutinelli, F. Pathologic findings of highly pathogenic avian influenza virus A/Duck/Vietnam/12/05 (H5N1) in experimentally infected pekin ducks, based on immunohistochemistry and in situ hybridization. Vet. Pathol. 2007, 44, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Organisation for Animal Health (OIE). Terrestrial Manual 2018. Chapter 3.3.4. Avian Influenza—Infection with Avian Influenza Viruses. 2018, pp. 821–843. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf (accessed on 19 April 2020).
- Lee, C.W.; Swayne, D.E.; Linares, J.A.; Senne, D.A.; Suarez, D.L. H5N2 avian influenza outbreak in Texas in 2004: The first highly pathogenic strain in the United States in 20 years? J. Virol. 2005, 79, 11412–11421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brojer, C.; Agren, E.O.; Uhlhorn, H.; Bernodt, K.; Morner, T.; Jansson, D.S.; Mattsson, R.; Zohari, S.; Thoren, P.; Berg, M.; et al. Pathology of natural highly pathogenic avian influenza H5N1 infection in wild tufted ducks (Aythya fuligula). J. Vet. Diagn. Invest. 2009, 21, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, K.; Panei, C.J.; Shishido, M.; Noguchi, D.; Pearce, J.; Kang, H.M.; Jeong, O.M.; Lee, Y.J.; Nakanishi, K.; Ashizawa, T. SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests. J. Clin. Microbiol. 2012, 50, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, K.; Ashizawa, T.; Nakanishi, K.; Kaji, N.; Suzuki, K.; Shishido, M.; Okamatsu, M.; Mase, M. Use of reverse transcriptase PCR to subtype N1 to N9 neuraminidase genes of avian influenza viruses. J. Clin. Microbiol. 2009, 47, 2301–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizalde, M.; Aguero, M.; Buitrago, D.; Yuste, M.; Arias, M.L.; Munoz, M.J.; Lelli, D.; Perez-Ramirez, E.; Moreno-Martin, A.M.; Fernandez-Pinero, J. Rapid molecular haemagglutinin subtyping of avian influenza isolates by specific real-time RT-PCR tests. J. Virol. Methods 2014, 196, 71–81. [Google Scholar] [CrossRef] [PubMed]
- ElKersh, M.F.; Abdalla, F.M.; Farg, G.K.; Nasef, S.A.; Ali, A.A. Molecular Diagnosis of Avian Influenza Virus from Different Avian Species. J. Virol. Sci. 2019, 6, 1–11. [Google Scholar]
- Abdelwhab, E.-S.; Selim, A.; Arafa, A.; Galal, S.; Kilany, W.; Hassan, M.; Aly, M.; Hafez, H. Circulation of Avian Influenza H5N1 in Live Bird Markets in Egypt. Avian Dis. 2010, 54, 911–914. [Google Scholar] [CrossRef]
- Kasem, S.; El-Abasy, M.; El-Bagory, G.; Magoz, A. Molecular characterization and Phylogenetic analysis of Avian influenza virus circulating in Kafrelsheikh Governorate, Egypt. Glob. Vet. 2014, 12, 532–540. [Google Scholar] [CrossRef]
- Abdelwhab, E.M.; Arafa, A.S.; Stech, J.; Grund, C.; Stech, O.; Graeber-Gerberding, M.; Beer, M.; Hassan, M.K.; Aly, M.M.; Harder, T.C.; et al. Diversifying evolution of highly pathogenic H5N1 avian influenza virus in Egypt from 2006 to 2011. Virus Genes 2012, 45, 14–23. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Jin, Z.; Tan, H.; Xu, B. Risk factors for infectious diseases in backyard poultry farms in the Poyang Lake area, China. PLoS ONE 2013, 8, e67366. [Google Scholar] [CrossRef]
- Young, S.G.; Carrel, M.; Kitchen, A.; Malanson, G.P.; Tamerius, J.; Ali, M.; Kayali, G. How’s the Flu Getting Through? Landscape genetics suggests both humans and birds spread H5N1 in Egypt. Infect. Genet. Evol. 2017, 49, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.M.; Harder, T. Endemic situation of multiple avian influenza strains in poultry in Egypt: A continuing nightmare. Zoonoses Public Health 2018, 65, 908–910. [Google Scholar] [CrossRef] [PubMed]
- Yehia, N.; Naguib, M.M.; Li, R.; Hagag, N.; El-Husseiny, M.; Mosaad, Z.; Nour, A.; Rabea, N.; Hasan, W.M.; Hassan, M.K.; et al. Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt. Infect. Genet. Evol. 2018, 58, 56–65. [Google Scholar] [CrossRef]
- Cai, Z.; Ducatez, M.F.; Yang, J.; Zhang, T.; Long, L.P.; Boon, A.C.; Webby, R.J.; Wan, X.F. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning. J. Mol. Biol. 2012, 422, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Arafa, A.; El-Masry, I.; Kholosy, S.; Hassan, M.K.; Dauphin, G.; Lubroth, J.; Makonnen, Y.J. Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt. Virol. J. 2016, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Chen, Q.; Wang, Q.; Chen, J.; Jin, T.; Wong, G.; Quan, C.; Liu, J.; Wu, J.; Yin, R.; et al. Genesis, Evolution and Prevalence of H5N6 Avian Influenza Viruses in China. Cell Host Microbe 2016, 20, 810–821. [Google Scholar] [CrossRef] [Green Version]
Target | Gene | Primer | Sequence (5′–3′) | Reference |
---|---|---|---|---|
Influenza A virus | M | M + 25 | AGATGAGTCTTCTAACCGAGGTCG | [36] |
M − 124 | TGCAAAAACATCTTCAAGTCTCTG | |||
M + 64FB | FAM-TCAGGCCCCCTCAAAGCCGA-BHQTM1 | |||
Bird Actin | β-Actin | β + 632 | CCTCATGAAGATCCTGACAGA | |
β − 747 | TCTCCTGCTCYAAYTCCA | |||
β + 696FB | FAM-CGTGACATCAAGGAGAAGCTGTG-BHQTM1 | |||
Avian Influenza virus | H5 | H5-F | GTACCACCATAGCAATGAGCAG | [35] |
H5-R | AGTCCAGACATCTAGGAATCCGT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosad, S.M.; El-Gohary, F.A.; Ali, H.S.; El-Sharkawy, H.; Elmahallawy, E.K. Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009–2019). Animals 2020, 10, 1010. https://doi.org/10.3390/ani10061010
Mosad SM, El-Gohary FA, Ali HS, El-Sharkawy H, Elmahallawy EK. Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009–2019). Animals. 2020; 10(6):1010. https://doi.org/10.3390/ani10061010
Chicago/Turabian StyleMosad, Samah Mosad, Fatma A. El-Gohary, Hanaa Said Ali, Hanem El-Sharkawy, and Ehab Kotb Elmahallawy. 2020. "Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009–2019)" Animals 10, no. 6: 1010. https://doi.org/10.3390/ani10061010
APA StyleMosad, S. M., El-Gohary, F. A., Ali, H. S., El-Sharkawy, H., & Elmahallawy, E. K. (2020). Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009–2019). Animals, 10(6), 1010. https://doi.org/10.3390/ani10061010