Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Amino Acid Production Processes
2.1. Extraction from Protein Hydrolysates
2.2. Chemical Synthesis
2.3. Enzymatic Process
2.4. Fermentation Process
3. Soybean Crops and Soybean Meal Production
4. Reduced-Crude Protein Diets
5. Amino Acids
5.1. Impact of Dietary CP Reductions on Apparent Amino Acid Digestibility Coefficients
5.2. The Cost of Deamination
5.3. Glycine and Serine
5.4. Threonine
5.5. Branched-Chain Amino Acids: Isoleucine, Leucine, and Valine
5.6. Lysine
5.7. Methionine
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Fiola, N. Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production. Ecol. Econ. 2008, 67, 412–419. [Google Scholar] [CrossRef]
- Greenhalgh, S.; Chrystal, P.V.; Selle, P.H.; Liu, S.Y. Reduced-crude protein diets in chicken-meat production: Justification for an imperative. World’s Poult. Sci. J. 2020. (under review). [Google Scholar]
- Kebreab, E.; Liedke, A.; Caro, D.; Deimling, S.; Binder, M.; Finkbeiner, M. Environmental impact of using specialty feed ingredients in swine and poultry production: A life cycle assessment. J. Anim. Sci. 2016, 94, 2664–2681. [Google Scholar] [CrossRef] [PubMed]
- Toride, Y. Lysine and other amino acids for feed: Production and contribution to protein utilization in animal feeding. In Protein Sources for the Animal Feed, Industry, Proceedings of FAO Animal, Production and Health, Bangkok, Thailand, 29 April–3 May 2002; Changchui, H.E., Ed.; FAO: Rome, Italy, 2004; pp. 161–165. [Google Scholar]
- Leuchtenberger, W.; Huthmacher, K.; Drauz, K. Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biotechnol. 2005, 69, 1–8. [Google Scholar] [CrossRef] [PubMed]
- D’Este, M.; Alvarado-Morales, M.; Angelidaki, I. Amino acids production focusing on fermentation technologies—A review. Biotechnol. Adv. 2018, 36, 14–25. [Google Scholar]
- Ikeda, M. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 2003, 79, 1–35. [Google Scholar]
- Zhang, J.; Zhang, S.; Yang, X.; Qiu, L.; Gao, B.; Li, R.; Chen, J. Reactive extraction of amino acids mixture in hydrolysate from cottonseed meal with di(2-ethylhexyl) phosphoric acid. J. Chem. Technol. Biotechnol. 2014, 91, 483–489. [Google Scholar] [CrossRef]
- Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Stürmer, R.; Zelinski, T. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. Engl. 2004, 43, 788–824. [Google Scholar] [CrossRef]
- Gröger, H. Catalytic, Enantioselective Strecker, Reactions and Analogous. Syntheses. Chem. Rev. 2003, 103, 2795–2827. [Google Scholar] [CrossRef]
- Fickler, J.; Heimbeck, W.; Hess, V.; Reimann, I.; Wiltafsky, M.; Zimmer, U. AMINODat® 5.0–Animal, Nutritionist’s Information; Edge. Plexus, Verlag: Berlin, Germany, 2016. [Google Scholar]
- Chung, T.K.; Baker, D.H. Utilization of methionine isomer and analogs by pig. Can J. Anim. Sci. 1992, 72, 185–188. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Safety and efficacy of hydroxy analogue of methionine and its calcium salt (ADRY+®) for all animal species. EFSA J. 2018, 16, 5198. [Google Scholar]
- Pollegioni, L.; Servi, S. Unnatural, Amino Acids, Methods and Protocols; Humana Press: New York, NY, USA, 2003; p. 409. [Google Scholar]
- Woltinger, J.; Karau, A.; Leuchtenberger, W.; Drauz, K. Membrane reactors at Degussa. Adv. Biochem. Engin/Biotechnol. 2005, 92, 289–316. [Google Scholar]
- Zhao, G.; Gong, G.; Wang, P.; Wang, L.; Liu, H.; Zheng, Z. Enzymatic synthesis of L-aspartic acid by Escherichia coli cultured with a cost-effective corn plasm medium. Ann. Microbiol. 2014, 64, 1615–1621. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Sanders, J.P.M. Comparison of the sustainability metrics of the petrochemical and biomass-based routes to methionine. Catal. Today 2015, 239, 44–49. [Google Scholar]
- Binder, W.; Friedrich, H.; Lotter, H.; Tanner, H.; Holldorf, H.; Leuchtenberger, W. Tierfuttersupplement auf der Basiseiner Aminosäure und Verfahren zu dessen Herstellung. Patent EP 0533039, 31 August 1995. [Google Scholar]
- Rodehutscord, M.; Borchert, F.; Gregus, Z.; Pack, M.; Pfeffer, E. Availability and utilization of free lysine in rainbow trout (Oncorhynchus mykiss): 2. Comparison of L-lysine HCl and L-lysine sulphate. Aquaculture 2000, 187, 177–183. [Google Scholar] [CrossRef]
- Jackson, M. A closer look at lysine sources: L-lysine sulfate plus fermentation co-products. Feed Int. 2001, 22, 18–20. [Google Scholar]
- Blombach, B.; Schreiner, M.E.; Bartek, T.; Oldiges, M.; Eikmanns, B.J. Corynebacterium glutamicum tailored for high-yield L-valine production. Appl. Microbiol. Biotechnol. 2008, 79, 471–479. [Google Scholar] [CrossRef]
- Vogt, M.; Haas, S.; Klaffl, S.; Polen, T.; Eggeling, L.; van Ooyen, J.; Bott, M. Pushing product formation to its limit: Metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab. Eng. 2014, 22, 40–52. [Google Scholar] [CrossRef]
- Yin, L.; Shi, F.; Hu, X.; Chen, C.; Wang, X. Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J. Appl. Microbiol. 2013, 114, 1369–1377. [Google Scholar] [CrossRef]
- Debabov, V.G. The Threonine Story. Adv. Biochem. Engin/Biotechnol. 2003, 79, 113–136. [Google Scholar]
- Ikeda, M.; Katsumata, R. Hyperproduction of Tryptophan by Corynebacterium glutamicum with the Modified, Pentose Phosphate, Pathway. Appl. Environ. Microbiol. 1999, 65, 2497–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordwell, S.J. Microbial genomes and “missing” enzymes: Redefining biochemical pathways. Arch. Microbiol. 1999, 172, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fang, G.; Wu, H.; Li, Z.; Ye, Q. L-Cysteine, Production in Escherichia coli Based on Rational, Metabolic Engineering and Modular, Strategy. Biotechnol. J. 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Sugimoto, M. Amino, Acids, Production, Processes; John, Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1–35. [Google Scholar]
- Dei, H.K. Soybean as a feed ingredient for livestock and poultry. In Recent, Trends for Enhancing the Diversity and Quality of Soybean, Products; Krezhova, D., Ed.; InTech: Rijeka, Croatia, 2011; pp. 215–226. [Google Scholar]
- Kleyn, R. Practical views on global meat chicken nutrition. Proc. Aust. Poult. Sci. Symp. 2019, 30, 1–7. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World, Agriculture towards 2030/2050; The 2012 Revision. ESA Working paper No.12-03; Food and Agricultural, Organisation: Rome, Italy, 2012; pp. 1–154. [Google Scholar]
- Egli, D.B. Comparison of corn and soybean yields in the United, States: Historical trends and future prospects. Agron. J. 2008, 100 (Suppl. 3), S79–S88. [Google Scholar] [CrossRef] [Green Version]
- Kidd, M.T.; Tillman, P.B. Feed additive mythbusters: How should we feed synthetic amino acids? Proc. Aust. Poult. Sci. Symp. 2012, 23, 105–111. [Google Scholar]
- Kidd, M.T.; Tillman, P.B.; Waldroup, P.W.; Holder, W. Feed-grade amino acid use in the United, States: The synergetic inclusion history with linear programming. J. Appl. Poult. Res. 2013, 22, 583–590. [Google Scholar] [CrossRef]
- Pesti, G.M. Impact of dietary amino acid and crude protein levels in broiler feeds on biological performance. J. Appl. Poult. Res. 2009, 18, 477–486. [Google Scholar] [CrossRef]
- Lemme, A.; Hiller, P.; Klahsen, M.; Taube, V.; Stegemann, J.; Simon, I. Reduction of dietary protein in broiler diets not only reduces n-emissions but is also accompanied by several further benefits. J. Appl. Poult. Res. 2019, 28, 867–880. [Google Scholar] [CrossRef]
- Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP content in broiler feeds: Impact on animal performance, meat quality and nitrogen utilization. Animal 2017, 11, 1881–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrystal, P.V.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poult. Sci. 2020, 99, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Chrystal, P.V.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Effects of reduced crude protein levels, dietary electrolyte balance and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein and amino acid metabolism. Poult. Sci. 2020, 99, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Chrystal, P.V.; Moss, A.F.; Yin, D.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Glycine equivalent and threonine inclusions in reduced-crude protein, maize-based diets impact on growth performance, fat deposition starch-protein digestive dynamics and amino acid metabolism in broiler chickens. Anim. Feed Sci. Technol. 2020, 261, 114387. [Google Scholar] [CrossRef]
- Liu, S.Y.; Selle, P.H. Starch and protein digestive dynamics in low-protein diets supplemented with crystalline amino acids. Anim. Prod. Sci. 2017, 57, 2250–2256. [Google Scholar] [CrossRef]
- Selle, P.H.; Liu, S.Y. The relevance of starch and protein digestive dynamics in poultry. J. Appl. Poult. Res. 2019, 28, 531–545. [Google Scholar] [CrossRef]
- Greenhalgh, S.; McInerney, B.V.; McQuade, L.R.; Chrystal, P.V.; Khoddami, A.; Zhuang, M.A.M.; Liu, S.Y.; Selle, P.H. Capping dietary starch: Protein ratios in moderately reduced crude protein, wheat-based diets showed promise but further reductions generated inferior growth performance in broiler chickens from 7 to 35 days post-hatch. Anim. Nutr. 2020, (in press). [Google Scholar] [CrossRef]
- Liu, S.Y.; Naranjo, V.D.; Chrystal, P.V.; Buyse, J.; Selle, P.H. Box-Behnken optimisation of growth performance, plasma metabolites and carcass traits as influenced by dietary energy, amino acid and starch to lipid ratios in broiler chickens. PLoS ONE 2019, 14, e021387545. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Functional amino acids in nutrition and health. Amino Acids 2013, 45, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. J. Anim. Sci. Biotechnol. 2014, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Swennen, Q.; Laroye, C.; Janssens, G.; Verbeke, K.; Decuypere, E.; Buyse, J. Rate of metabolic decarboxylation of leucine as assessed by a L[1-13C1]leucine breath test combined with indirect calorimetry of broiler chickens fed isocaloric diets with different protein:fat ratio. J. Anim. Physiol. Anim. Nutr. 2007, 91, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Selle, P.H.; Cowieson, A.J. Protease supplementation of sorghum-based broiler diets enhances amino acid digestibility coefficients in four small intestinal sites and accelerates their rates of digestion. Anim. Feed Sci. Technol. 2013, 183, 175–183. [Google Scholar] [CrossRef]
- Truong, H.H.; Chrystal, P.V.; Moss, A.F.; Selle, P.H.; Liu, S.Y. Rapid protein disappearance rates along the small intestine advantage poultry performance and influence the post-enteral availability of amino acids. Br. J. Nutr. 2017, 118, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, O.A.; Parsons, C.M.; Baker, D.H. Bioavailability of lysine in l-lysine HCl. J. Anim. Sci. 1998, 66, 2590–2597. [Google Scholar] [CrossRef]
- Chung, T.K.; Baker, D.H. Apparent and true amino acid digestibility of a crystalline amino acid mixture and of casein: Comparison of values obtained with ileal-cannulated pigs and cecectomized cockerels. J. Anim. Sci. 1992, 70, 3781–3790. [Google Scholar] [CrossRef] [Green Version]
- Esteve-Garcia, E.; Austic, R.E. Intestinal absorption and renal excretion of dietary methionine sources by the growing chicken. J. Nutr. Biochem. 1993, 4, 576–587. [Google Scholar] [CrossRef]
- Croom, W.J.; Brake, J.; Coles, B.A.; Havenstein, G.B.; Christensen, V.L.; McBride, B.W.; Peebles, E.D.; Taylor, I.L. Is intestinal absorption capacity rate-limiting for performance in poultry? J. Appl. Poult. Res. 1999, 8, 242–252. [Google Scholar] [CrossRef]
- Hyde, R.; Taylor, P.M.; Hundal, H.S. Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochem. J. 2003, 373, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mastrototaro, L.; Sponder, G.; Saremi, B.; Aschenbach, J.R. Gastrointestinal methionine shuttle: Priority handling of precious goods. Iubmb Life 2016, 68, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.M. Intestinal absorption of peptides. Biochem. Soc. Trans. 1983, 11, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 2004, 66, 361–384. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Wong, E.A.; Webb, K.E. Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 2008, 86, 2135–2155. [Google Scholar] [CrossRef] [PubMed]
- Zwarycz, B.; Wong, E.A. Expression of the peptide transporters PepT1, PepT2, and PHT1 in the embryonic and posthatch chick. Poult. Sci. 2013, 92, 1314–1321. [Google Scholar] [CrossRef]
- Miska, K.B.; Fetterer, R.H. Expression of amino acid and sugar transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1; differences between modern fast growing broilers and broilers not selected for rapid growth. Poult. Sci. 2019, 98, 2272–2280. [Google Scholar] [CrossRef] [PubMed]
- Reeds, P.J.; Burrin, D.G.; Stoll, B.; van Goudoever, J.B. Role of the gut in the amino acid economy of the host. In Nestle Nutr Workshop Ser Clin Perform Programme; Vevey/Karger, A.G., Ed.; Karger: Basel, Switzerland, 2000; Volume 3, pp. 25–46. [Google Scholar]
- Cant, J.P.; McBride, B.W.; Croom, W.J. The regulation of intestinal metabolism and its impact on whole animal energetics. J. Anim. Sci. 1996, 74, 2541–2553. [Google Scholar] [CrossRef] [PubMed]
- Watford, M.; Lund, P.; Krebs, K.A. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem. J. 1979, 178, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Fleming, S.E.; Zambell, K.L.; Fitch, M.D. Glucose and glutamine provide similar proportions of energy to mucosal cells of rat small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 1997, 273, G968–G978. [Google Scholar] [CrossRef]
- Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 1998, 128, 606–614. [Google Scholar] [CrossRef]
- Klasing, K.C.; Calvert, C.C.; Jarrell, V.L. Growth characteristics, protein synthesis and protein degradation in muscles from fast and slow growing chickens. Poult. Sci. 1987, 66, 1189–1196. [Google Scholar] [CrossRef]
- Sklan, D.; Noy, Y. Catabolism and deposition of amino acids in growing chicks: Effect of dietary supply. Poult. Sci. 2004, 83, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Selle, P.H.; Chrystal, P.V.; Liu, S.Y. The cost of deamination in reduced-crude protein broiler diets. Proc. Aust. Poult. Sci. Symp. 2020, 31, 63–66. [Google Scholar]
- Hill, D.C.; Olsen, E.M. Effect of the addition of imbalanced amino acid mixtures to a low protein diet, on weight gains and plasma amino acids of chicks. J. Nutr. 1963, 79, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Hakvoort, T.B.M.; He, Y.; Kulik, W.; Vermeulen, J.L.M.; Duijst, S.; Ruijter, J.M.; Runge, J.H.; Deutz, N.E.P.; Koehler, E.; Lamers, W.H. Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology 2017, 65, 281–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, R.A.; Mozdziak, P.E. Differential ammonia metabolism and toxicity between avian and mammalian species, and effect of ammonia on skeletal muscle: A comparative review. J. Anim. Physiol. Anim. Nutr. 2019. [Google Scholar] [CrossRef] [Green Version]
- Horn, G.W.; Featherston, W.R. Influence of level and source of nitrogen intake on liver glutamine synthetase activity in the chick. J. Nutr. 1972, 102, 489–494. [Google Scholar] [CrossRef]
- Watford, M.; Wu, G. Glutamine metabolism in uricotelic species: Variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp. Biochem. Physiol. Part B 2005, 140, 607–614. [Google Scholar] [CrossRef]
- Minet, R.; Villie, F.; Marcollet, M.; Meynial-Denis, D.; Cynober, L. Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin. Chim. Acta 1997, 268, 121–132. [Google Scholar] [CrossRef]
- Salway, J.G. The Krebs uric acid cycle: A forgotten Krebs cycle. Trends Biochem. Sci. 2018, 43, 847–849. [Google Scholar] [CrossRef]
- Baker, D.H. Advances in protein-amino acid nutrition in poultry. Amino Acids 2009, 37, 29–41. [Google Scholar] [CrossRef]
- Namroud, N.F.; Shivazad, M.; Zaghari, M. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poult. Sci. 2008, 87, 2250–2258. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Rojas, I.C.; Murakami, A.E.; Duarte, C.R.A.; Eyng, C.; Oliveira, C.A.L.; Janeiro, V. Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. Br. Poult. Sci. 2014, 55, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Rojas, I.C.; Murakami, A.E.; Duarte, C.R.A.; Nascimento, G.R.; Garcia, E.R.M.; Sakamoto, M.I.; Nunes, R.V. Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age. Poult. Sci. 2017, 96, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.H.; Sugahara, M.; Scott, H.M. The glycine-serine interrelationship in chick nutrition. Poult. Sci. 1968, 47, 1376–1377. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.W.; Bidner, T.D.; Southern, L.L. Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks. Poult. Sci. 2006, 85, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids 2013, 45, 463–477. [Google Scholar] [CrossRef]
- Siegert, W.; Rodehutscord, M. Relevance of glycine in low protein broiler feeds. In Proceedings of the 20th European Symposium in Poultry, Nutrition, World’s Poultry, Science Association, Prague, Czech Republic, 24–27 August 2015; pp. 18–26. [Google Scholar]
- Siegert, W.; Rodehutscord, M. Nonessential amino acids—The forgotten nutrients? In Proceedings of the XVth European Poultry Conference, World’s Poultry, Science Association, Dubrovnik, Croatia, 17–21 September 2018; pp. 52–62. [Google Scholar]
- Siegert, W.; Ahmadi, H.; Helmbrecht, A.; Rodehutscord, M. A quantitative study of the interactive effects of glycine and serine with threonine and choline on growth performance in broilers. Poult. Sci. 2015, 94, 1557–1568. [Google Scholar] [CrossRef]
- Hofmann, P.; Siegert, W.; Kenéz, Á.; Naranjo, V.D.D.; Rodehutscord, M. Very low crude protein and varying glycine concentrations in the diet affect growth performance, characteristics of nitrogen excretion, and the blood metabolome of broiler chickens. J. Nutr. 2019, 149, 1122–1132. [Google Scholar] [CrossRef]
- Suzuki, M.; Mitsuhashi, T. Effects of methionine and threonine in diets on the growth and plasma free amino acids in chicks. Bull. Natl. Inst. Anim. Ind. 1982, 39, 13–20. [Google Scholar]
- Smith, N.K.; Waldroup, P. Investigations of threonine requirements of broiler chicks fed diets based on grain sorghum and soybean meal. Poult. Sci. 1988, 67, 108–112. [Google Scholar] [CrossRef]
- Kidd, M.T.; Kerr, B.J. L-Threonine for poultry: A review. J. Appl. Poult. Res. 1996, 5, 358–367. [Google Scholar] [CrossRef]
- Selle, P.H.; Truong, H.H.; McQuade, L.R.; Moss, A.F.; Liu, S.Y. Reducing agent and exogenous protease additions, individually and in combination, to wheat- and sorghum-based diets interactively influence parameters of nutrient utilisation and digestive dynamics in broiler chickens. Anim. Nutr. 2016, 2, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Fancher, B.I.; Jensen, L.S. Dietary protein levels and essential amino acid content: Influence upon female broiler performance during the growing period. Poult. Sci. 1989, 68, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.T.; Austic, R.E. Dietary protein and amino acid levels alter threonine dehydrogenase activity in hepatic mitochondria of Gallus domesticus. J. Nutr. 1997, 127, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.-H.; Austic, R.E. The effect of dietary protein level on threonine dehydrogenase activity in chickens. Poult. Sci. 2001, 80, 1353–1356. [Google Scholar] [CrossRef]
- Ravindran, V.; Hendriks, W.H. Endogenous amino acid flows at the terminal ileum of broilers, layers and adult roosters. Anim. Sci. 2004, 79, 265–271. [Google Scholar] [CrossRef]
- Lien, K.A.; Sauer, W.C.; Fenton, M. Mucin output in ileal digesta of pigs fed a protein-free diets. Zeitschrift Ernährungswissenschaft 1997, 36, 182–190. [Google Scholar] [CrossRef]
- Tasaki, I.; Ohno, T. Effect of dietary protein level on plasma free amino acids in the chicken. J. Nutr. 1971, 101, 1225–1232. [Google Scholar] [CrossRef]
- Baker, D.H.; Hill, T.M.; Kleiss, A.J. Nutritional evidence concerning formation of glycine from threonine in the chick. J. Anim. Sci. 1972, 34, 582–586. [Google Scholar] [CrossRef]
- Graber, G.; Baker, D.H. The essential nature of glycine and proline for growing chicks. Poult. Sci. 1973, 52, 892–896. [Google Scholar] [CrossRef]
- Suguhara, M.; Kandatsu, M. Glycine and serine interconversion in the rooster. Agric. Biol. Chem. 1976, 40, 833–837. [Google Scholar] [CrossRef]
- D’Mello, J.P.F. Aspects of threonine and glycine metabolism in the chick (Gallus domesticus). Nutr. Metab. 1973, 15, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Waldroup, P.W.; Jiang, Q.; Fritts, C.A. Effects of glycine and threonine supplementation on performance of broiler chicks fed diets low in crude protein. Int. J. Poult. Sci. 2005, 4, 250–257. [Google Scholar]
- Hilliar, M.; Huyen, N.; Girish, C.K.; Barekatain, R.; Wu, S.; Swick, R.A. Supplementing glycine, serine, and threonine in low protein diets for meat type chickens. Poult. Sci. 2019, 12, 6857–6865. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, D.; Scott, H.M. Growth depressing effect of excess leucine in relation to the amino acid composition of the diet. Poult. Sci. 1968, 47, 1964. [Google Scholar]
- Smith, T.K.; Austic, R.E. The branched-chain amino acid antagonism in chicks. J. Nutr. 1978, 108, 1180–1191. [Google Scholar] [CrossRef]
- Calvert, C.C.; Klasing, K.C.; Austic, R.E. Involvement of food intake and amino acid catabolism in the branched-chain amino acid antagonism in chicks. J. Nutr. 1982, 112, 627–635. [Google Scholar] [CrossRef]
- Szmelcman, S.; Guggenheim, K. Interference between leucine, isoleucine and valine during intestinal absorption. Biochem. J. 1966, 100, 7–11. [Google Scholar] [CrossRef]
- Waldroup, P.W.; Kersey, J.H.; Fritts, C.A. Influence of branched-chain amino acid balance in broiler diets. Int. J. Poult. Sci. 2002, 1, 136–144. [Google Scholar]
- Li, F.; Yin, Y.; Tan, B.; Kong, X.; Wu, G. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 2011, 41, 1185–1193. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldroup, P.W. Do crude protein levels really matter? In Proceedings of the 15th Annual ASAIM Southeast, Asian Feed, Technology and Nutrition, Workshop, Conrad Bali Resort, Indonesia, 27–30 May 2007; pp. 1–5. [Google Scholar]
- Harper, A.E.; Miller, R.H.; Block, K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984, 4, 409–454. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zheng, A.; Liu, G.; Chang, W.; Zhang, S.; Cai, H. Activation of mammalian target of rapamycin signaling in skeletal muscle of neonatal chicks: Effects of dietary leucine and age. Poult. Sci. 2014, 93, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, K.; LeBlanc, R.E.; Loh, D.; Schwartz, G.J.; Yu, Y.H. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007, 56, 1647–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Y.; Li, F.; Liu, H.; Li, Y.; Liu, Y.; Kong, X.; Zhang, Y.; Deng, D.; Tang, Y.; Feng, Z.; et al. Nutritional and regulatory roles of leucine in muscle growth and fat reduction. Front. Biosci. 2015, 20, 796–813. [Google Scholar]
- Shao, D.; Villet, O.; Zhang, Z.; Choi, S.W.; Yan, J.; Ritterhoff, J.; Gu, H.; Djukovic, D.; Christodoulou, D.; Kolwicz, S.C.; et al. Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat. Commun. 2018, 9, 2935. [Google Scholar] [CrossRef] [Green Version]
- Yoon, I.; Nam, M.; Kim, H.K.; Moon, H.-S.; Kim, S.; Jang, J.; Song, J.A.; Jeong, S.J.; Kim, S.B.; Cho, S.; et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase. Science 2020, 367, 205–210. [Google Scholar] [CrossRef]
- Yamazaki, M.; Murakami, H.; Nakashima, K.; Abe, H.; Takemasa, M. Effects of excess essential amino acids in low protein diets on abdominal fat deposition and nitrogen excretion of the broiler chicks. J. Poult. Sci. 2006, 43, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, Q.; Applegate, T.J. Impact of dietary branched chain amino acids concentration on broiler chicks during aflatoxicosis. Poult. Sci. 2016, 95, 1281–1289. [Google Scholar] [CrossRef]
- Zeitz, J.O.; Käding, S.-K.; Niewald, I.R.; Machander, V.; de Paula Dorigam, J.C.; Eder, K. Effects of leucine supplementation on muscle protein synthesis and degradation pathways in broilers at constant dietary concentrations of isoleucine and valine. Arch. Anim. Nutr. 2019, 73, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, J.O.; Käding, S.-K.; Niewald, I.R.; Most, E.; de Paula Dorigam, J.C.; Eder, K. The influence of dietary leucine above recommendations and fixed ratios to isoleucine and valine on muscle protein synthesis and degradation pathways in broilers. Poult. Sci. 2019, 98, 6772–6786. [Google Scholar] [CrossRef] [PubMed]
- Erwan, E.; Alimon, A.R.; Sazili, A.Q.; Yaakub, H.; Karim, R. Effects of levels of L-leucine supplementation with sub-optimal protein in the diet of grower-finisher broiler chickens on carcass composition and sensory characteristics. Asian Aust. J. Anim. Sci. 2011, 24, 650–654. [Google Scholar] [CrossRef]
- Erwan, E. Supplementation if caloric- and protein-restricted diets with l-leucine stimulates food intake and improves carcass characteristics in broiler chickens. Int. J. Poult. Sci. 2018, 17, 28–33. [Google Scholar] [CrossRef]
- Zhang, S.; Qiao, S.; Ren, M.; Zeng, X.; Ma, X.; Wu, Z.; Thacker, P.; Wu, G. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 2013, 45, 1191–1205. [Google Scholar] [CrossRef]
- Edwards, H.M.; Norris, L.C.; Heuser, G.F. Studies on the lysine requirement of chicks. Poult. Sci. 1956, 35, 385–390. [Google Scholar] [CrossRef]
- Batterham, E.S. Effect of frequency of feeding on utilization of free lysine by growing pigs. Br. J. Nutr. 1974, 31, 237–242. [Google Scholar] [CrossRef]
- Batterham, E.S.; O’Neill, G.H. Effect of frequency of feeding on response by growing pigs to supplements of free lysine. Br. J. Nutr. 1978, 39, 265–270. [Google Scholar] [CrossRef]
- Batterham, E.S.; Murison, R.D. Utilization of free lysine by growing pigs. Br. J. Nutr. 1981, 39, 265–270. [Google Scholar] [CrossRef]
- Batterham, E.S.; Bayley, H.S. Effect of frequency of feeding of diets containing free or protein-bound lysine on the oxidation of [14C]lysine or [14C]phenylalanine by growing pigs. Br. J. Nutr. 1989, 62, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Nonis, M.K.; Gous, R.M. Utilisation of synthetic amino acids by broiler breeder hens. S. Afr. J. Anim. Sci. 2006, 36, 126–134. [Google Scholar] [CrossRef]
- Baker, D.H.; Izquierdo, M.S. Effect of meal frequency and spaced crystalline lysine ingestion on the utilization of dietary lysine by chickens. Nutr. Res. 1985, 5, 1103–1112. [Google Scholar] [CrossRef]
- Yin, D.; Chrystal, P.V.; Moss, A.F.; Choy, K.Y.E.; Liu, S.Y.; Selle, P.H. Extending daily feed access intervals does not influence lysine HCl utilisation but enhances amino acid digestibilities in boiler chickens. Poult. Sci. 2019, 10, 4801–4814. [Google Scholar] [CrossRef]
- Classen, H.L.; Apajalahti, J.; Svihus, B.; Choct, M. The role of the crop in poultry production. World’s Poult. Sci. J. 2016, 72, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Bunchasak, C. Role of dietary methionine in poultry production. J. Poult. Sci. 2009, 46, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, A.; Moran, E.T.; Wyatt, C. Methionine and cystine requirements of slow and fast-feathering male broilers from zero to three weeks of age. Poult. Sci. 2003, 82, 1423–1427. [Google Scholar] [CrossRef]
- Dilger, R.N.; Baker, D.H. Excess dietary L-cysteine causes lethal metabolic acidosis in chicks. J. Nutr. 2008, 138, 1628–1633. [Google Scholar] [CrossRef]
- Huyghebaert, G.; Pack, M. Effects of dietary protein content, addition of nonessential amino acids and dietary methionine to cysteine balance on responses to dietary sulphur-containing amino acids in broilers. Br. Poult. Sci. 1996, 37, 623–639. [Google Scholar] [CrossRef]
- Fatufe, A.A.; Rodehutscord, M. growth, body composition, and marginal efficiency of methionine utilization are affected by nonessential amino acid nitrogen supplementation in male broiler chicken. Poult. Sci. 2005, 84, 1584–1592. [Google Scholar] [CrossRef]
Composition Feed Ingredient (g/kg) | 222 g CP/kg Diet | 165 g CP/kg Diet | Nutrient Specifications Item (g/kg) | 222 g CP/kg Diet | 165 g CP/kg Diet |
---|---|---|---|---|---|
Maize | 511 | 721 | Crude protein | 222 | 165 |
Canola seed | 60 | 60 | Starch | 335 | 471 |
Soybean meal | 334 | 113 | Metabolizable energy (MJ/kg) | 12.85 | 12.85 |
Soy oil | 35 | - | Calcium | 8.25 | 8.25 |
l-lysine | 1.60 | 8.12 | Total phosphorus | 7.20 | 6.84 |
d,l-methionine | 2.67 | 4.53 | Available phosphorus | 4.13 | 4.13 |
l-threonine | 1.18 | 4.10 | Phytate phosphorus | 2.47 | 2.02 |
l-tryptophan | - | 0.79 | Crude fat | 85.1 | 54.1 |
l-valine | 1.80 | 3.88 | DEB (mEq/kg) | 250 | 250 |
l-arginine | - | 5.77 | Digestible amino acids | ||
l-isoleucine | - | 3.46 | Lysine | 11.50 | 11.50 |
l-leucine | - | 1.41 | Methionine | 5.63 | 6.49 |
l-histidine | - | 0.81 | Cysteine | 3.00 | 2.10 |
Glycine | 0.32 | 3.57 | Threonine | 8.05 | 8.05 |
l-serine | 0.01 | 3.84 | Tryptophan | 2.37 | 1.96 |
Sodium chloride | 3.77 | 0.53 | Isoleucine | 8.19 | 7.94 |
Sodium bicarbonate | 0.89 | 5.72 | Leucine | 16.29 | 12.54 |
Potassium carbonate | - | 6.69 | Arginine | 12.96 | 12.42 |
Limestone | 5.96 | 5.82 | Valine | 9.20 | 9.20 |
Dicalcium phosphate | 21.2 | 24.4 | Histidine | 5.14 | 4.03 |
Choline chloride | 0.90 | 0.90 | Phenylalanine | 9.63 | 5.58 |
Celite | 20.0 | 20.0 | Glutamic acid | 33.07 | 19.33 |
Vitamin-mineral premix | 2.0 | 2.0 | Glycine | 7.85 | 7.85 |
Serine | 9.32 | 9.32 | |||
Total non-bound amino acids | 7.23 | 38.49 | Glycine equivalents | 14.51 | 14.51 |
Amino Acid | Apparent Digestibility Coefficient | Digestion Rate (× 10−2 Per Minute) | |||
---|---|---|---|---|---|
Proximal Jejunum | Distal Jejunum | Proximal Ileum | Distal Ileum | ||
Isoleucine | 0.363 | 0.568 | 0.726 | 0.774 | 2.05 |
Leucine | 0.359 | 0.536 | 0.695 | 0.748 | 2.07 |
Valine | 0.352 | 0.560 | 0.715 | 0.760 | 2.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selle, P.H.; de Paula Dorigam, J.C.; Lemme, A.; Chrystal, P.V.; Liu, S.Y. Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production. Animals 2020, 10, 729. https://doi.org/10.3390/ani10040729
Selle PH, de Paula Dorigam JC, Lemme A, Chrystal PV, Liu SY. Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production. Animals. 2020; 10(4):729. https://doi.org/10.3390/ani10040729
Chicago/Turabian StyleSelle, Peter H., Juliano Cesar de Paula Dorigam, Andreas Lemme, Peter V. Chrystal, and Sonia Y. Liu. 2020. "Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production" Animals 10, no. 4: 729. https://doi.org/10.3390/ani10040729
APA StyleSelle, P. H., de Paula Dorigam, J. C., Lemme, A., Chrystal, P. V., & Liu, S. Y. (2020). Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production. Animals, 10(4), 729. https://doi.org/10.3390/ani10040729