Grazing Cow Behavior’s Association with Mild and Moderate Lameness
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Variable | Definition | Reference |
---|---|---|
Activity | Activity index (without dimension), proportional to the variability of the three acceleration axes. | [28] |
Laydown | Lie down instances (pedometer angle changes from a vertical angle to a horizontal angle for at least 50 s) within the summary time frame. | [27,28] |
Laying Counter | The number of periods with the pedometer in a horizontal position >50 s. Interruption of this pedometer position for less than 50 s is identified and calculated as one stand-up and one lying-down event but not as a separate standing bout. | |
Laying Index | Activity index while lying. | |
Lay Time | Sum of the duration of all lying bouts within a given recording period. | [27,28] |
Limb Events | Movements of the legs or < 3 strides, no./time frame. | [32] |
Standing Counter | The number of periods during which the cow is in an upright position but not walking. A temporary change from a vertical angle for less than 50 s is neither rated as lying-down and standing-up events nor as an additional lying bout. | |
Standing Index | Activity index while standing. | |
Stand Time | Standing time slice (time sum in minutes) within the summary time frame. | [27,28] |
Stand Up | Get up instances count within the summary time frame. | [27,28] |
Strides | One forward or backward movement of the limb within a walking bout. | [28] |
Walking Counter | The number of periods characterized by at least three consecutive strides in the same direction (forward or backward). The period betweentwo strides must not exceed 4 s. Walking bouts are rated as separate if the time between two strides exceeds 10 s. | |
Walking Index | Activity index while walking. | [29] |
Walk Time | Walking time slice (time sum in minutes) within the summary time frame. | [27,28] |
1.A Jerseys | 1.B Jerseys | 2. Holstein Friesian 2017 | 3.A Holstein Friesian 2018a | 3.B Holstein Friesian 2018b | 4.A Farm | 4.B Farm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd |
Activity | 244 | 29 | 156 | 21 | 197 | 29 | 147 | 18 | 150 | 20 | 111 | 11 | 135 | 7 |
Laydown (n/day) | 7.3 | 1.5 | 7.4 | 1.9 | 9 | 1.7 | 8.9 | 1.3 | 8.6 | 2 | 8.1 | 1.9 | 8.7 | 2.3 |
Laying Counter | 7.1 | 1.4 | 7.4 | 1.8 | 8.9 | 1.5 | 8.9 | 1.2 | 8.4 | 1.8 | 8.1 | 2.1 | 8.6 | 2.3 |
Laying Index | 5.9 | 1.4 | 7.2 | 2.6 | 10.3 | 2.8 | 7.9 | 2.3 | 9.5 | 3.2 | 8.6 | 1.4 | 8.9 | 2.5 |
Lay Time (min/day) | 616 | 89 | 622 | 131 | 564 | 91 | 619 | 57 | 542 | 66 | 738 | 69 | 683 | 71 |
Limb Events (n/day) | 2910 | 591 | 2066 | 520 | 1982 | 345 | 2011 | 287 | 2393 | 320 | 1716 | 334 | 1895 | 277 |
Standing Counter | 307 | 51 | 245 | 39 | 209 | 39 | 222 | 28 | 235 | 45 | 217 | 20 | 201 | 23 |
Standing Index | 250 | 64 | 138 | 21 | 119 | 21 | 121 | 21 | 127 | 18 | 104 | 16 | 116 | 15 |
Stand Time (min/day) | 690 | 80 | 714 | 125 | 748 | 89 | 722 | 57 | 799 | 65 | 621 | 70 | 670 | 72 |
Stand Up (n/day) | 7.3 | 1.6 | 7.3 | 1.7 | 9.1 | 1.7 | 9 | 1.5 | 8.8 | 2 | 8.3 | 1.8 | 8.5 | 2.1 |
Strides (n/day) | 4259 | 707 | 3152 | 486 | 4402 | 333 | 2943 | 249 | 2873 | 369 | 2296 | 333 | 2662 | 223 |
Walking Counter | 304 | 52 | 239 | 39 | 201 | 39 | 215 | 28 | 229 | 46 | 213 | 21 | 194 | 23 |
Walking Index | 1317 | 132 | 1178 | 113 | 1479 | 183 | 1212 | 108 | 1106 | 84 | 1092 | 101 | 1263 | 137 |
Walk Time (min/day) | 134 | 18 | 104 | 16 | 129 | 12 | 99 | 10 | 100 | 15 | 82 | 11 | 88 | 9 |
3. Results
4. Discussion
4.1. Main Findings
4.2. Study Limitations
4.3. Implications of Findings
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dolecheck, K.; Bewley, J. Animal board invited review: Dairy cow lameness expenditures, losses and total cost. Animal 2018, 12, 1462–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, S.; Bell, N.; Huxley, J. Lameness in UK dairy cows: A review of the current status. Practice 2010, 32, 492–504. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, A.H.; Bokkers, E.A.M.; de Boer, I.J.M.; Hogeveen, H.; Sayers, R.; Byrne, N.; Ruelle, E.; Shalloo, L. Associating cow characteristics with mobility scores in pasture-based dairy cows. J. Dairy Sci. 2019, 102, 8332–8342. [Google Scholar] [CrossRef] [PubMed]
- Van Nuffel, A.; Zwertvaegher, I.; Pluym, L.; Van Weyenberg, S.; Thorup, V.M.; Pastell, M.; Sonck, B.; Saeys, W. Lameness detection in dairy cows: Part 1. How to distinguish between non-lame and lame cows based on differences in locomotion or behavior. Animals 2015, 5, 838–860. [Google Scholar] [CrossRef] [Green Version]
- Schlageter-Tello, A.; Bokkers, E.A.M.; Koerkamp, P.W.G.G.; Van Hertem, T.; Viazzi, S.; Romanini, C.E.B.; Halachmi, I.; Bahr, C.; Berckmans, D.; Lokhorst, K. Manual and automatic locomotion scoring systems in dairy cows: A review. Prev. Vet. Med. 2014, 116, 12–25. [Google Scholar] [CrossRef]
- Horseman, S.V.; Roe, E.J.; Huxley, J.N.; Bell, N.J.; Mason, C.S.; Whay, H.R. The use of in-depth interviews to understand the process of treating lame dairy cows from the farmers’ perspective. Anim. Welf. 2014, 23, 157–165. [Google Scholar] [CrossRef]
- Fabian, J.; Laven, R.A.; Whay, H.R. The prevalence of lameness on New Zealand dairy farms: A comparison of farmer estimate and locomotion scoring. Vet. J. 2014, 201, 31–38. [Google Scholar] [CrossRef]
- Bewley, J.M.; Schutz, M.M. An Interdisciplinary Review of Body Condition Scoring for Dairy Cattle. Prof. Anim. Sci. 2008, 24, 507–529. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.W. Behavioral Gait Change Characterization and Detection Using Precision Dairy Monitoring Technologies; University of Kentucky: Lexington, KY, USA, 2017. [Google Scholar]
- Van Nuffel, A.; Zwertvaegher, I.; Van Weyenberg, S.; Pastell, M.; Thorup, V.M.; Bahr, C.; Sonck, B.; Saeys, W. Lameness detection in dairy cows: Part 2. Use of sensors to automatically register changes in locomotion or behavior. Animals 2015, 5, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Alsaaod, M.; Fadul, M.; Steiner, A. Automatic lameness detection in cattle. Vet. J. 2019, 246, 35–44. [Google Scholar] [CrossRef]
- IceRobotics COWALERT Lameness Detection Highly Commended. Available online: http://www.icerobotics.com/news/cowalert-lameness-detection-highly-commended/ (accessed on 28 June 2018).
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef] [PubMed]
- Thorup, V.M.; Munksgaard, L.; Robert, P.E.; Erhard, H.W.; Thomsen, P.T.; Friggens, N.C. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms. Animal 2015, 9, 1704–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphuis, C.; Frank, E.; Burke, J.K.; Verkerk, G.A.; Jago, J.G. Applying additive logistic regression to data derived from sensors monitoring behavioral and physiological characteristics of dairy cows to detect lameness. J. Dairy Sci. 2013, 96, 7043–7053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, G.; Alsaaod, M.; Starke, A.; Schuepbach-Regula, G.; Müller, H.; Kohler, P.; Steiner, A. Use of extended characteristics of locomotion and feeding behavior for automated identification of lame dairy cows. PLoS ONE 2016, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Byabazaire, J.; Olariu, C.; Taneja, M.; Davy, A. Lameness Detection as a Service: Application of Machine Learning to an Internet of Cattle. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–6. [Google Scholar]
- Sepúlveda-Varas, P.; Weary, D.M.; Von Keyserlingk, M.A.G. Lying behavior and postpartum health status in grazing dairy cows Lying behavior and postpartum health status in grazing dairy cows. J. Dairy Sci. 2014, 97, 6334–6343. [Google Scholar] [CrossRef] [Green Version]
- Navarro, G.; Green, L.E.; Tadich, N. Effect of lameness and lesion specific causes of lameness on time budgets of dairy cows at pasture and when housed. Vet. J. 2013, 197, 788–793. [Google Scholar] [CrossRef]
- Thompson, A.J.; Weary, D.M.; Bran, J.A.; Daros, R.R.; Hötzel, M.J.; von Keyserlingk, M.A.G. Lameness and lying behavior in grazing dairy cows. J. Dairy Sci. 2019, 102, 6373–6382. [Google Scholar] [CrossRef]
- Blackie, N.; Amory, J.; Bleach, E.; Scaife, J. The effect of lameness on lying behaviour of zero grazed Holstein dairy cattle. Appl. Anim. Behav. Sci. 2011, 134, 85–91. [Google Scholar] [CrossRef]
- Blackie, N.; Maclaurin, L. Influence of Lameness on the Lying Behaviour of Zero-Grazed Lactating Jersey Dairy Cattle Housed in Straw Yards. Animals 2019, 9, 829. [Google Scholar] [CrossRef] [Green Version]
- Kokin, E.; Praks, J.; Veermäe, I.; Poikalainen, V.; Vallas, M. IceTag3DTM accelerometric device in cattle lameness detection. Agron. Res. 2014, 12, 223–230. [Google Scholar]
- Alsaaod, M.; Römer, C.; Kleinmanns, J.; Hendriksen, K.; Rose-Meierhöfer, S.; Plümer, L.; Büscher, W. Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior. Appl. Anim. Behav. Sci. 2012, 142, 134–141. [Google Scholar] [CrossRef]
- Ito, K.; Von Keyserlingk, M.A.G.; Leblanc, S.J.; Weary, D.M. Lying behavior as an indicator of lameness in dairy cows. J. Dairy Sci. 2010, 93, 3553–3560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agriculture and Horticulture Development Board AHDB Dairy Mobility Score. Available online: https://dairy.ahdb.org.uk/resources-library/technical-information/health-welfare/mobility-score-instructions/ (accessed on 20 January 2020).
- Werner, J.; Leso, L.; Umstatter, C.; Niederhauser, J.; Kennedy, E.; Geoghegan, A.; Shalloo, L.; Schick, M.; O’Brien, B. Evaluation of the RumiWatchSystem for measuring grazing behaviour of cows. J. Neurosci. Methods 2018, 300, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Alsaaod, M.; Niederhauser, J.J.; Beer, G.; Zehner, N.; Schuepbach-Regula, G.; Steiner, A. Development and validation of a novel pedometer algorithm to quantify extended characteristics of the locomotor behavior of dairy cows. J. Dairy Sci. 2015, 98, 6236–6242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zehner, N.; Huerlimann, M.; Hoch, M. User Guide RumiWatch Converter Version 0.7.3.2 and higher. Available online: https://www.rumiwatch.ch/downloads/index.php (accessed on 9 April 2020).
- Champely, S.; Ekstrom, C.; Dalgaard, P.; Gill, J.; Weibelzahl, S.; Ford, C.; Anandkumar, A.; Volcic, R.; De Rosario-Martinez, H. Basic Functions for Power Analysis Pwr. Available online: https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html (accessed on 9 April 2020).
- O’Leary, N. Data and R code from Grazing Cow Behavior’s Association with Mild and Moderate Lameness, O’Leary et al. 2020. Available online: https://github.com/nialloleary/Behavior-Lameness-Article (accessed on 9 April 2020).
- Kohler, P.; Alsaaod, M.; Dolf, G.; O’Brien, R.; Beer, G.; Steiner, A. A single prolonged milking interval of 24 h compromises the well-being and health of dairy Holstein cows. J. Dairy Sci. 2016, 99, 9080–9093. [Google Scholar] [CrossRef] [Green Version]
- Ford, C. Getting Started with the Pwr Package. Available online: https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html (accessed on 9 April 2020).
- O’Leary, N.; Byrne, D.T.; O’Connor, A.H.; Shalloo, L. Invited review: Cattle lameness detection with accelerometers. J. Dairy Sci. 2020, 103. [Google Scholar] [CrossRef] [Green Version]
- Schlageter-Tello, A.; Bokkers, E.A.M.; Groot Koerkamp, P.W.G.; Van Hertem, T.; Viazzi, S.; Romanini, C.E.B.; Halachmi, I.; Bahr, C.; Berckmans, D.; Lokhorst, K. Comparison of locomotion scoring for dairy cows by experienced and inexperienced raters using live or video observation methods. Anim. Welf. 2015, 24, 69–79. [Google Scholar] [CrossRef]
- Cutler, J.H.H.; Rushen, J.; De Passillé, A.M.; Gibbons, J.; Orsel, K.; Pajor, E.; Barkema, H.W. Producer estimates of prevalence and perceived importance of lameness in dairy herds with tiestalls, freestalls, and automated milking systems. J. Dairy Sci. 2017, 100, 9871–9880. [Google Scholar] [CrossRef]
- Blackie, N.; Bleach, E.C.L.; Amory, J.R.; Scaife, J.R. Associations between locomotion score and kinematic measures in dairy cows with varying hoof lesion types. J. Dairy Sci. 2013, 96, 3564–3572. [Google Scholar] [CrossRef] [Green Version]
- Pastell, M.; Tiusanen, J.; Hakojärvi, M.; Hänninen, L. A wireless accelerometer system with wavelet analysis for assessing lameness in cattle. Biosyst. Eng. 2009, 104, 545–551. [Google Scholar] [CrossRef]
- Haladjian, J.; Haug, J.; Nüske, S.; Bruegge, B. A Wearable Sensor System for Lameness Detection in Dairy Cattle. Multimodal Technol. Interact. 2018, 2, 27. [Google Scholar] [CrossRef] [Green Version]
Trial, Location, and Date | N | M0 | M1 | M2 | M3 | Breed | Behavior Analysis Period Relative to When Cows Were Mobility Scored. |
---|---|---|---|---|---|---|---|
1. A* Dairygold (1 June 2017) | 15 | 3 | 8 | 4 | 0 | Jersey | Scored morning of 1 June 2017 and pedometers attached in the evening. Next day 24-hour behavior used (2 June 2017). |
1.B* Dairygold (15 June 2017) | 16 | 2 | 8 | 5 | 1 | Jersey | Pedometers were removed a day before scoring (14 June 2017). 24-hour summary analyzed from two days before scoring (13 June 2017). |
2 Dairygold (16 June 2017) | 16 | 5 | 5 | 6 | 0 | Holstein Friesian | Scored and pedometers attached morning of 15th. The next day’s behavior analyzed (16 June 2017). |
3.A* Dairygold (8 August 2018) | 16 | 4 | 7 | 5 | 0 | Holstein Friesian | Scored in the morning and pedometers attached in the evening (8 August 2018). 24-hour summary from two days later analyzed (10 August 2018). |
3.B* Dairygold (13 August 2018) | 16 | 4 | 6 | 6 | 0 | Holstein Friesian | 24 hour summary from the same day as scoring analyzed (13 August 2018). |
4.A* Commercial farm (16 August 2018) | 15 | 5 | 3 | 7 | 0 | Holstein Friesian | Scoring and pedometers attached in the morning (15 August 2018). The next day (24-hour summary) analyzed (16 August 2018). |
4.B* Commercial farm (20 August 2018) | 15 | 6 | 3 | 6 | 0 | Holstein Friesian | Scored in the morning. 24-hour summary the day of scoring analyzed (20 August 2018). |
1.A*, 2, 3.A* and 4A* aggregated | 62 | 17 | 23 | 22 | 0 | Jersey and Holstein Friesian | |
1.B*, 2, 3.B* and 4B* aggregated | 63 | 17 | 22 | 23 | 1 | Jersey and Holstein Friesian |
Variable | 1.A Jerseys | 1.B Jerseys | 2 Holstein Friesian 2017 | 3.A Holstein Friesian 2018a | 3.B Holstein Friesian 2018b | 4.A Farm | 4.B Farm | Aggregated Dataset A Standardised Coefficients | Aggregated Dataset B Standardised Coefficients |
---|---|---|---|---|---|---|---|---|---|
n | 15 | 16 | 16 | 16 | 16 | 15 | 15 | 62 | 63 |
Sensitivity ^ | 0.53 | 0.51 | 0.51 | 0.51 | 0.51 | 0.53 | 0.53 | ~0.31 | ~0.31 |
Activity | −0.06 | −0.32 | −0.62 * | 0.03 | −0.1 | 0.28 | 0.41 | −0.28 | −0.38 * |
Laydown | −0.61 * | 0.06 | 0.22 | −0.29 | −0.03 | −0.34 | −0.03 | −0.28 † | 0.07 |
Laying Counter | −0.47 † | 0.06 | 0.21 | −0.29 | −0.11 | −0.35 | −0.04 | −0.30 * | 0.05 |
Laying Index | −0.03 | −0.06 | −0.26 | 0.33 | 0.21 | −0.28 | 0.28 | −0.05 | 0.10 |
Lay Time | −0.17 | 0.07 | −0.01 | −0.16 | −0.02 | −0.59 * | −0.09 | −0.30 † | −0.06 |
Limb Events | 0.04 | 0.07 | 0.04 | −0.02 | 0.39 | 0.75 ** | −0.03 | 0.27 | 0.13 |
Standing Counter | −0.01 | −0.21 | −0.05 | 0.03 | −0.2 | −0.15 | 0.08 | −0.08 | −0.20 |
Standing Index | −0.34 | −0.19 | −0.48 † | −0.06 | −0.01 | 0.65 * | −0.17 | −0.29 | −0.28 * |
Stand Time | 0.08 | −0.1 | 0.05 | 0.2 | 0.1 | 0.75 ** | 0.14 | 0.29 | 0.08 |
Stand Up | −0.47 † | 0.03 | −0.17 | −0.29 | −0.03 | −0.32 | −0.03 | −0.29 * | 0.04 |
Strides | 0.36 | −0.09 | −0.22 | 0.01 | −0.31 | −0.43 | 0.23 | 0.00 | −0.34 |
Walking Counter | −0.01 | −0.23 | −0.06 | 0.06 | −0.18 | −0.08 | 0.14 | −0.07 | −0.20 |
Walking Index | 0.31 | −0.5* | −0.47 † | 0.31 | 0.06 | 0.07 | 0.22 | −0.10 | −0.24 |
Walk Time | 0.42 | −0.02 | −0.27 | 0.03 | −0.36 | −0.42 | 0.19 | −0.11 | −0.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Leary, N.W.; Byrne, D.T.; Garcia, P.; Werner, J.; Cabedoche, M.; Shalloo, L. Grazing Cow Behavior’s Association with Mild and Moderate Lameness. Animals 2020, 10, 661. https://doi.org/10.3390/ani10040661
O’Leary NW, Byrne DT, Garcia P, Werner J, Cabedoche M, Shalloo L. Grazing Cow Behavior’s Association with Mild and Moderate Lameness. Animals. 2020; 10(4):661. https://doi.org/10.3390/ani10040661
Chicago/Turabian StyleO’Leary, Niall W., Daire. T. Byrne, Pauline Garcia, Jessica Werner, Morgan Cabedoche, and Laurence Shalloo. 2020. "Grazing Cow Behavior’s Association with Mild and Moderate Lameness" Animals 10, no. 4: 661. https://doi.org/10.3390/ani10040661
APA StyleO’Leary, N. W., Byrne, D. T., Garcia, P., Werner, J., Cabedoche, M., & Shalloo, L. (2020). Grazing Cow Behavior’s Association with Mild and Moderate Lameness. Animals, 10(4), 661. https://doi.org/10.3390/ani10040661