Innate Immune Responses of Skin Mucosa in Common Carp (Cyprinus Carpio) Fed a Diet Supplemented with Galactooligosaccharides
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish, Feeds, and Experimental Design
2.2. Tissue Collection and RNA Isolation
2.3. Reverse Transcription–Quantitative PCR (RT-qPCR)
2.4. Gene Selection
2.4.1. Reference Genes
2.4.2. Target Genes
2.5. Relative Quantification of Gene Expression and Statistical Analysis
3. Results
3.1. Reference Genes
3.2. Immune-Related Gene Expression
4. Discussion
4.1. mRNA Expression Stability of the Reference Genes
4.2. Immune-Related Gene Expression in Skin Mucosa
4.3. Effects of GOS in Fish
4.4. Immunomodulatory Role of GOS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, S.; Wang, Y.; Ma, J.; Ding, Y.; Zhang, S. Phosvitin plays a critical role in the immunity of zebrafish embryos via acting as a pattern recognition receptor and an antimicrobial effector. J. Biol. Chem. 2011, 286, 22653–22664. [Google Scholar] [CrossRef]
- Hawkes, J.W. The structure of fish skin—I. General organization. Cell Tissue Res. 1974, 149, 147–158. [Google Scholar] [CrossRef]
- Fast, M.; Sims, D.; Burka, J.; Mustafa, A.; Ross, N. Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 132, 645–657. [Google Scholar] [CrossRef]
- Arasu, A.; Kumaresan, V.; Sathyamoorthi, A.; Palanisamy, R.; Prabha, N.; Bhatt, P.; Roy, A.; Thirumalai, M.K.; Gnanam, A.J.; Pasupuleti, M.; et al. Fish lily type lectin-1 contains β-prism architecture: Immunological characterization. Mol. Immunol. 2013, 56, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Swain, P.; Dash, S.; Sahoo, P.; Routray, P.; Sahoo, S.; Gupta, S.; Meher, P.; Sarangi, N. Non-specific immune parameters of brood Indian major carp Labeo rohita and their seasonal variations. Fish Shellfish Immunol. 2007, 22, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Ángeles Esteban, M. An Overview of the Immunological Defenses in Fish Skin. ISRN Immunol. 2012, 2012, 1–29. [Google Scholar] [CrossRef]
- Lazado, C.C.; Caipang, C.M.A. Bacterial viability differentially influences the immunomodulatory capabilities of potential host-derived probiotics in the intestinal epithelial cells of Atlantic cod Gadus morhua. J. Appl. Microbiol. 2014, 116, 990–998. [Google Scholar] [CrossRef]
- Streilein, J.W. Skin-associated lymphoid tissues (SALT): Origins and functions. J. Invest. Dermatol. 1983, 80 Suppl, 12s–16s. [Google Scholar] [CrossRef]
- Xu, Z.; Parra, D.; Gomez, D.; Salinas, I.; Zhang, Y.-A.; von Gersdorff Jorgensen, L.; Heinecke, R.D.; Buchmann, K.; LaPatra, S.; Sunyer, J.O. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc. Natl. Acad. Sci. USA 2013, 110, 13097–13102. [Google Scholar] [CrossRef]
- Austin, B. The bacterial microflora of fish, revised. Sci. World J. 2006, 6, 931–945. [Google Scholar] [CrossRef]
- Musharrafieh, R.; Tacchi, L.; Trujeque, J.; LaPatra, S.; Salinas, I. Staphylococcus warneri, a resident skin commensal of rainbow trout (Oncorhynchus mykiss) with pathobiont characteristics. Vet. Microbiol. 2014, 169, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Boutin, S.; Bernatchez, L.; Audet, C.; Derôme, N. Antagonistic effect of indigenous skin bacteria of brook charr (Salvelinus fontinalis) against Flavobacterium columnare and F. psychrophilum. Vet. Microbiol. 2012, 155, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Carbajal-González, M.; Fregeneda-Grandes, J.; Suárez-Ramos, S.; Rodríguez Cadenas, F.; Aller-Gancedo, J. Bacterial skin flora variation and in vitro inhibitory activity against Saprolegnia parasitica in brown and rainbow trout. Dis. Aquat. Organ. 2011, 96, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Horsley, R.W. The bacterial flora of the Atlantic salmon (Salmo salar L.) in relation to its environment. J. Appl. Bacteriol. 1973, 36, 377–386. [Google Scholar] [CrossRef]
- Cahill, M.M. Bacterial flora of fishes: A review. Microb. Ecol. 1990, 19, 21–41. [Google Scholar] [CrossRef]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; O’Connor, M.P.; Rosen, G.L.; Knight, R.; Kilham, S.S.; Russell, J.A. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 2012, 21, 3363–3378. [Google Scholar] [CrossRef]
- van Kessel, M.A.H.J.; Dutilh, B.E.; Neveling, K.; Kwint, M.P.; Veltman, J.A.; Flik, G.; Jetten, M.S.M.; Klaren, P.H.M.; Op den Camp, H.J.M. Pyrosequencing of 16s rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express 2011, 1, 1–9. [Google Scholar] [CrossRef]
- Kazuñ, B.; Kazuñ, K.; Siwicki, A.K. Probiotyki, prebiotyki i synbiotyki w ochronie zdrowia ryb. Komunikaty Rybackie 2016, 4, 14–17. [Google Scholar]
- Hoseinifar, S.H.; Khalili, M.; Khoshbavar Rostami, H.; Esteban, M.Á. Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol. 2013, 35, 1416–1420. [Google Scholar] [CrossRef]
- Do Huu, H.; Jones, C.M. Effects of dietary mannan oligosaccharide supplementation on juvenile spiny lobster Panulirus homarus (Palinuridae). Aquaculture 2014, 432, 258–264. [Google Scholar] [CrossRef]
- Guerreiro, I.; Enes, P.; Rodiles, A.; Merrifield, D.; Oliva-Teles, A. Effects of rearing temperature and dietary short-chain fructooligosaccharides supplementation on allochthonous gut microbiota, digestive enzymes activities and intestine health of turbot ( Scophthalmus maximus L.) juveniles. Aquac. Nutr. 2016, 22, 631–642. [Google Scholar] [CrossRef]
- Luna-González, A.; Almaraz-Salas, J.C.; Fierro-Coronado, J.A.; Flores-Miranda, M. del C.; González-Ocampo, H.A.; Peraza-Gómez, V. The prebiotic inulin increases the phenoloxidase activity and reduces the prevalence of WSSV in whiteleg shrimp (Litopenaeus vannamei) cultured under laboratory conditions. Aquaculture 2012, 362–363, 28–32. [Google Scholar]
- Hoseinifar, S.H.; Mirvaghefi, A.; Amoozegar, M.A.; Merrifield, D.L.; Ringø, E. In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac. Nutr. 2015, 23, 111–118. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Y.; Zhang, J.; Gatlin, D.M.; Ringø, E.; Zhou, Z. Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidised oil. Br. J. Nutr. 2014, 112, 15–29. [Google Scholar] [CrossRef]
- Torrecillas, S.; Makol, A.; Benítez-Santana, T.; Caballero, M.J.; Montero, D.; Sweetman, J.; Izquierdo, M. Reduced gut bacterial translocation in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Fish Shellfish Immunol. 2011, 30, 674–681. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Collado, M.C.; Vesterlund, S.; Mazurkiewicz, J.; Salminen, S. Adhesion abilities of commensal fish bacteria by use of mucus model system: Quantitative analysis. Aquaculture 2011, 318, 33–36. [Google Scholar] [CrossRef]
- Rungrassamee, W.; Kingcha, Y.; Srimarut, Y.; Maibunkaew, S.; Karoonuthaisiri, N.; Visessanguan, W. Mannooligosaccharides from copra meal improves survival of the Pacific white shrimp (Litopenaeus vannamei) after exposure to Vibrio harveyi. Aquaculture 2014, 434, 403–410. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Ringø, E.; Shenavar Masouleh, A.; Esteban, M.Á. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: A review. Rev. Aquac. 2016, 8, 89–102. [Google Scholar] [CrossRef]
- Khalil, S.R.; Reda, R.M.; Awad, A. Efficacy of Spirulina platensis diet supplements on disease resistance and immune-related gene expression in Cyprinus carpio L. exposed to herbicide atrazine. Fish Shellfish Immunol. 2017, 67, 119–128. [Google Scholar] [CrossRef]
- Ringø, E.; Song, S.K. Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquac. Nutr. 2016, 22, 4–24. [Google Scholar] [CrossRef]
- Subramanian, S.; MacKinnon, S.L.; Ross, N.W. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 148, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, H. Carp. Yoshoku 1997, 34, 108–111. [Google Scholar]
- Metz, J.R.; Huising, M.O.; Leon, K.; Verburg-van Kemenade, B.M.L.; Flik, G. Central and peripheral interleukin-1 and interleukin-1 receptor I expression and their role in the acute stress response of common carp, Cyprinus carpio L. J. Endocrinol. 2006, 191, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, J.; Rašković, B.; Blust, R.; De Boeck, G. Exercise improves growth, alters physiological performance and gene expression in common carp (Cyprinus carpio). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2018, 226, 38–48. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, Y.; Ji, X.; Zhang, R.; Liang, T.; Du, Q.; Chang, Z. Optimal reference genes in different tissues, gender, and gonad of Yellow River carp (Cyprinus carpio var) at various developmental periods. Pak. J. Zool. 2016, 48, 1615–1622. [Google Scholar]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Dash, S.; Das, S.K.; Samal, J.; Thatoi, H.N. Epidermal mucus, a major determinant in fish health: A review. Iran. J. Vet. Res. 2018, 19, 72–81. [Google Scholar] [PubMed]
- Dawar, F.U.; Tu, J.; Xiong, Y.; Lan, J.; Dong, X.X.; Liu, X.; Khattak, M.N.K.; Mei, J.; Lin, L. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco) and Its Active Site for Chemotaxis. Int. J. Mol. Sci. 2016, 17, 1422. [Google Scholar] [CrossRef] [PubMed]
- Byadgi, O.; Chen, Y.-C.; Maekawa, S.; Wang, P.-C.; Chen, S.-C. Immune-Related Functional Differential Gene Expression in Koi Carp (Cyprinus carpio) after Challenge with Aeromonas sobria. Int. J. Mol. Sci. 2018, 19, 2107. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Sunyer, J.O.; Salinas, I. The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
- Watanuki, H.; Ota, K.; Tassakka, A.C.M.A.R.; Kato, T.; Sakai, M. Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture 2006, 258, 157–163. [Google Scholar] [CrossRef]
- Pietsch, C. Zearalenone (ZEN) and Its Influence on Regulation of Gene Expression in Carp (Cyprinus carpio L.) Liver Tissue. Toxins 2017, 9, 283. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; El Basuini, M.F.; Hossain, M.S.; Nhu, T.H.; Moss, A.S.; Dossou, S.; Wei, H. Dietary supplementation of β-glucan improves growth performance, the innate immune response and stress resistance of red sea bream, Pagrus major. Aquac. Nutr. 2017, 23, 148–159. [Google Scholar] [CrossRef]
- Song, S.K.; Beck, B.R.; Kim, D.; Park, J.; Kim, J.; Kim, H.D.; Ringø, E. Prebiotics as immunostimulants in aquaculture: A review. Fish Shellfish Immunol. 2014, 40, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Cerezuela, R.; Meseguer, J.; Esteban, A. Current Knowledge in Synbiotic Use for Fish Aquaculture: A Review. J. Aquac. Res. Dev. 2011. [Google Scholar] [CrossRef]
- Huynh, T.-G.; Shiu, Y.-L.; Nguyen, T.-P.; Truong, Q.-P.; Chen, J.-C.; Liu, C.-H. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish Shellfish Immunol. 2017, 64, 367–382. [Google Scholar] [CrossRef]
- Mo, F.; Zhao, J.; Liu, N.; Cao, L.-H.; Jiang, S.-X. Validation of reference genes for RT-qPCR analysis of CYP4T expression in crucian carp. Genet. Mol. Biol. 2014, 37, 500–507. [Google Scholar] [CrossRef]
- McCurley, A.T.; Callard, G.V. Characterization of housekeeping genes in zebrafish: Male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol. Biol. 2008, 9, 102. [Google Scholar] [CrossRef]
- Filby, A.L.; Tyler, C.R. Appropriate “housekeeping” genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol. Biol. 2007, 8, 10. [Google Scholar] [CrossRef]
- Julin, K.; Johansen, L.-H.; Sommer, A.-I. Reference genes evaluated for use in infectious pancreatic necrosis virus real-time RT-qPCR assay applied during different stages of an infection. J. Virol. Methods 2009, 162, 30–39. [Google Scholar] [CrossRef]
- Jorgensen, S.M.; Kleveland, E.J.; Grimholt, U.; Gjoen, T. Validation of Reference Genes for Real-Time Polymerase Chain Reaction Studies in Atlantic Salmon. Mar. Biotechnol. 2006, 8, 398–408. [Google Scholar] [CrossRef]
- Small, B.C.; Murdock, C.A.; Bilodeau-Bourgeois, A.L.; Peterson, B.C.; Waldbieser, G.C. Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 296–304. [Google Scholar] [CrossRef]
- Yabu, T.; Toda, H.; Shibasaki, Y.; Araki, K.; Yamashita, M.; Anzai, H.; Mano, N.; Masuhiro, Y.; Hanazawa, S.; Shiba, H.; et al. Antiviral protection mechanisms mediated by ginbuna crucian carp interferon gamma isoforms 1 and 2 through two distinct interferon gamma-receptors. J. Biochem. 2011, 150, 635–648. [Google Scholar] [CrossRef]
- Savan, R.; Aman, A.; Sakai, M. Molecular cloning of G type lysozyme cDNA in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2003, 15, 263–268. [Google Scholar] [CrossRef]
- Ellis, A.E. Immunity to bacteria in fish. Fish Shellfish Immunol. 1999, 9, 291–308. [Google Scholar] [CrossRef]
- Hicks, P.S.; Saunero-Nava, L.; Du Clos, T.W.; Mold, C. Serum amyloid P component binds to histones and activates the classical complement pathway. J. Immunol. 1992, 149, 3689–3694. [Google Scholar] [PubMed]
- Falco, A.; Cartwright, J.R.; Wiegertjes, G.F.; Hoole, D. Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). Dev. Comp. Immunol. 2012, 37, 127–138. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Ahmadi, A.; Raeisi, M.; Hoseini, S.M.; Khalili, M.; Behnampour, N. Comparative study on immunomodulatory and growth enhancing effects of three prebiotics (galactooligosaccharide, fructooligosaccharide and inulin) in common carp (Cyprinus carpio). Aquac. Res. 2017, 48, 3298–3307. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Zoheiri, F.; Dadar, M.; Rufchaei, R.; Ringø, E. Dietary galactooligosaccharide elicits positive effects on non-specific immune parameters and growth performance in Caspian white fish ( Rutilus frisii kutum ) fry. Fish Shellfish Immunol. 2016, 56, 467–472. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sharifian, M.; Vesaghi, M.J.; Khalili, M.; Esteban, M.Á. The effects of dietary xylooligosaccharide on mucosal parameters, intestinal microbiota and morphology and growth performance of Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol. 2014, 39, 231–236. [Google Scholar] [CrossRef]
- Miandare, H.K.; Farvardin, S.; Shabani, A.; Hoseinifar, S.H.; Ramezanpour, S.S. The effects of galactooligosaccharide on systemic and mucosal immune response, growth performance and appetite related gene transcript in goldfish (Carassius auratus gibelio). Fish Shellfish Immunol. 2016, 55, 479–483. [Google Scholar] [CrossRef]
- Nawaz, A.; Bakhsh javaid, A.; Irshad, S.; Hoseinifar, S.H.; Xiong, H. The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol. 2018, 76, 272–278. [Google Scholar] [CrossRef]
- Tzortzis, G.; Goulas, A.K.; Gibson, G.R. Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol. 2005, 68, 412–416. [Google Scholar] [CrossRef]
- Vulevic, J.; Juric, A.; Tzortzis, G.; Gibson, G.R. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 2013, 143, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Vulevic, J.; Drakoularakou, A.; Yaqoob, P.; Tzortzis, G.; Gibson, G.R. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am. J. Clin. Nutr. 2008, 88, 1438–1446. [Google Scholar] [PubMed]
- Depeint, F.; Tzortzis, G.; Vulevic, J.; I’Anson, K.; Gibson, G.R. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: A randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 2008, 87, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Silk, D.B.A.; Davis, A.; Vulevic, J.; Tzortzis, G.; Gibson, G.R. Clinical trial: The effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2009, 29, 508–518. [Google Scholar] [CrossRef]
- Drakoularakou, A.; Tzortzis, G.; Rastall, R.A.; Gibson, G.R. A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur. J. Clin. Nutr. 2010, 64, 146–152. [Google Scholar] [CrossRef]
- Vulevic, J.; Tzortzis, G.; Juric, A.; Gibson, G.R. Effect of a prebiotic galactooligosaccharide mixture (B-GOS®) on gastrointestinal symptoms in adults selected from a general population who suffer with bloating, abdominal pain, or flatulence. Neurogastroenterol. Motil. 2018, 30, e13440. [Google Scholar] [CrossRef]
- Slawinska, A.; Dunislawska, A.; Plowiec, A.; Radomska, M.; Lachmanska, J.; Siwek, M.; Tavaniello, S.; Maiorano, G. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery In Ovo. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Slawinska, A.; Plowiec, A.; Siwek, M.; Jaroszewski, M.; Bednarczyk, M. Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens. PLoS ONE 2016, 11, e0168899. [Google Scholar] [CrossRef]
- Siwek, M.; Slawinska, A.; Stadnicka, K.; Bogucka, J.; Dunislawska, A.; Bednarczyk, M. Prebiotics and synbiotics—In ovo delivery for improved lifespan condition in chicken. BMC Vet. Res. 2018, 14, 1–17. [Google Scholar] [CrossRef]
- Slawinska, A.; Mendes, S.; Dunislawska, A.; Siwek, M.; Zampiga, M.; Sirri, F.; Meluzzi, A.; Tavaniello, S.; Maiorano, G. Avian model to mitigate gut-derived immune response and oxidative stress during heat. Biosystems. 2019, 178, 10–15. [Google Scholar] [CrossRef]
- Slawinska, A.; Zampiga, M.; Sirri, F.; Meluzzi, A.; Bertocchi, M.; Tavaniello, S.; Maiorano, G. Impact of galactooligosaccharides delivered in ovo on mitigating negative effects of heat stress on performance and welfare of broilers. Poult. Sci. 2020, 99, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Tavaniello, S.; Slawinska, A.; Prioriello, D.; Petrecca, V.; Bertocchi, M.; Zampiga, M.; Salvatori, G.; Maiorano, G. Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress. Poult. Sci. 2020, 99, 612–619. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Composition (%) | |
---|---|---|
CON 11 | GOS 12 | |
Wheat meal | 32.8 | 30.8 |
Fish meal 1 | 12.3 | 12.3 |
Blood meal 2 | 10.0 | 10.0 |
DDGS 3 | 11.0 | 11.0 |
Soybean meal 4 | 15.0 | 15.0 |
Rapeseed meal 5 | 10.0 | 10.0 |
Fish oil 6 | 4.6 | 4.6 |
Soybean lecithin 7 | 1.0 | 1.0 |
Vitamin-mineral premix 8 | 1.5 | 1.5 |
Vitamin premix 9 | 0.1 | 0.1 |
Choline chloride | 0.2 | 0.2 |
Fodder chalk | 1.5 | 1.5 |
Prebiotic 10 | 0 | 2 |
Proximate composition (% dry matter) | ||
Crude protein | 35.06 | |
Essential amino acids (g 100 g −1 of crude protein) Arginine | 4.53 | |
Histidine | 2.80 | |
Lysine | 3.50 | |
Tryptophan | 1.04 | |
Phenylalanine + Tyrosine | 4.96 | |
Methionine + Cysteine | 1.75 | |
Threonine | 3.13 | |
Leucine | 6.72 | |
Isoleucine | 3.90 | |
Valine | 4.97 | |
Total lipid | 9.08 | |
Crude fiber | 3.93 | |
Total phosphorus | 0.83 | |
Calcium | 1.36 | |
Ash | 7.17 | |
Gross energy (MJ·kg −1) | 18.51 |
Name | Gene | NCBI Gene ID | Primer Sequences (5’→3’) | Ref |
---|---|---|---|---|
Beta-actin | ACTB | 109073280 | F:ATCCGTAAAGACCTGTATGCCA R:GGGGAGCAATGATCTTGATCTTCA | [24] |
Elongation factor 1-alpha | EF-1α | 109111735 | F:TGGAGATGCTGCCATTGT R:TGCAGACTTCGTGACCTT | [34] |
Glyceraldehyde-3-phosphate dehydrogenase-like | GAPDH | 109106399 | F:ATCTGACGGTCCGTCT R:CCAGCACCGGCATCAAA | [34] |
18S ribosomal RNA | 18s rRNA | FJ710826.1 | F:GAGTATGGTTGCAAAGCTGAAAC R:AATCTGTCAATCCTTTCCGTGTCC | [35] |
40S ribosomal protein S11 | 40s s11 | 109061205 | F:CCGTGGGTGACATCGTTACA R:TCAGGACATTGAACCTCACTGTCT | [33] |
Name | Gene | Gene ID | Function 1 | Primer Sequences (5’→3’) | Ref. 2 |
---|---|---|---|---|---|
Acute-phase protein | |||||
C-reactive protein | CRP | 109083752 | Host defense: it promotes agglutination, bacterial capsular swelling, phagocytosis, and complement fixation through its calcium-dependent binding to phosphorylcholine. | F:AGCTTTGGAAAATTCGGTTCACC R:ACTCACCCTCGTGTCACTGC | This study |
Antimicrobial peptides (AMP) | |||||
Histone H2A.V-like | His2Av | 109068402 | Main role in transcription regulation, DNA repair, DNA replication, and chromosomal stability | F:CTGGTGGAGGTGTGATTCCT R:AGCGGGAACTACACGGTCTT | This study |
Protein-glutamine gamma-glutamyltransferase 5-like | GGGT5L | 109112827 | Key role in the gamma-glutamyl cycle and maintains normal redox status | F:AGCTGCATATCATGGACGAGTT R:CTCCGCAGAACCAGAGTGCT | This study |
Cytokines | |||||
Interleukin 1 beta-like | IL1β | 109097442 | Mediator of the inflammatory response, and is involved in a variety of cellular activities, including cell proliferation, differentiation, and apoptosis | F:AAGGAGGCCAGTGGCTCTGT R:CCTGAAGAAGAGGAGGCTGTCA | [46] |
Interleukin 4 | IL4 | 109064937 | Participates in at least several B-cell activation processes as well as other cell types. It is a costimulator of DNA-synthesis. It induces the expression of class II MHC molecules on resting B-cells | F:TTTCTGGGCTGTCTGGTGCCAA R:TTTCTTGTCAGTACGGAAATGCTCA | [47] |
Interleukin 8-like | IL8 | 109085034 | Chemotactic factor that attracts neutrophils, basophils, and T-cells, but not monocytes. It is also involved in neutrophil activation. It is released from several cell types in response to an inflammatory stimulus | F:GATGCAAATGCCCTCAAATACA R:GGCTCTTGACGTTCCTTTTG | [43] |
Interleukin 10-like | IL10 | 109076801 | Major immune-regulatory cytokine that acts on many cells of the immune system where it has profound anti-inflammatory functions, limiting excessive tissue disruption caused by inflammation | F:CGCCAGCATAAAGAACTCGT R:TGCCAAATACTGCTCGATGT | [46] |
Interferon gamma | IFNγ | 109053615 | Produced by lymphocytes activated by specific antigens or mitogens | F:TGAGCTTAAAGAATGTGTGGCCCAA R:ACTCCATATGTGACGGCTTTTGGT | [47] |
Lectins | |||||
C-type lectin 4 | CLEC4M | 109066444 | Binds carbohydrates mannose and fucose | F:TCAACTGGTCAGAGGCACGA R:GAAAGGCCCACTCTTCATCGTC | This study |
Lyzosymes | |||||
Lyzosyme C | LyzC | 109090952 | Protection against pathogens | F:ATGAAGGTGACTATTGCTGTCTTG R:AGTAGGCCGTGCACACATAGTT | This study |
Lyzosyme G | LyzG | 109087581 | Protection against pathogens | F:GGCCTTCAGACGATACTTACCA R:TGGAAGCCTCGACACCCTTT | This study |
Mucins | |||||
Mucin-5AC-like | M5ACL3 (LOC109110796) | 109110796 | Forming protective mucous barriers on epithelial surfaces | F:CGATCAGTGCTATGTCCTGTCA R:ACAGTTGGGCTCACGTTTGT | This study |
Peroxidases | |||||
Myeloperoxidase-like | MPO | 109052003 | Produces hypochlorous acid from hydrogen peroxide and chloride anion during the neutrophil’s respiratory burst, oxidizes tyrosine to the tyrosyl radical using hydrogen peroxide as an oxidizing agent | F:CAACCTGGTCCACAAGGTGTAGC R:GGCAGACTGTTGTCCTGTGG | This study |
Proteases | |||||
Cathepsin B | CTSB | 109064698 | Bacteriolytic activity against fish pathogen | F:CACTGACTGGGGTGATAATGGATA R:GGTGCTCATTTCAGCCCTCCT | This study |
Cathepsin D | CTSD | 109105685 | Regulates production of parasin I | F:CGACGGCTCGCCAAAATGAG R:AGAGGAATCCGTACAATTGCGT | This study |
Oxidoreductase | |||||
Thioredoxin-like | TXNL3 (LOC109108046) | 109108046 | Cell redox homeostasis | F:GCGGGCTGCTGCTTTGACTG R:GTCGAAGGCAGGCTTATCCTCA | This study |
Reference genes | |||||
Beta-actin | ACTB | 109073280 | Actins are highly conserved proteins that are involved in cell motility, structure, integrity, and intercellular signaling | F:ATCCGTAAAGACCTGTATGCCA R:GGGGAGCAATGATCTTGATCTTCA | [24] |
40S ribosomal protein S11 | 40s s11 | 109061205 | Relation with viral mRNA translation and activation of the mRNA pathways upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | F:CCGTGGGTGACATCGTTACA R:TCAGGACATTGAACCTCACTGTCT | [33] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, E.; Mazurkiewicz, J.; Slawinska, A. Innate Immune Responses of Skin Mucosa in Common Carp (Cyprinus Carpio) Fed a Diet Supplemented with Galactooligosaccharides. Animals 2020, 10, 438. https://doi.org/10.3390/ani10030438
Pietrzak E, Mazurkiewicz J, Slawinska A. Innate Immune Responses of Skin Mucosa in Common Carp (Cyprinus Carpio) Fed a Diet Supplemented with Galactooligosaccharides. Animals. 2020; 10(3):438. https://doi.org/10.3390/ani10030438
Chicago/Turabian StylePietrzak, Elzbieta, Jan Mazurkiewicz, and Anna Slawinska. 2020. "Innate Immune Responses of Skin Mucosa in Common Carp (Cyprinus Carpio) Fed a Diet Supplemented with Galactooligosaccharides" Animals 10, no. 3: 438. https://doi.org/10.3390/ani10030438
APA StylePietrzak, E., Mazurkiewicz, J., & Slawinska, A. (2020). Innate Immune Responses of Skin Mucosa in Common Carp (Cyprinus Carpio) Fed a Diet Supplemented with Galactooligosaccharides. Animals, 10(3), 438. https://doi.org/10.3390/ani10030438