Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Editing and Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Non-Genetic Factors Affecting Milk TAA
3.3. Genetic Parameters of Milk TAA
3.4. Correlations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharabi, S.; Okun, Z.; Shpigelman, A. Changes in the shelf life stability of riboflavin, vitamin C and antioxidant properties of milk after (ultra) high pressure homogenization: Direct and indirect effects. Innov. Food Sci. Emerg. Technol. 2018, 47, 161–169. [Google Scholar] [CrossRef]
- Van Aardt, M.; Duncan, S.; Marcy, J.; Long, T.; O’Keefe, S.; Nielsen-Sims, S. Effect of Antioxidant (α-Tocopherol and Ascorbic Acid) Fortification on Light-Induced Flavor of Milk. J. Dairy Sci. 2005, 88, 872–880. [Google Scholar] [CrossRef]
- Huma, N.; Rafiq, S.; Sameen, A.; Pasha, I.; Khan, M.I. Antioxidant potential of buffalo and cow milk Cheddar cheeses to tackle human colon adenocarcinoma (Caco-2) cells. Asian-Australas. J. Anim. Sci. 2018, 31, 287–292. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.; Fausto, N.; Aster, J. Robbins and Cotran Pathologic Basis of Disease, 8th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2010. [Google Scholar]
- Grażyna, C.; Hanna, C.; Adam, A.; Magdalena, B.M. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol. 2017, 70, 165–178. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Niero, G.; De Marchi, M.; Masi, A.; Penasa, M.; Cassandro, M. Short communication: Characterization of soluble thiols in bovine milk. J. Dairy Sci. 2015, 98, 6014–6017. [Google Scholar] [CrossRef] [PubMed]
- Pihlanto, A. Antioxidative peptides derived from milk proteins. Int. Dairy J. 2006, 16, 1306–1314. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Effect of genetic type and casein haplotype on antioxidant activity of yogurts during storage. J. Dairy Sci. 2013, 96, 3435–3441. [Google Scholar] [CrossRef]
- Revilla, I.; González-Martín, M.; Vivar-Quintana, A.; Blanco-López, M.; Lobos-Ortega, I.; Hernández-Hierro, J. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy. J. Dairy Sci. 2016, 99, 5074–5082. [Google Scholar] [CrossRef]
- Chen, J.; Lindmark-Månsson, H.; Gorton, L.; Åkesson, B. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 2003, 13, 927–935. [Google Scholar] [CrossRef]
- Niero, G.; Penasa, M.; Costa, A.; Currò, S.; Visentin, G.; Cassandro, M.; De Marchi, M. Total antioxidant activity of bovine milk: Phenotypic variation and predictive ability of mid-infrared spectroscopy. Int. Dairy J. 2019, 89, 105–110. [Google Scholar] [CrossRef]
- Niero, G.; Penasa, M.; Gottardo, P.; Cassandro, M.; De Marchi, M. Short communication: Selecting the most informative mid-infrared spectra wavenumbers to improve the accuracy of prediction models for detailed milk protein content. J. Dairy Sci. 2016, 99, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bovenhuis, H. Validation strategy can result in an overoptimistic view of the ability of milk infrared spectra to predict methane emission of dairy cattle. J. Dairy Sci. 2019, 102, 6288–6295. [Google Scholar] [CrossRef] [PubMed]
- Benedet, A.; Costa, A.; De Marchi, M.; Penasa, M. Heritability estimates of predicted blood β-hydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows. J. Dairy Sci. 2020, 103, 6354–6363. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Welham, S.J.; Thompson, R. ASReml User Guide; VSN International Ltd.: Hemel Hempstead, UK, 2015. [Google Scholar]
- Tiplady, K.M.; Lopdell, T.J.; Littlejohn, M.D.; Garrick, D.J. The evolving role of Fourier-transform mid-infrared spectroscopy in genetic improvement of dairy cattle. J. Anim. Sci. Biotechnol. 2020, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Niero, G.; Penasa, M.; Currò, S.; Masi, A.; Trentin, A.; Cassandro, M.; De Marchi, M. Development and validation of a near infrared spectrophotometric method to determine total antioxidant activity of milk. Food Chem. 2017, 220, 371–376. [Google Scholar] [CrossRef]
- Niero, G.; Currò, S.; Costa, A.; Penasa, M.; Cassandro, M.; Boselli, C.; Giangolini, G.; De Marchi, M. Short communication: Phenotypic characterization of total antioxidant activity of buffalo, goat, and sheep milk. J. Dairy Sci. 2018, 101, 4864–4868. [Google Scholar] [CrossRef]
- Franzoi, M.; Niero, G.; Visentin, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Variation of Detailed Protein Composition of Cow Milk Predicted from a Large Database of Mid-Infrared Spectra. Animal 2019, 9, 176. [Google Scholar] [CrossRef]
- Gottardo, P.; Penasa, M.; Righi, F.; López-Villalobos, N.; Cassandro, M.; De Marchi, M. Fatty acid composition of milk from Holstein-Friesian, Brown Swiss, Simmental and Alpine Grey cows predicted by mid-infrared spectroscopy. Ital. J. Anim. Sci. 2017, 16, 380–389. [Google Scholar] [CrossRef]
- Interbull. National Genetic Evaluation. Available online: https://interbull.org/ib/geforms (accessed on 1 April 2020).
- Costa, A.; Lopez-Villalobos, N.; Visentin, G.; De Marchi, M.; Cassandro, M.; Penasa, M. Heritability and repeatability of milk lactose and its relationships with traditional milk traits, somatic cell score and freezing point in Holstein cows. Animal 2019, 13, 909–916. [Google Scholar] [CrossRef]
- Costa, A.; Visentin, G.; De Marchi, M.; Cassandro, M.; Penasa, M. Genetic relationships of lactose and freezing point with minerals and coagulation traits predicted from milk mid-infrared spectra in Holstein cows. J. Dairy Sci. 2019, 102, 7217–7225. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, N.A.; Buitenhuis, A.; Larsen, L. Phenotypic and genetic associations of milk traits with milk coagulation properties. J. Dairy Sci. 2015, 98, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Miglior, F.; Sewalem, A.; Jamrozik, J.; Bohmanova, J.; Lefebvre, D.; Moore, R. Genetic Analysis of Milk Urea Nitrogen and Lactose and Their Relationships with Other Production Traits in Canadian Holstein Cattle. J. Dairy Sci. 2007, 90, 2468–2479. [Google Scholar] [CrossRef]
- Calderón, F.; Chauveau-Duriot, B.; Martin, B.; Graulet, B.; Doreau, M.; Nozière, P. Variations in Carotenoids, Vitamins A and E, and Color in Cow’s Plasma and Milk During Late Pregnancy and the First Three Months of Lactation. J. Dairy Sci. 2007, 90, 2335–2346. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Wander, R.; Leonard, S.; German, B.; Traber, M.G. Removal of fat from cow’s milk decreases the vitamin E contents of the resulting dairy products. Lipids 2001, 36, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Atakisi, O.; Oral, H.; Atakisi, E.; Merhan, O.; Pancarci, S.M.; Ozcan, A.; Marasli, S.; Polat, B.; Colak, A.; Kaya, S. Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Res. Veter-Sci. 2010, 89, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Conner, E.M.; Grisham, M.B. Inflammation, free radicals, and antioxidants. Nutrition 1996, 12, 274–277. [Google Scholar] [CrossRef]
- Bae, H.; Jeong, C.H.; Cheng, W.N.; Hong, K.; Park, C.; Han, S.G. Oxidative stress-induced inflammatory responses and effects of N-acetylcysteine in bovine mammary alveolar cells. J. Dairy Res. 2017, 84, 418–425. [Google Scholar] [CrossRef]
- Costa, A.; Egger-Danner, C.; Mészáros, G.; Fuerst, C.; Penasa, M.; Sölkner, J.; Fuerst-Waltl, B. Genetic associations of lactose and its ratios to other milk solids with health traits in Austrian Fleckvieh cows. J. Dairy Sci. 2019, 102, 4238–4248. [Google Scholar] [CrossRef]
- Zanon, T.; Costa, A.; De Marchi, M.; Penasa, M.; König, S.; Gauly, M. Milk yield and quality of original brown cattle reared in Italian alpine region. Ital. J. Anim. Sci. 2020, 19, 1158–1170. [Google Scholar] [CrossRef]
- Visentin, G.; Niero, G.; Berry, D.P.; Costa, A.; Cassandro, M.; De Marchi, M.; Penasa, M. Genetic (co)variances between milk mineral concentration and chemical composition in lactating Holstein-Friesian dairy cows. Animal 2019, 13, 477–486. [Google Scholar] [CrossRef]
Trait | n | Mean | CV (%) | Minimum | Maximum |
---|---|---|---|---|---|
pTAA (mmol/L of Trolox Equivalent) | 111,653 | 7.16 | 7.51 | 5.46 | 8.76 |
Yield (kg/day) | |||||
Milk | 111,653 | 30.05 | 24.19 | 5.70 | 52.70 |
Fat | 110,754 | 1.17 | 24.89 | 0.26 | 2.10 |
Crude protein | 111,331 | 0.98 | 21.98 | 0.33 | 1.63 |
Milk composition (%) | |||||
Fat | 111,653 | 3.95 | 15.20 | 1.76 | 6.16 |
Crude protein | 111,650 | 3.29 | 9.87 | 2.18 | 4.40 |
Casein | 111,649 | 2.59 | 9.72 | 1.72 | 3.47 |
Lactose | 111,653 | 4.79 | 3.30 | 4.13 | 5.37 |
Somatic cell score (units) | 111,653 | 2.55 | 72.61 | −3.64 | 9.62 |
Protein fractions (% of crude protein) | |||||
α-casein | 111,043 | 44.24 | 7.23 | 26.84 | 59.63 |
β-casein | 109,500 | 28.66 | 14.32 | 13.80 | 53.85 |
κ-casein | 108,712 | 16.84 | 20.18 | 7.46 | 33.29 |
α-lactalbumin | 111,137 | 2.32 | 11.17 | 1.42 | 3.50 |
β-lactoglobulin | 106,896 | 8.84 | 35.51 | 1.42 | 24.42 |
Parameter | Estimate | SE |
---|---|---|
0.030 | 0.001 | |
0.008 | 0.001 | |
0.401 | 0.015 | |
0.500 | 0.006 |
Trait | rp | ra |
---|---|---|
Yield (kg/day) | ||
Milk | −0.184 (0.007) | −0.381 (0.045) |
Fat | 0.129 (0.006) | 0.366 (0.049) |
Crude protein | 0.092 (0.007) | 0.238 (0.052) |
Milk composition (%) | ||
Fat | 0.407 (0.006) | 0.616 (0.022) |
Crude protein | 0.610 (0.005) | 0.754 (0.015) |
Casein | 0.589 (0.005) | 0.733 (0.016) |
Lactose | −0.039 (0.009) | 0.040 (0.030) |
Somatic cell score (units) | 0.086 (0.006) | 0.109 (0.057) |
Protein fractions (% of crude protein) | ||
α-casein | 0.232 (0.007) | 0.191 (0.032) |
β-casein | 0.153 (0.007) | 0.243 (0.016) |
κ-casein | 0.078 (0.007) | 0.173 (0.016) |
α-lactalbumin | 0.000 (0.000) | 0.000 (0.000) |
β-lactoglobulin | 0.006 (0.001) | 0.000 (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niero, G.; Costa, A.; Franzoi, M.; Visentin, G.; Cassandro, M.; De Marchi, M.; Penasa, M. Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows. Animals 2020, 10, 2372. https://doi.org/10.3390/ani10122372
Niero G, Costa A, Franzoi M, Visentin G, Cassandro M, De Marchi M, Penasa M. Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows. Animals. 2020; 10(12):2372. https://doi.org/10.3390/ani10122372
Chicago/Turabian StyleNiero, Giovanni, Angela Costa, Marco Franzoi, Giulio Visentin, Martino Cassandro, Massimo De Marchi, and Mauro Penasa. 2020. "Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows" Animals 10, no. 12: 2372. https://doi.org/10.3390/ani10122372
APA StyleNiero, G., Costa, A., Franzoi, M., Visentin, G., Cassandro, M., De Marchi, M., & Penasa, M. (2020). Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows. Animals, 10(12), 2372. https://doi.org/10.3390/ani10122372