
animals

Article

Genetic and Non-Genetic Variation of Milk Total
Antioxidant Activity Predicted from Mid-Infrared
Spectra in Holstein Cows

Giovanni Niero 1 , Angela Costa 1,* , Marco Franzoi 1 , Giulio Visentin 2 ,
Martino Cassandro 1, Massimo De Marchi 1 and Mauro Penasa 1

1 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE),
University of Padova, Viale dell’Università 16, 35020 Padova, Italy; g.niero@unipd.it (G.N.);
marco.franzoi89@gmail.com (M.F.); martino.cassandro@unipd.it (M.C.);
massimo.demarchi@unipd.it (M.D.M.); mauro.penasa@unipd.it (M.P.)

2 Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum—University of Bologna,
Via Tolara di Sopra 50, 40064 Bologna, Italy; giulio.visentin@unibo.it

* Correspondence: angela.costa@unipd.it; Tel.: +39-049-8272632

Received: 6 November 2020; Accepted: 9 December 2020; Published: 10 December 2020
����������
�������

Simple Summary: The total antioxidant activity (TAA) of food is important for human health
and results from the contribution of different nutraceutical compounds. Direct determination of
TAA in food is time-consuming and expensive. Infrared technologies allow the prediction of
difficult-to-measure traits with certain accuracy in several organic matrices, including TAA of bovine
milk. In order to understand the background of TAA and identify potential strategies to improve this
feature in bovine milk, we explored its non-genetic sources of variation and estimated heritability
and correlations with traits of economic interest in a large database of Holstein cows.

Abstract: Food antioxidants enhance products shelf life and stability during technological treatments
through the maintenance of their physical and chemical properties. Moreover, they are endowed
with several positive effects on human health, including cell membranes preservation, enzyme
functionality, and DNA integrity. Milk has been described in relation to a wide array of fat soluble
and water-soluble antioxidant compounds, in particular vitamin A, C, and E, lactoferrin and peptides
derived from casein and whey proteins. The total antioxidant activity (TAA) of milk is a novel
and scarcely explored trait, defined as the sum of antioxidant contributions of the aforementioned
compounds. On this background, the aims of the present study were to investigate the variability of
milk TAA on a large scale exploiting predictions obtained through mid-infrared (MIR) spectroscopy
and to estimate genetic parameters of this trait in Holstein cows. Individual milk samples were
collected between January 2011 and December 2018 during the routine milk recording procedure.
Samples were analysed for gross composition through MIR spectroscopy and MIR spectra were
stored. Milk TAA was then predicted (pTAA) from the stored milk MIR spectra (111,653 test-day
records of 9519 cows in 344 herds) using the previously developed prediction model; considering
the prediction accuracy, pTAA might be considered a proxy of the TAA determined through the
reference method. Overall, pTAA averaged 7.16 mmoL/L of Trolox equivalents, showed a nadir
around 40 days after calving and increased thereafter, following a linear trend up to the end of
lactation. The lowest pTAA was observed in milk sampled from June to September. Milk pTAA was
heritable (0.401 ± 0.015) and genetically associated to fat yield (0.366 ± 0.049), crude protein (CP)
yield (0.238 ± 0.052), fat percentage (0.616 ± 0.022) and CP percentage (0.754 ± 0.015). The official
selection index of Italian Holstein put the 49% of the emphasis on fat and protein yield and percentage;
therefore, it derives that an indirect favourable selection for milk pTAA should be already in progress
in Italian Holstein population.
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1. Introduction

Milk and dairy antioxidants have been attracting the attention of scientific community for their
technological implications in the food industry and their importance for human health through the daily
diet. Antioxidants are involved in the maintenance of physical properties and chemical composition of
dairy products, especially during milk technological treatments (e.g., pasteurization), cheese ripening,
and milk and cheese shelf life [1], and they exert a central role in the prevention of milk off-flavours,
by protecting lipids from auto-oxidation [2]. Moreover, dietary antioxidants have been described for
their activity towards the neutralisation of free radicals and reactive oxygen species, and thus for their
positive effects on human health [3]. Reactive oxygen species lead to several injuries at cytological and
molecular levels, with particular regard to cell membrane lipid peroxidation, DNA cleavage, alteration
of protein folding, and enzymes inactivation [4]. Among the negative effects of oxidative stress,
the increased risk of clinical diseases stands out, particularly atherosclerosis, rheumatoid arthritis,
diabetes, and some forms of cancer.

Milk antioxidants include a wide array of free radical scavenging molecules. In this respect,
conjugated linoleic acids have been described empirically as one of the most bioactive antioxidant
compounds in milk fat, even if the biochemical mechanisms responsible for this physiological effect
remain uncertain [5]. Moreover, milk fat globules contain several antioxidant vitamins, mainly vitamin A
(retinol), vitamin A precursor (β-carotene), and vitamin E (tocopherols) [5]. The most important
hydrophilic antioxidants in milk include vitamin C (ascorbate) [6], low molecular weight thiols [7],
whey proteins (particularly lactoferrin), and peptides derived from whey protein hydrolysis or
fermentation [8]. Caseins have also shown antioxidant activity; in particular, the effectiveness of
caseins as antioxidant compounds has been associated to the specific composition in amino acids and
thus to different genetic variants [9], cheese ripening progression [10], and hydrolysis and fermentation
rates [8].

Milk total antioxidant activity (TAA) has been defined as the sum of antioxidant contribution
of the aforementioned molecules and compounds [11]. Milk TAA can be measured in a colorimetric
reaction monitored through a spectrophotometric assay and is quantified as Trolox equivalents (TEs),
where Trolox ([±]-6-hydroxy-2,5,7,8-tetra-methylchoromane-2-carboxylic acid) is a synthetic antioxidant
used in laboratory for analytical purposes [11]. Sources of phenotypic variation for milk TAA have
been recently investigated by Niero el al. [12], who measured TAA through the spectrophotometric
reference method in milk of Holstein (HO) cows. The same authors assessed the ability of mid-infrared
(MIR) spectroscopy to predict this novel phenotype.

To our knowledge, no studies have investigated the phenotypic and genetic aspects of milk TAA
at population level because phenotyping through reference analysis is costly and time-consuming.
Predictions obtained from milk spectra can be feasibly exploited, since MIR-predicted TAA (pTAA)
can be considered a proxy of the real milk TAA. The aims of the present study were to (i) investigate
non-genetic factors of pTAA and (ii) estimate its genetic parameters and correlations with milk yield
traits, composition, somatic cell score (SCS), and detailed protein fractions in a large database of Italian
HO cows.

2. Materials and Methods

2.1. Data

A total of 473,816 milk samples of 23,450 HO cows were collected between January 2011 and
December 2018 during the monthly official milk recording scheme. Test-day milk yield (kg/day),
days in milk (DIM), parity, and herd of animals were provided by the Breeders Association of Bolzano
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Province (Bolzano, Italy). Immediately after collection, milk samples (50 mL) were added with 200 µL
of preservative (Bronysolv; ANA.LI.TIK Austria, Vienna, Austria) and analysed in the laboratory of the
South Tyrolean Dairy Association (Bolzano, Italy) for fat, crude protein (CP), casein (CN), and lactose
percentages using MilkoScan FT6000 or MilkoScan FT7 (FOSS, Hillerød, Denmark). To ensure the
comparability of spectra, MilkoScan FT6000 and MilkoScan FT7 were routinely calibrated using
standard samples, as recommended by manufacturer instructions. Moreover, a principal component
analysis on spectra was performed and did not show significant differences between the 2 instruments.
Test-day fat and CP yields (kg/day) were calculated from milk yield and fat and CP percentages,
and milk somatic cell count (SCC, cells/µL) was determined through Fossomatic 5500 (FOSS, Hillerød,
Denmark) and transformed to SCS using the formula SCS = 3 + log2(SCC/100).

For each milk sample, spectral information containing 1060 infrared transmittance data in the
region between 5000 and 900 cm−1 were stored and used for a posteriori prediction of milk detailed
protein composition (% of CP) and TAA (mmoL/L TE), since these phenotypes are not routinely
determined in milk laboratories during official milk testing procedures. Detailed protein composition
was predicted from milk MIR spectra using prediction models developed by Niero et al. [13]; in particular,
the coefficients of determination of the models in cross validation were 0.88, 0.60, 0.74, 0.37, and 0.47,
and ratios of performance to deviation were 2.86, 1.60, 2.03, 1.30, and 1.34 for α-casein, β-casein,
κ-casein, α-lactalbumin, and β-lactoglobulin, respectively. Regarding milk TAA, this new phenotype
was predicted from milk MIR spectra using the prediction model developed by Niero et al. [12] and
thus full details on samples collection, analytical reference method, and the procedure to develop the
model for TAA can be retrieved from those authors. Briefly, 1249 individual milk samples of HO cows
were analysed for TAA through the reference spectrophotometric method and the prediction model
was developed on the same dataset using partial least squares regression analysis. The coefficient
of determination in cross validation was 0.46 and the ratio of performance to deviation was 1.30.
According to the most recent literature [14,15], models with similar fitting statistics have been reported
for other traits and have been considered enough accurate for screening and genetic purposes on
a large scale. The Mahalanobis distance between the data point (spectrum) and the centroid of spectra
included in the calibration set was used to identify and remove spectral outliers from the dataset.
Finally, pTAA values outside the range of the reference data used for calibrations [12] were discarded
from the dataset.

2.2. Editing and Statistical Analysis

Lactations outside the range 5 to 305 DIM and with less than 5 test-day records were discarded
from the dataset. Contemporary groups were defined as cows sampled in the same herd-test-date
(HTD), and only HTD with at least 5 cows were retained. Cows that changed herd during the
investigated period and those with unknown parents were removed from the data. Finally, values of
milk pTAA, yield and composition traits, SCS, and protein fractions that deviated more than 3 standard
deviations from the respective mean were treated as missing. The final dataset included 111 653 records
of 9519 cows in 344 herds.

A linear model was imputed in ASReml v4.1 [16] to estimate least squares means of fixed effects
and genetic parameters; in particular, variance and covariance components were obtained through
univariate and bivariate analyses, respectively:

yijklmn = µ + Parityi + DIMj + HTDk + Cowl + Animalm + eijklmn (1)

where yijklmn is the investigated trait; µ is the overall intercept of the model; Parityiis the fixed effect of
the ith parity of the cow (i = 1 to 5, with class 5 including parities ≤ 14); DIMjis the fixed effect of the
jth class of DIM of the cow (j = 1 to 30, each class being 10 d wide); HTDkis the fixed effect of the kth
contemporary group (k = 1 to 10 504); Cowl is the random permanent environmental effect of the lth
cow (l = 1 to 9519) ~N(0, Iσ2

w), where I is an identity matrix of appropriate order and σ2
w is the permanent
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environmental variance; Animalm is the random additive genetic effect of the mth animal ~N(0, Aσ2
a),

where A is the additive genetic relationship matrix and σ2
a is the additive genetic variance; and eijklmn

is the random residual effect ~N(0, Iσ2
e ), where σ2

e is the residual variance. The matrix A included
cows with phenotypic information (n = 9519) and six generations of ancestors (i.e., 31,645 animals in
total). A multiple comparison of least squares means of pTAA for the fixed effects was performed
using Bonferroni’s post-hoc test (p < 0.05).

The phenotypic variance (σ2
p) was derived by summing up σ2

w, σ2
a , and σ2

e . Heritability (h2),
repeatability (t), and phenotypic (rp) and genetic correlations (ra) were calculated from variance and
covariance components as:

h2 =
σ2

a

σ2
a + σ2

w + σ2
e

, t =
σ2

a + σ2
w

σ2
a + σ2

w + σ2
e

, rp =
σp12√
σ2

p1 ∗ σ
2
p2

, and ra =
σa12√
σ2

a1 ∗ σ
2
a2

, (2)

where σp12 and σa12 are the phenotypic and the additive genetic covariances between trait 1 and
trait 2; σ2

p1 and σ2
p2 are the phenotypic variances of traits 1 and 2; and σ2

a1 and σ2
a2 are the additive

genetic variances of traits 1 and 2. To estimate least squares means of calendar month and year of
sampling, a supplementary analysis was performed with the same model but excluding the effect of
HTD and adding month and year of sampling as fixed effects. Finally, Pearson correlations between
sires’ estimated breeding value (EBV) of the traits with accuracy ≥0.65 were assessed.

3. Results and Discussion

Overall, MIRS equations used to predict milk TAA and detailed protein composition are
characterised by moderate to low accuracies, with particular regard to the coefficient of determination
in cross validation. Such fitting statistics suggest that prediction models are not adequate for analytical
purposes (e.g., precise determination of TAA on a single milk sample or even on a batch of milk samples).
Still, moderate to low accuracies are considered adequate for screening purposes at population level,
and to estimate genetic parameters on repeated observations within single animal. Both these aspects
are also known to be associated with a reduction of standard error of the predicted trait [14,15].
Literature shows that moderately accurate MIRS predictions can be successfully used to generate
genetic parameters and derive EBV that are highly correlated to the EBV of the actual (measured)
phenotype [17].

3.1. Descriptive Statistics

Milk pTAA averaged 7.16 mmol/L TE and ranged from 5.46 to 8.76 mmol/L TE (Table 1).
The average pTAA was maximum and minimum in second- (7.19 mmol/L TE) and first-parity cows
(7.13 mmol/L TE), respectively. These values are consistent with results reported by Niero et al. [18],
who measured TAA on different types of commercial milk, and slightly greater than values obtained
by Niero et al. [12], who measured TAA using the reference spectrophotometric method on 1249 milk
samples of HO cows.

The average pTAA of the present study was faintly greater than TAA measured in goat
(6.80 mmol/L TE) and lower than TAA measured in buffalo (7.35 mmol/L TE) and sheep milk
(7.78 mmol/L TE) [19]. It is likely that TAA mirrors the specific milk composition of these dairy species,
with specific regard to fat, protein, and CN percentage. In fact, the relatively low TAA of cow and
goat milk could be associated to a lower fat, protein, and CN percentage; on the other hand, high TAA
(buffalo and sheep milk) is correlated with greater milk solids content. The coefficient of variation
of pTAA (7.51%) was lower than that of fat, CP, and CN percentage, and greater than that of lactose
percentage (Table 1). In general, coefficients of variation observed in the present study were lower
than those obtained by Niero et al. [12], likely due to the different sample size and, in the case of TAA,
to the methods to determine this trait.
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Table 1. Mean, coefficient of variation (CV), minimum and maximum of bovine milk predicted total
antioxidant activity (pTAA), yield and composition traits, somatic cell score, and protein fractions.

Trait n Mean CV (%) Minimum Maximum

pTAA (mmol/L of Trolox Equivalent) 111,653 7.16 7.51 5.46 8.76

Yield (kg/day)

Milk 111,653 30.05 24.19 5.70 52.70
Fat 110,754 1.17 24.89 0.26 2.10

Crude protein 111,331 0.98 21.98 0.33 1.63

Milk composition (%)

Fat 111,653 3.95 15.20 1.76 6.16
Crude protein 111,650 3.29 9.87 2.18 4.40

Casein 111,649 2.59 9.72 1.72 3.47
Lactose 111,653 4.79 3.30 4.13 5.37

Somatic cell score (units) 111,653 2.55 72.61 −3.64 9.62

Protein fractions (% of crude protein)

α-casein 111,043 44.24 7.23 26.84 59.63
β-casein 109,500 28.66 14.32 13.80 53.85
κ-casein 108,712 16.84 20.18 7.46 33.29

α-lactalbumin 111,137 2.32 11.17 1.42 3.50
β-lactoglobulin 106,896 8.84 35.51 1.42 24.42

3.2. Non-Genetic Factors Affecting Milk TAA

All the fixed effects included in the statistical model (i.e., parity, DIM, and calendar month and
year of sampling) were significant in explaining the variation of milk pTAA. The pTAA differed
(p < 0.001) between first- (7.01 mmol/L TE) and second-parity cows (7.08 mmol/L TE; Figure 1).
In general, pTAA slightly decreased from second parity onward. The same trend was observed by
Franzoi et al. [20] for CP percentage, as well as for α-casein, β-casein, κ-casein, and α-lactalbumin.
This comparison supports the hypothesis that protein, CN, and whey proteins contribute to milk
TAA [8–10]. Milk pTAA decreased from 7.22 to 6.83 mmol/L TE when moving from 10 to 40 DIM and
increased thereafter up to 7.18 mmol/L TE at the end of lactation (Figure 1). This trend is opposite to
that of milk yield, leaving room for the hypothesis of a dilution effect. In fact, the lactation curve of
milk pTAA (Figure 1) resembled that of CP percentage and its fractions [20] and fat percentage [21].
Considering the effect of month of sampling, milk collected in summer had lower pTAA than milk
sampled in other seasons. In particular, the lowest pTAA was obtained for milk collected in June
(6.77 mmol/L TE) and the greatest for milk collected in November (7.25 mmol/L TE), December and
January (7.27 mmol/L TE). The impact of month of sampling on milk pTAA could be the result of
management practices throughout the year, like the practicing of extensive pasture from late spring to
the end of summer, that has been associated to an overall reduction of protein [20] and fat [21] content
in bovine milk.
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Figure 1. Least squares means of bovine milk predicted total antioxidant activity (pTAA) expressed
as mmol/L of Trolox equivalents (TEs) for the fixed effects of (A) parity (SE < 0.008), (B) days in milk
(DIM; SE < 0.009), and (C) month of sampling (SE < 0.015).

3.3. Genetic Parameters of Milk TAA

Heritability of pTAA (0.401 ± 0.015; Table 2) was intermediate between h2 of fat percentage
(0.358 ± 0.015) and CP percentage (0.472 ± 0.017). This was somehow expected, since TAA is the direct
combination of the antioxidant actions of several milk compounds, mainly contained in fat and protein,
and it is reasonable to assume that it is predicted from the same spectral regions of fat and protein [12].
To our knowledge, this is the first study that estimated genetic parameters of pTAA in bovine milk and
thus the comparison with the literature was not possible. Nevertheless, h2 of pTAA was in line with h2

of fat and protein percentage for HO cattle worldwide [22], particularly in Italy [23,24], Denmark [25],
and Canada [26]. Similarly, the repeatability of TAA (Table 2) was between that of fat percentage
(0.468 ± 0.006) and CP percentage (0.622 ± 0.005). Despite the moderate h2, the coefficient of genetic
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variation of pTAA was low (2.42%); this would make direct selection for this trait challenging in dairy
cattle, as it has been reported for lactose percentage [23,24], a trait with coefficient of genetic variation
similar to pTAA.

Table 2. Additive genetic variance (σ2
a), cow permanent environmental variance (σ2

w), heritability (h2),
and repeatability (t) of bovine milk total antioxidant activity.

Parameter Estimate SE

σ 2
a 0.030 0.001
σ 2

w 0.008 0.001
h2 0.401 0.015
t 0.500 0.006

3.4. Correlations

The negative association between milk yield and pTAA at phenotypic level (rp = −0.184 ± 0.007)
highlighted that high producing cows were characterised by relatively lower milk TAA than less
producing animals, supporting the previously discussed hypothesis of a dilution effect. In addition,
there was a negative ra between the two traits, which indicates that genetic selection focused only on
milk yield would be detrimental for milk pTAA in the long term (Table 3).

Table 3. Phenotypic (rp) and genetic (ra) correlations of bovine milk predicted total antioxidant activity
with yield and composition traits, somatic cell score, and protein fractions. Standard errors are given
in parentheses.

Trait rp ra

Yield (kg/day)

Milk −0.184 (0.007) −0.381 (0.045)
Fat 0.129 (0.006) 0.366 (0.049)

Crude protein 0.092 (0.007) 0.238 (0.052)

Milk composition (%)

Fat 0.407 (0.006) 0.616 (0.022)
Crude protein 0.610 (0.005) 0.754 (0.015)

Casein 0.589 (0.005) 0.733 (0.016)
Lactose −0.039 (0.009) 0.040 (0.030)

Somatic cell score (units) 0.086 (0.006) 0.109 (0.057)

Protein fractions (% of crude protein)

α-casein 0.232 (0.007) 0.191 (0.032)
β-casein 0.153 (0.007) 0.243 (0.016)
κ-casein 0.078 (0.007) 0.173 (0.016)

α-lactalbumin 0.000 (0.000) 0.000 (0.000)
β-lactoglobulin 0.006 (0.001) 0.000 (0.000)

As regards milk gross composition, the strongest correlations were assessed between pTAA and CP
percentage (rp = 0.610 ± 0.005 and ra = 0.754 ± 0.015), and TAA and CN percentage (rp = 0.589 ± 0.005
and ra = 0.733 ± 0.016), whereas pTAA and lactose percentage were unrelated (Table 3). Lactose is the
main sugar in mammals’ milk and the most abundant solid in bovine milk [23]; although it contributes
to milk nutritional value, higher lactose percentage does not translate into a greater milk TAA for
chemical and biological reasons [23]. Fat percentage was moderately associated with MIR-predicted
TAA, both phenotypically (rp = 0.407 ± 0.006) and genetically (ra = 0.616 ± 0.005). These favourable
relationships were somewhat expected since milk fat contains a relevant number of antioxidant
compounds such as molecules belonging to vitamin A and vitamin E families [27]. Thus, it is likely that
an increase of milk fat percentage would result in an increase of fat-soluble antioxidant content [28].
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In particular, a simultaneous increase of milk conjugated linoleic acids is expected to increase milk
TAA. The rp between pTAA and fat percentage was considerably greater than the estimate (0.13)
reported by Niero et al. [12], who calculated Pearson correlations using milk TAA measured with the
reference method. All CN fractions were positively, despite weakly, related to pTAA; in particular,
the strongest genetic and phenotypic associations were estimated with α-CN and β-CN, respectively.
The lack of association of pTAA with α-lactalbumin and β-lactoglobulin (Table 3) indicated that
changes in milk whey proteins do not affect pTAA and that caseins are mostly responsible for the
protein antioxidant effect.

Weak relationships were estimated between pTAA and SCS (rp = 0.086 ± 0.006 and
ra = 0.109 ± 0.057), meaning that, on average, antioxidant compounds are more abundant in milk with
greater SCS. Atakisi et al. [29] observed that subclinical mastitis causes oxidative alteration of cow milk
and increases the production of nitric oxide radical species. The strong development of free radicals
may result in amplified antioxidant response by mammary gland cells [30,31], which explains the
positive relationship between pTAA and SCS. Finally, it is worth considering that SCS is usually weakly
positively related to fat and protein percentages in cattle at both genetic and phenotypic level [23,32,33];
therefore, positive, despite weak, relationships between SCS and TAA were somehow expected.

Pearson correlations between sires’ EBV of pTAA and EBV of other traits are depicted in Figure 2.
Overall, the estimates mirrored the rp and ra (Table 3) and confirmed pTAA to be related to fat and
CP, more as percentage than yield. Similarly to rp and ra, the correlation between EBV for pTAA
and EBV for milk yield was negative and moderately weak (Figure 2). Considering that the official
selection index of the Italian HO gives a null weight to milk yield but emphasises protein and fat yields
and percentages (overall, they account for 49% of the weight in the total merit index) [22], it can be
reasonably assumed that pTAA is currently subjected to indirect favourable selection in this population.
Further research on pTAA, as for other traits of interest for human health, could be also exploited to
maximize milk and dairy products added value [34].

Animals 2020, 10, x 8 of 11 

weakly positively related to fat and protein percentages in cattle at both genetic and phenotypic 
level [23,32,33]; therefore, positive, despite weak, relationships between SCS and TAA were 
somehow expected. 

Pearson correlations between sires’ EBV of pTAA and EBV of other traits are depicted in Figure 
2. Overall, the estimates mirrored the rp and ra (Table 3) and confirmed pTAA to be related to fat and
CP, more as percentage than yield. Similarly to rp and ra, the correlation between EBV for pTAA and
EBV for milk yield was negative and moderately weak (Figure 2). Considering that the official
selection index of the Italian HO gives a null weight to milk yield but emphasises protein and fat
yields and percentages (overall, they account for 49% of the weight in the total merit index) [22], it
can be reasonably assumed that pTAA is currently subjected to indirect favourable selection in this
population. Further research on pTAA, as for other traits of interest for human health, could be also
exploited to maximize milk and dairy products added value [34].

Figure 2. Pearson correlations (p < 0.001) between sires’ estimated breeding value (EBV; n = 442, 
accuracy ≥ 0.65) of bovine milk predicted total antioxidant activity (pTAA) expressed as mmol/L of 
Trolox equivalent (TE) and EBV of other traits. ns = not significant. 

4. Conclusions

The present study investigated the non-genetic variation of MIR-predicted milk TAA and 
estimated its h2 and correlations with yield and quality traits of HO cows. Milk pTAA was 
maximum in second-parity cows, exhibited a pattern across lactation that resembled that of fat and 
CP percentages, and varied across months of sampling, with the lowest values in summer and the 
greatest in winter. Genetic analysis revealed that milk pTAA had heritability comparable to that of 
fat and CP percentages, but lower genetic variation. Correlations of pTAA with milk yield were 
negative, whereas those with fat and CP were positive. Considering the low genetic variation of 

Figure 2. Pearson correlations (p < 0.001) between sires’ estimated breeding value (EBV; n = 442,
accuracy ≥ 0.65) of bovine milk predicted total antioxidant activity (pTAA) expressed as mmol/L of
Trolox equivalent (TE) and EBV of other traits. ns = not significant.



Animals 2020, 10, 2372 9 of 11

4. Conclusions

The present study investigated the non-genetic variation of MIR-predicted milk TAA and
estimated its h2 and correlations with yield and quality traits of HO cows. Milk pTAA was maximum in
second-parity cows, exhibited a pattern across lactation that resembled that of fat and CP percentages,
and varied across months of sampling, with the lowest values in summer and the greatest in winter.
Genetic analysis revealed that milk pTAA had heritability comparable to that of fat and CP percentages,
but lower genetic variation. Correlations of pTAA with milk yield were negative, whereas those with
fat and CP were positive. Considering the low genetic variation of pTAA and that the official selection
index of Italian HO includes both yields and percentages of fat and protein, an indirect improvement
of milk pTAA is in progress.
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