In Vitro Antibacterial Activity of Manuka (Leptospermum scoparium J.R. et G. Forst) and winter Savory (Satureja montana L.) Essential Oils and Their Blends against Pathogenic E. coli Isolates from Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Essential Oils and Blends Employed in the Trials
2.3. Gas Chromatography–Electron Impact Mass Spectrometry
2.4. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of EOs Alone and in Blends
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Taylor, D.J. (Ed.) Pig Diseases, 9th ed.; North Birbiston Road: Lennoxtown, UK, 2013; ISBN 9780950693286. [Google Scholar]
- Abubakar, R.H.; Madoroba, E.; Adenubi, O.; Morar-Leather, D.; Fasina, F.O. Bacterial pathogens of pigs with particular reference to Escherichia coli: A systematic review and meta-analysis. J. Vet. Med. Anim. Health 2017, 9, 159–185. [Google Scholar]
- Fairbrother, J.M.; Gyles, C.L. Colibacillosis. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 723–747. ISBN 081381703X. [Google Scholar]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Gao, S.; Jiao, X.; Liu, X.F. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhoea in eastern China. Vet. Microbiol. 2004, 103, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Lomsadze, A.; Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010, 38, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Kim, S.W. Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Anim. Nutr. 2017, 3, 322–330. [Google Scholar] [CrossRef]
- Gyles, C.L.; Fairbrother, J.M. Escherichia coli. In Pathogenesis of Bacterial Infections in Animals; Wiley-Blackwell: Oxford, UK, 2010; pp. 267–308. [Google Scholar]
- Cocchi, M.; Di Giusto, T.; Toson, M.; Deotto, S.; Ustulin, M.; Conedera, G.; Vio, D. Biofilm formation, production of cellulose and curli fimbriae in Escherichia coli strains isolated during edema disease of swine. Large Anim. Rev. 2017, 23, 55–58. [Google Scholar]
- Unterweger, C.; Kahler, A.; Gerlach, G.F.; Viehmann, M.; Von Altrock, A.; Hennig-Pauka, I. Administration of non-pathogenic isolates of Escherichia coli and Clostridium perfringens type A to piglets in a herd affected with a high incidence of neonatal diarrhoea. Animal 2017, 11, 670–676. [Google Scholar] [CrossRef] [Green Version]
- Thormar, H. (Ed.) Lipids and Essential Oils as Antimicrobial Agents; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; ISBN 9780470976623. [Google Scholar]
- Thacker, P.A. Alternatives to antibiotics as growth promoters for use in swine production: A review. J. Anim. Sci. Biotechnol. 2013, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Fratini, F.; Casella, S.; Leonardi, M.; Pisseri, F.; Ebani, V.V.; Pistelli, L.; Pistelli, L. Antibacterial activity of essential oils, their blends and mixtures of their main constituents against some strains supporting livestock mastitis. Fitoterapia 2014, 96, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.R.; Shokri, H.; Fahimirad, S. Efficacy of medicinal essential oils against pathogenic Malassezia sp. isolates. J. Mycol. Med. 2016, 26, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Turchi, B.; Mancini, S.; Pistelli, L.; Najar, B.; Cerri, D.; Fratini, F. Sub-inhibitory stress with essential oil affects enterotoxins production and essential oil susceptibility in Staphylococcus aureus. Nat. Prod. Res. 2018, 32, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Skočibušić, M.; Bezić, N. Chemical composition and antidiarrhoeal activities of winter savory (Satureja montana L.) essential oil. Pharm. Biol. 2003, 41, 622–626. [Google Scholar] [CrossRef]
- Panizzi, L.; Flamini, G.; Cioni, P.L.; Morelli, I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J. Ethnopharmacol. 1993, 39, 167–170. [Google Scholar] [CrossRef]
- Bezić, N.; Skočibušić, M.; Dunkić, V. Antimicrobial effect of Satureja cuneifolia Ten. essential oil. Acta Botanica Croatica 1999, 58, 99–104. [Google Scholar]
- Porter, N.G.; Wilkins, A.L. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 1999, 50, 407–415. [Google Scholar] [CrossRef]
- Douglas, M.H.; Van Klink, J.W.; Smallfield, B.M.; Perry, N.B.; Anderson, R.E.; Johnstone, P.; Weavers, R.T. Essential oils from New Zealand manuka: Triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 2004, 65, 1255–1264. [Google Scholar] [CrossRef]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef]
- Ørskov, F.; Ørskov, I. 2 Serotyping of Escherichia coli. In Methods in Microbiology; Elsevier: Amsterdam, The Netherlands, 1984; pp. 43–112. [Google Scholar]
- Blanco, M.; Blanco, J.E.; Gonzalez, E.A.; Mora, A.; Jansen, W.; Gomes, T.A.T.; Zerbini, L.F.; Yano, T.; De Castro, A.F.; Blanco, J.; et al. Genes coding for enterotoxins and verotoxins in porcine Escherichia coli strains belonging to different O:K:H serotypes: Relationship with toxic phenotypes. J. Clin. Microbiol. 1997, 35, 2958–2963. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. v7.1; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2017. [Google Scholar]
- Pistelli, L.; Najar, B.; Giovanelli, S.; Lorenzini, L.; Tavarini, S.; Angelini, L.G. Agronomic and phytochemical evaluation of lavandin and lavender cultivars cultivated in the Tyrrhenian area of Tuscany (Italy). Ind. Crop. Prod. 2017, 109, 37–44. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Mancini, S.; Turchi, B.; Sparagni, D.; Al-Gwad, A.A.; Najar, B.; Pistelli, L.; Cerri, D.; Pedonese, F. Antimicrobial activity of three essential oils (cinnamon, manuka, and winter savory), and their synergic interaction, against Listeria monocytogenes. Flavour Fragr. J. 2019, 34, 339–348. [Google Scholar] [CrossRef]
- Jeong, E.Y.; Lee, M.J.; Lee, H.S. Antimicrobial activities of leptospermone isolated from Leptospermum scoparium seeds and structure–activity relationships of its derivatives against foodborne bacteria. Food Sci. Biotechnol. 2018, 27, 1541–1547. [Google Scholar] [CrossRef]
- Weston, R. Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem. 2000, 70, 427–435. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.; Barbieri, R.; Silva, A.; Nabavi, S.; Tsetegho Sokeng, A.; Izadi, M.; Jafari, N.; Suntar, I.; Daglia, M.; et al. Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Requena, R.; Vargas, M.; Chiralt, A. Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay. LWT 2019, 101, 183–190. [Google Scholar] [CrossRef]
- Miladi, H.; Zmantar, T.; Kouidhi, B.; Al Qurashi, Y.M.A.; Bakhrouf, A.; Chaabouni, Y.; Mahdouani, K.; Chaieb, K. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb. Pathog. 2017, 112, 156–163. [Google Scholar] [CrossRef]
- Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phyther. Res. 2007, 21, 989–994. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- De Medeiros Barbosa, I.; Da Costa Medeiros, J.A.; De Oliveira, K.Á.R.; Gomes-Neto, N.J.; Tavares, J.F.; Magnani, M.; De Souza, E.L. Efficacy of the combined application of oregano and rosemary essential oils for the control of Escherichia coli, Listeria monocytogenes and Salmonella Enteritidis in leafy vegetables. Food Control 2016, 59, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Baydar, H.; Sağdiç, O.; Özkan, G.; Karadoğan, T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control 2004, 15, 169–172. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Longaray Delamare, A.P.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Joseph, B.; Priya, M. Review on nutritional, medicinal and pharmacological properties of Guava (Psidium guajava Linn.). Int. J. Pharma Bio Sci. 2011, 2, 53–69. [Google Scholar]
- Demuner, A.J.; Almeida Barbosa, L.C.; Gonçalves Magalhaes, C.; Da Silva, C.J.; Alvares Maltha, C.R.; Lelis Pinheiro, A. Seasonal variation in the chemical composition and antimicrobial activity of volatile oils of three species of leptospermum (Myrtaceae) Grown in Brazil. Molecules 2011, 16, 1181–1191. [Google Scholar] [CrossRef] [Green Version]
Antibiotic 1 | E. coli O:149 | E. coli O:139 | E. coli O:8 |
---|---|---|---|
AMC | S | S | S |
AMP | S | S | S |
ATM | S | S | R |
C | S | S | S |
CTX | S | S | R |
ENR | S | S | S |
FOX | S | S | R |
GEN | S | S | S |
IPM | S | S | S |
KF | R | R | R |
STR | R | R | R |
SXT | S | S | S |
TET | S | R | S |
Compounds | Class | LRI 1 | Sm | Ls | Sm–Ls70:30 | Sm–Ls50:50 | Sm–Ls30:70 |
---|---|---|---|---|---|---|---|
α-pinene | mh | 940 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 |
camphene | mh | 954 | 0.5 | - | 0.3 | 0.2 | 0.2 |
sabinene | mh | 975 | 0.5 | - | 0.3 | 0.2 | 0.2 |
1-octen-3-ol | nt | 979 | 0.6 | - | 0.4 | 0.3 | 0.2 |
myrcene | mh | 991 | 1.3 | 0.3 | 0.9 | 0.7 | 0.6 |
α-terpinene | mh | 1017 | 1.3 | - | 0.9 | 0.5 | 0.4 |
p-cymene | mh | 1025 | 10.3 | 0.3 | 6.6 | 4.5 | 3.1 |
limonene | mh | 1029 | 3.0 | - | 2.0 | 1.4 | 0.5 |
1,8-cineol | om | 1031 | - | 0.3 | - | - | 0.6 |
γ-terpinene | mh | 1060 | 6.2 | - | 4.3 | 3.2 | 2.1 |
linalool | om | 1097 | 1.5 | - | 1.0 | 0.6 | 0.4 |
borenol | om | 1169 | 3.0 | - | 1.9 | 1.2 | 0.8 |
4-terpineol | om | 1177 | 1.6 | - | 1.0 | 0.6 | 0.4 |
α-terpineol | om | 1189 | 1.4 | - | 0.9 | 0.5 | 0.2 |
isothymol methyl ether | om | 1244 | 5.2 | - | 3.3 | 2.3 | 1.6 |
thymol | om | 1290 | 7.0 | - | 4.4 | 3.1 | 2.1 |
carvacrol | om | 1299 | 45.4 | - | 29.0 | 22.1 | 13.6 |
α-cubebene | sh | 1351 | - | 3.0 | 1.6 | 1.6 | 2.1 |
α-copaene | sh | 1377 | 0.3 | 4.6 | 1.9 | 2.5 | 3.2 |
β-elemene | sh | 1391 | - | 0.6 | 0.2 | 0.3 | 0.4 |
α-gurjunene | sh | 1410 | 0.1 | 1.2 | 0.4 | 0.5 | 0.8 |
β-caryophyllene | sh | 1419 | 3.5 | 2.2 | 2.8 | 2.6 | 2.4 |
α-guaiene | sh | 1440 | 0.3 | 2.0 | 0.8 | 1.1 | 1.5 |
cis-muurola-3.5-diene | sh | 1450 | - | 1.4 | 0.8 | 1.2 | 1.7 |
allo-aromadendrene | sh | 1460 | - | 0.8 | 0.3 | 0.4 | 0.6 |
trans-cadina-1(6),4-diene | sh | 1477 | - | 2.2 | 1.1 | 1.4 | 2.2 |
γ-muurolene | sh | 1480 | 0.2 | 1.4 | 0.6 | 0.8 | 0.9 |
β-selinene | sh | 1490 | 0.2 | 4.8 | 1.9 | 2.7 | 3.4 |
cis-β-guaiene | sh | 1493 | - | 0.5 | 0.3 | - | 0.5 |
α-selinene | sh | 1498 | - | 4.8 | 2.0 | 2.9 | 3.5 |
α-muurolene | sh | 1499 | - | 0.9 | - | - | - |
trans-β-guaiene | sh | 1503 | - | - | 0.4 | 0.5 | 0.6 |
(E,E)-α-farnesene | sh | 1506 | - | 0.5 | - | - | 0.7 |
β-bisabolene | sh | 1509 | 0.8 | - | 0.7 | 0.7 | - |
trans-γ-cadinene | sh | 1514 | 0.2 | 1.1 | 0.5 | 0.7 | 0.8 |
δ-cadinene | sh | 1523 | 0.6 | - | 3.3 | 4.1 | 4.5 |
trans-cadina-1(2),4-diene | sh | 1535 | - | 3.0 | 1.5 | 2.2 | 2.6 |
cis-calamenene | sh | 1540 | - | 21.4 | 3.3 | 6.5 | 8.9 |
flavesone | nt | 1547 | - | 6.9 | 2.5 | 3.9 | 4.7 |
spathuneol | os | 1578 | - | 0.8 | 0.3 | 0.4 | 0.6 |
caryophyllene oxide | os | 1583 | 0.8 | 0.8 | 1.1 | 1.2 | 1.3 |
globulol | os | 1585 | - | 0.7 | - | 0.1 | - |
viridiflorol | os | 1593 | - | 0.5 | 0.2 | 0.2 | 0.4 |
iso-leptospermone | os | 1621 | - | 6.5 | 2.0 | 3.3 | 4.4 |
leptospermone | os | 1629 | - | 18.3 | 7.0 | 10.5 | 12.9 |
T-cadinol | os | 1642 | - | 1.7 | 0.9 | 1.2 | 1.0 |
selin-11-en-4-α-ol | os | 1660 | - | 0.9 | 0.2 | 0.3 | 0.6 |
occidentalol acetate | os | 1682 | - | 0.5 | - | 0.3 | 0.4 |
Class of Compounds | Sm | Ls | Sm–Ls70:30 | Sm–Ls50:50 | Sm–Ls30:70 | ||
Monoterpene hydrocarbon (mh) | 24.0 | 1.5 | 16.2 | 11.5 | 8.0 | ||
Oxygenated monoterpenes (om) | 65.1 | 0.3 | 41.5 | 30.4 | 19.7 | ||
Sesquiterpene hydrocarbon (sh) | 6.2 | 56.4 | 24.4 | 32.7 | 41.3 | ||
Oxygenated sesquiterpenes (os) | 0.8 | 30.7 | 11.7 | 17.5 | 21.6 | ||
Non-terpenes (nt) | 0.6 | 6.9 | 2.9 | 4.2 | 4.9 | ||
Total identified | 96.7 | 95.8 | 96.7 | 96.7 | 95.5 |
MIC | |||||
---|---|---|---|---|---|
Strains | Sm | Ls | Sm–Ls70:30 | Sm–Ls50:50 | Sm–Ls30:70 |
E. coli O:149 | 1:64 | 1:32 | 1:512 | 1:256 | 1:128 |
E. coli O:139 | 1:64 | 1:32 | 1:256 | 1:128 | 1:128 |
E. coli O:8 | 1:64 | 1:32 | 1:256 | 1:128 | 1:128 |
MBC | |||||
Strains | Sm | Ls | Sm–Ls70:30 | Sm–Ls50:50 | Sm–Ls30:70 |
E. coli O:149 | 1:64 | 1:16 | 1:256 | 1:256 | 1:128 |
E. coli O:139 | 1:64 | 1:16 | 1:128 | 1:64 | 1:64 |
E. coli O:8 | 1:64 | 1:32 | 1:256 | 1:64 | 1:128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratini, F.; Forzan, M.; Turchi, B.; Mancini, S.; Alcamo, G.; Pedonese, F.; Pistelli, L.; Najar, B.; Mazzei, M. In Vitro Antibacterial Activity of Manuka (Leptospermum scoparium J.R. et G. Forst) and winter Savory (Satureja montana L.) Essential Oils and Their Blends against Pathogenic E. coli Isolates from Pigs. Animals 2020, 10, 2202. https://doi.org/10.3390/ani10122202
Fratini F, Forzan M, Turchi B, Mancini S, Alcamo G, Pedonese F, Pistelli L, Najar B, Mazzei M. In Vitro Antibacterial Activity of Manuka (Leptospermum scoparium J.R. et G. Forst) and winter Savory (Satureja montana L.) Essential Oils and Their Blends against Pathogenic E. coli Isolates from Pigs. Animals. 2020; 10(12):2202. https://doi.org/10.3390/ani10122202
Chicago/Turabian StyleFratini, Filippo, Mario Forzan, Barbara Turchi, Simone Mancini, Giuseppe Alcamo, Francesca Pedonese, Luisa Pistelli, Basma Najar, and Maurizio Mazzei. 2020. "In Vitro Antibacterial Activity of Manuka (Leptospermum scoparium J.R. et G. Forst) and winter Savory (Satureja montana L.) Essential Oils and Their Blends against Pathogenic E. coli Isolates from Pigs" Animals 10, no. 12: 2202. https://doi.org/10.3390/ani10122202
APA StyleFratini, F., Forzan, M., Turchi, B., Mancini, S., Alcamo, G., Pedonese, F., Pistelli, L., Najar, B., & Mazzei, M. (2020). In Vitro Antibacterial Activity of Manuka (Leptospermum scoparium J.R. et G. Forst) and winter Savory (Satureja montana L.) Essential Oils and Their Blends against Pathogenic E. coli Isolates from Pigs. Animals, 10(12), 2202. https://doi.org/10.3390/ani10122202