The Effect of Chromium Nanoparticles and Chromium Picolinate in the Diet of Chickens on Levels of Selected Hormones and Tissue Antioxidant Status
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Nanomaterial
2.2. Animals and Diets
2.3. Growth Trial and Sample Collection
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zha, L.Y.; Xu, Z.R.; Wang, M.; Gu, L.Y. Effects of chromium nanoparticle dosage on growth, body composition, serum hormones and tissue chromium in Sprague-Dawley rats. J. Zhejiang Univ. Sci. B 2007, 8, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Lewicki, S.; Zdanowski, R.; Krzyżowska, M.; Lewicka, A.; Dębski, B.; Niemcewicz, M.; Goniewicz, M. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Ann. Agric. Environ. Med. 2014, 21, 331–335. [Google Scholar] [CrossRef]
- Perai, A.H.; Kermanshahi, H.; Nassiri Moghaddam, H.; Zarban, A. Effects of supplemental vitamin c and chromium on metabolic and hormonal responses, antioxidant status, and tonic immobility reactions of transported broiler chickens. Biol. Trace Elem. Res. 2014, 157, 224–233. [Google Scholar] [CrossRef]
- Sahin, K.; Kucuk, O.; Sahin, N.; Ozbey, O. Effects of dietary chromium picolinate supplementation on egg production, egg quality and serum concentrations of insulin, corticosterone, and some metabolites of Japanese quails. Nutr. Res. 2001, 21, 1315–1321. [Google Scholar] [CrossRef]
- Cefalu, W.T.; Hu, F.B. Role of chromium in human health and in diabetes. Diab. Care 2004, 27, 2741–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cefalu, W.T.; Rood, J.; Pinsonat, P.; Qin, J.; Sereda, O.; Levitan, L.; Anderson, R.A.; Zhang, X.H.; Martin, J.M.; Martin, C.K.; et al. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus. Metabolism 2010, 59, 755–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, M.N.; Gaynes, B.N.; Golden, R.N. Chromium potentiation of antidepressant pharmacotherapy for dysthymic disorder in 5 patients. J. Clin. Psychiatry 1999, 60, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Attenburrow, M.J.; Odontiadis, J.; Murray, B.J.; Cowen, P.J.; Franklin, M. Chromium treatment decreases the sensitivity of 5-HT2A receptors. Psychopharmacoly 2002, 4, 432–436. [Google Scholar]
- Sahin, K.; Sahin, N.; Onderci, M.; Gursu, F.; Cikim, G. Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities and some serum metabolites of broiler chickens. Biol. Trace Elem. Res. 2002, 89, 53–64. [Google Scholar] [CrossRef]
- Cogburn, L.A.; Liou, S.S.; Alfonso, C.P.; McGuinness, M.C.; McMurtry, J.P. Dietary thyrotropin-releasing hormone stimulates growth rate and increases the insulin: glucagon molar ratio of broiler chickens. Soc. Experim. Biol. Med. 1989, 192, 127–134. [Google Scholar] [CrossRef]
- Yahav, S. The effect of constant and diurnal cyclic temperatures on performance and blood system of young turkeys. J. Therm. Biol. 1999, 24, 71–78. [Google Scholar] [CrossRef]
- McNabb, F.M.A.; King, D.B. Thyroid hormones effect on growth development and metabolism. In The Endocrinology of Growth Development and Metabolism in Vertebrates; Schreibman, M., Scanes, C., Pang, P.K.T., Eds.; Academic Press: New York, NY, USA, 1993; Volume 10, pp. 873–885. [Google Scholar]
- Sahin, K.; Sahin, N.; Kucuk, O. Effects of chromium and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high environmental temperature (32 °C). Nutr. Res. 2003, 23, 225–238. [Google Scholar] [CrossRef]
- Navidshad, B.; Pirsaraei, Z.A.; Chashnidel, Y. Effects of dietary chromium polynicotinate supplementation on performance, fat deposition and plasma lipids of broiler chickens. Ital. J. Anim. Sci. 2010, 9, e13. [Google Scholar] [CrossRef]
- Ebrahimzadeh, S.; Farhoomand, P.; Noori, K. Effects of chromium methionine supplementation on performance, carcass traits, and the Ca and P metabolism of broiler chickens under heat-stress conditions. J. Appl. Poult. Res. 2013, 22, 382–387. [Google Scholar] [CrossRef]
- Onderci, M.; Sahin, N.; Sahin, K.; Kilic, N. Antioxidant properties of chromium and zinc: in vivo effects on digestibility, lipid peroxidation, antioxidant vitamins, and some minerals under a low ambient temperature. Biol. Trace Elem. Res. 2003, 92, 139–150. [Google Scholar] [CrossRef]
- Tezuka, M.; Momiyama, K.; Edano, T.; Okada, S. Protective effect of chromium(III) on acute lethal toxicity of carbon tetrachloride in rats and mice. J. Inorg. Biochem. 1991, 42, 1–8. [Google Scholar] [CrossRef]
- Preuss, H.G.; Jarrell, S.T.; Scheckenbach, R.; Lieberman, S.; Anderson, R.A. Comparative effects of chromium, vanadium and gymnema sylvestre on sugar-induced blood pressure elevations in SHR. J. Am. Coll. Nutr. 1998, 17, 116–123. [Google Scholar] [CrossRef]
- Ognik, K.; Drażbo, A.; Stępniowska, A.; Kozłowski, K.; Listos, P.; Jankowski, J. The effect of chromium nanoparticles and chromium picolinate in broiler chicken diet on the performance, redox status and tissue histology. Anim. Feed Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Greenwald, R.A. CRC Handbook of Methods for Oxygen Radical Research; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Bartosz, G. Second Face of Oxygen; PWN: Warszawa, Poland, 2004. [Google Scholar]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef]
- Mottalib, A.; Zilani, G.; Suman, T.I.; Ahmed, T.; Islam, S. Assessment of Trace Metals in Consumer Chickens in Bangladesh. J. Health Pollut. 2018, 8, 181208. [Google Scholar] [CrossRef] [PubMed]
- Lein, T.F.; Horng, Y.M.; Yang, K.H. Performance, serum characteristics, carcass traits and lipid metabolism of broilers as effected by supplements of chromium picolinate. Poult. Sci. 1999, 40, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Javed, M.T.; Sandhu, M.A.; Kausar, R. Effects of higher levels of chromium and copper on broiler health and performance during the peak tropical summer season. Vet. Arh. 2004, 74, 395–408. [Google Scholar]
- Franklin, M.; Odontiadis, J. Effects of treatment with chromium picolinate on peripheral amino acid availability and brain monoamine function in the rat. Pharmacopsychiatry 2003, 5, 176–180. [Google Scholar] [CrossRef]
- Hua, Y.; Clark, S.; Ren, J.; Sreejayan, N. Molecular mechanisms of chromium in alleviating insulin resistance. J. Nutr. Biochem. 2012, 4, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Zhang, X.H.; Russell, J.C.; Hulver, M.; Cefalu, W.T. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulinresistant JCR:LA-cp rats. J. Nutr. 2006, 2, 415–420. [Google Scholar] [CrossRef]
- Yildiz, A.Ö.; Parlat, S.S.; Yazgan, O. The effects of organic chromium supplementation on production traits and some serum parameters of laying quails. Rev. Méd. Vét. 2004, 155, 642–646. [Google Scholar]
- Brownley, K.A.; Boettiger, C.A.; Young, L.; Cefalu, W.T. Dietary chromium supplementation for targeted treatment of diabetes patients with comorbid depression and binge eating. Med. Hyp. 2015, 85, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Komorowski, J.R.; Tuzcu, M.; Sahin, N.; Juturu, V.; Orhan, C.; Ulas, M.; Sahin, K. Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes. Biol. Trace Elem. Res. 2012, 149, 50–56. [Google Scholar] [CrossRef]
- Di Giovanni, G.; Di Matteo, V.; Pierucci, M.; Esposito, E. Serotonin-dopamine interaction electrophysiological evidence. Prog. Brain Res. 2008, 172, 45–71. [Google Scholar]
- Van Bockstaele, E.J.; Cestari, D.M.; Pickel, V.M. Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: potential sites for modulation of mesolimbic dopamine neurons. Brain Res. 1994, 2, 307–322. [Google Scholar] [CrossRef]
- De Bartolomeis, A.; Buonaguro, E.F.; Iasevoli, F. Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacoly 2013, 1, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Albizu, L.; Holloway, T.; Gonzalez-Maeso, J.; Sealfon, S.C. Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacoly 2011, 4, 770–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaki, T.; Yoshimatsu, H. Neuronal histamine and its receptors in obesity and diabetes. Curr. Diabetes Rev. 2007, 3, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Sim, Y.B.; Park, S.H.; Kim, S.S.; Kim, C.H.; Kim, S.J.; Lim, S.M.; Jung, J.S.; Ryu, O.H.; Choi, M.G.; Suh, H.W. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice. Korean J. Physiol. Pharmacol. 2014, 18, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Taha, N.M.; Mandour, A.A.; Habeila, O.H. Biochemical effect of chromium element on lipid profile of broilers. Alex. J. Vet. Sci. 2013, 39, 74–81. [Google Scholar]
- Al-Mashhadani, H.E.; Ibrahim, K.D.; AlBandr, K.L. Effect of supplementing different levels of chromium yeast to diet on broiler chickens on some physiological traits. Int. Poult. Sci. 2010, 9, 376–381. [Google Scholar]
- Gubajdullina, I.Z.; Gavrish, I.A.; Lebedev, S.V. Effect of metallic nanoparticles on exchange of chemical elements in broiler chickens. Iop Conf. Ser. Earth Environ. Sci. 2019, 341, 012169. [Google Scholar] [CrossRef] [Green Version]
- Jonghan Kim, J.; Wessling-Resnick, M. Iron and Mechanisms of Emotional Behavior. J. Nutr. Biochem. 2014, 25, 1101–1107. [Google Scholar]
- Pasternak, K.; Dabrowski, W.; Wyciszczok, T.; Korycińska, A.; Dobija, J.; Biernacka, J.; Rzecki, Z. The relationship between magnesium, epinephrine and norepinephrine blood concentrations during CABG with normovolemic hemodilution. Magnes Res. 2005, 18, 245–252. [Google Scholar]
- Uyanik, F.; Eren, M.; Kocaoglu, B.; Sahin, N. Effects of dietary chromium supplementation on performance, carcass traits, serum metabolites and tissue chromium levels of Japanese quails. Biol. Trace Elem. Res. 2005, 103, 187–197. [Google Scholar] [CrossRef]
- Amatya, I.L.; Haldar, S.; Ghosh, T.K. Effects of chromium supplementation from inorganic and organic sources on nutrient utilization, mineral metabolism and meat quality in broiler chickens exposed to natural heat stress. Anim. Sci. 2004, 79, 241–253. [Google Scholar] [CrossRef]
- Ognik, K.; Krauze, M. The potential for using enzymatic assays to assess the health of turkeys. World Poult. Sci. J. 2016, 72, 535–550. [Google Scholar] [CrossRef]
- Fan, W.T.; Zhao, X.N.; Cheng, J.; Liu, Y.H.; Liu, J.Z. Oxidative stress and hepatocellular injury induced by oral administration of Cr3+ in chicken. J. Biochem. Mol. Toxicol. 2015, 29, 280–287. [Google Scholar] [CrossRef] [PubMed]
Days 1–21 | Days 22–35 | |
---|---|---|
Components, g/kg | ||
Maize | 200.0 | 200.0 |
Soybean meal | 336.5 | 282.4 |
Wheat | 383.4 | 421.4 |
Soybean oil | 39.0 | 56.1 |
Salt | 3.3 | 3.3 |
Limestone | 11.9 | 11.6 |
MCP | 14.4 | 13.3 |
DL-Methionine | 3.1 | 2.8 |
L-Lysine HCL | 2.7 | 3.1 |
L-Threonine | 0.7 | 1.0 |
Vitamins + trace minerals 1 | 5.0 | 5.0 |
Calculated nutrient density, g/kg | ||
Crude protein | 220.0 | 200.0 |
Lysine | 13.0 | 12.0 |
Methionine | 6.2 | 5.7 |
Met. + Cys. | 10.0 | 9.2 |
Threonine | 8.5 | 8.0 |
Calcium | 9.5 | 9.0 |
Available phosphorus | 4.8 | 4.5 |
ME, kcal/kg | 2950 | 3100 |
Amount of Cr added to feed | Analyzed content of Cr, mg/kg | |
0 | 0.86 | 0.83 |
3 mg/kg Cr-Pic | 3.90 | 3.36 |
6 mg/kg Cr-Pic | 6.71 | 6.20 |
3 mg/kg Cr-NP | 3.85 | 3.87 |
6 mg/kg Cr-NP | 6.49 | 6.08 |
Treatment 1,2 | Insulin ng/mL | Glucagon pg/mL | Serotonin ng/mL | Dopamine pg/mL | Noradrenaline ng/mL | Histamine ng/mL | T3 ng/mL | T4 ng/mL |
---|---|---|---|---|---|---|---|---|
Control | 0.487 | 51.682 | 118.503 | 479.449 | 2.586 | 18.892 | 3.391 | 48.463 |
3 mg/kg Cr-Pic | 0.568 b | 45.797 * | 142.982 *c | 479.682 | 2.233 * | 14.967 * | 3.676 | 52.562 |
6 mg/kg Cr-Pic | 0.576 b | 45.303 * | 147.089 *c | 450.686 | 2.207 * | 16.937* | 3.769 | 53.952 * |
3 mg/kg Cr-NP | 0.581 b | 45.465 * | 166.645 *b | 538.004 * | 2.180 * | 11.517 * | 3.332 | 53.260 |
6 mg/kg Cr-NP | 0.945 *a | 48.037 | 212.522 *a | 537.471 * | 2.195 * | 19.842 | 3.461 | 53.596 |
SEM | 0.033 | 0.723 | 5.067 | 7.019 | 0.039 | 0.517 | 0.078 | 0.844 |
Dose effect (D) | ||||||||
3 mg/kg | 0.575 | 45.631 | 154.813 | 508.843 | 2.207 | 13.242 | 3.504 | 52.911 |
6 mg/kg | 0.761 | 46.670 | 179.806 | 494.078 | 2.201 | 18.389 | 3.615 | 53.774 |
Source effect (S) | ||||||||
Cr-Pic | 0.572 | 45.550 | 145.036 | 465.184 | 2.220 | 15.952 | 3.722 | 53.257 |
Cr-NP | 0.763 | 46.751 | 189.583 | 537.737 | 2.187 | 15.679 | 3.397 | 53.428 |
p-value | ||||||||
Control vs. all others | <0.001 | 0.016 | <0.001 | <0.001 | 0.001 | <0.001 | 0.341 | 0.029 |
D effect | <0.001 | 0.421 | <0.001 | 0.157 | 0.935 | <0.001 | 0.534 | 0.637 |
S effect | <0.001 | 0.354 | <0.001 | <0.001 | 0.658 | 0.570 | 0.076 | 0.925 |
D × S interaction | 0.001 | 0.238 | <0.001 | 0.172 | 0.778 | 0.101 | 0.920 | 0.773 |
Treatment 1,2 | Ca mmol/L | Mg mmol/L | Fe µmol/L | Cu µmol/L | Zn µmol/L |
---|---|---|---|---|---|
Control | 1.662 | 0.827 | 6.140 | 6.252 | 24.136 |
3 mg/kg Cr-Pic | 2.604 * | 0.637 * | 9.024 * | 6.155 | 20.428 * |
6 mg/kg Cr-Pic | 2.676 * | 0.589 * | 10.445 * | 4.803 * | 20.752 * |
3 mg/kg Cr-NP | 2.852 * | 0.680 * | 10.588 * | 5.351 * | 19.359 * |
6 mg/kg Cr-NP | 2.298 * | 0.653 * | 11.668 * | 4.388 * | 19.930 * |
SEM | 0.092 | 0.020 | 0.307 | 0.129 | 0.281 |
Dose effect (D) | |||||
3 mg/kg | 2.728 | 0.658 | 9.806 | 5.753 | 19.894 |
6 mg/kg | 2.487 | 0.621 | 11.057 | 4.595 | 20.342 |
Source effect (S) | |||||
Cr-Pic | 2.640 | 0.613 | 9.735 | 5.479 | 20.591 |
Cr-NP | 2.575 | 0.667 | 11.128 | 4.869 | 19.645 |
p-value | |||||
Control vs. all others | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 |
D effect | 0.136 | 0.283 | <0.001 | <0.001 | 0.061 |
S effect | 0.683 | 0.125 | <0.001 | <0.001 | <0.001 |
D × S interaction | 0.055 | 0.757 | 0.462 | 0.248 | 0.596 |
Treatment 1,2 | LOOH, Μmol/Kg | MDA, Μmol/Kg | SOD, U/G Protein | CAT, U/G Protein | ||||
---|---|---|---|---|---|---|---|---|
Liver | Breast Muscle | Liver | Breast Muscle | Liver | Breast Muscle | Liver | Breast Muscle | |
Control | 6.243 | 2.194 | 0.805 | 0.906 | 1037.8 | 285.0 | 708.2 | 154.8 |
3 mg/kg Cr-Pic | 4.859 * | 2.062 | 0.781 | 0.825 | 920.6 * | 308.7 * | 621.6 * | 136.5 * |
6 mg/kg Cr-Pic | 6.614 | 2.345 * | 1.147* | 0.963 | 871.6 * | 256.6 | 954.4 * | 185.5 * |
3 mg/kg Cr-NP | 6.153 | 2.337 * | 1.256 * | 1.121 * | 1009.2 | 234.9 | 543.2 * | 158.7 |
6 mg/kg Cr-NP | 6.467 | 2.365 * | 1.330 * | 1.177 * | 976.6 | 246.8 | 663.6 * | 199.7 * |
SEM | 0.035 | 0.016 | 0.017 | 0.009 | 0.307 | 0.235 | 0.121 | 0.082 |
Dose effect (D) | ||||||||
3 mg/kg | 5.506 | 2.199 | 1.018 | 0.973 | 964.9 | 271.8 | 582.4 | 147.6 |
6 mg/kg | 6.540 | 2.355 | 1.238 | 1.070 | 924.1 | 251.7 | 809.0 | 192.6 |
Source effect (S) | ||||||||
Cr-Pic | 5.736 | 2.203 | 0.964 | 0.894 | 896.1 | 282.6 | 788.0 | 161.0 |
Cr-NP | 6.310 | 2.351 | 1.293 | 1.149 | 992.9 | 240.8 | 603.4 | 179.2 |
p-value | ||||||||
Control vs. all | 0.023 | 0.008 | 0.004 | 0.043 | <0.001 | 0.003 | <0.001 | 0.038 |
D effect | 0.031 | 0.092 | 0.012 | 0.083 | 0.042 | 0.103 | <0.001 | <0.001 |
S effect | 0.002 | 0.006 | 0.003 | 0.033 | <0.001 | 0.042 | <0.001 | 0.023 |
D × S interaction | 0.233 | 0.342 | 0.865 | 0.435 | 0.338 | 0.132 | 0.114 | 0.226 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stępniowska, A.; Drażbo, A.; Kozłowski, K.; Ognik, K.; Jankowski, J. The Effect of Chromium Nanoparticles and Chromium Picolinate in the Diet of Chickens on Levels of Selected Hormones and Tissue Antioxidant Status. Animals 2020, 10, 45. https://doi.org/10.3390/ani10010045
Stępniowska A, Drażbo A, Kozłowski K, Ognik K, Jankowski J. The Effect of Chromium Nanoparticles and Chromium Picolinate in the Diet of Chickens on Levels of Selected Hormones and Tissue Antioxidant Status. Animals. 2020; 10(1):45. https://doi.org/10.3390/ani10010045
Chicago/Turabian StyleStępniowska, Anna, Aleksandra Drażbo, Krzysztof Kozłowski, Katarzyna Ognik, and Jan Jankowski. 2020. "The Effect of Chromium Nanoparticles and Chromium Picolinate in the Diet of Chickens on Levels of Selected Hormones and Tissue Antioxidant Status" Animals 10, no. 1: 45. https://doi.org/10.3390/ani10010045
APA StyleStępniowska, A., Drażbo, A., Kozłowski, K., Ognik, K., & Jankowski, J. (2020). The Effect of Chromium Nanoparticles and Chromium Picolinate in the Diet of Chickens on Levels of Selected Hormones and Tissue Antioxidant Status. Animals, 10(1), 45. https://doi.org/10.3390/ani10010045