Use of Fecal Indices as a Non-Invasive Tool for Nutritional Evaluation in Extensive-Grazing Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dry Matter Availability and Grassland Botanical Composition
2.2. Bromatological Analysis of Dry Matter Availability
2.3. Feacal Nitrogen (FN), Phosphorus (FP) and 2,6-diaminomipelic Acid Concentrations (DAPAf) Measurements
2.4. Dry Matter Intake (DMI, Kg DM Day−1)
2.5. Diet’s Dry Matter Digestibility (DMSdiet, %)
2.6. Metabolizable Energy (MEI MJ/day), Crude Protein (CPI, g/day) and Phosphorus (PI, g/day) Intake
2.7. Statistical Analysis
3. Results
3.1. Dry Matter Availability and Grassland Botanical Composition, Dry Matter Availability and Bromatological Analysis.
3.2. Nutrient Intake
3.3. Faecal Nitrogen (FN), Phosphorus (FP) and 2,6-Diaminomipelic Acid Concentrations (DAPAf)
3.4. Relationship between Faecal Indices and Nutrient Intake
4. Discussion
4.1. Grassland Dry Matter Availability and Nutrient Concentration
4.2. Dry Matter, Metabolizable Energy, Crude Protein and Phosphorus Intake in Sheep.
4.3. Faecal Nitrogen (FN), Phosphorus (FP) and 2,6-Diaminomipelic Acid Concentrations (DAPAf)
4.4. Correlations among DAPAf, FN and FP
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Semebia, K. Application of NIRS Faecal Profiling and Geostatistics to Predict Diet Quality of African Livestock. Ph.D. Thesis, Texas A & M University, College Station, TX, UAS, 2003. [Google Scholar]
- Castellaro, G.; Bastías, C.; Orellana, C.; Escanilla, J.; Araya, R. Composición botánica y calidad de la dieta de vicuñas (Vicugna vicugna Mol.) en pastizales altiplánicos, durante el período seco-invernal. In Proceedings of the XXXVI Reunión Anual de la Sociedad Chilena de Producción Animal, (SOCHIPA A.G.), Punta Arenas, Chile, 9–11 November 2011; pp. 79–80. [Google Scholar]
- Wang, C.; Tas, B.; Glindemann, T.; Rave, G.; Schmidt, L.; Weißbach, F.; Susenbeth, A. Faecal crude protein content as an estimate for the digestibility of forage in grazing sheep. Anim. Feed Sci. Technol. 2009, 149, 199–208. [Google Scholar] [CrossRef]
- Nelson, J.R.; Leege, T.A. Nutritional requirements and food habits. In Elk of North America: Ecology and Management; Thomas, J.W., Toweill, D.E., Eds.; Stackpole Books: Harrisburg, PA, USA, 1982; pp. 323–367. [Google Scholar]
- Del Pino, A.; Hernández, J. Ciclaje de Fósforo por animales a pastoreo en campo natural y mejoramientos con leguminosas sobre suelos de basalto. Agrociencia 2002, 6, 47–52. [Google Scholar]
- Schryver, H.F.; Foose, T.J.; Williams, J.; Hintz, H.F. Calcium excretion in feces of ungulates. Comp. Biochem. Physiol. Part A Physiol. 1983, 74, 375–379. [Google Scholar] [CrossRef]
- Cain, J.W.; Avery, M.M.; Caldwell, C.A.; Abbott, L.B.; Holechek, J.L. Diet composition, quality and overlap of sympatric American pronghorn and gemsbok. Wildl. Biol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.; Wild, M.; Byers, J. Relationships between diet quality and faecal nitrogen, faecal diaminopimelic acid and behavior in a captive group of pronghorn. In Proceedings of the 19th Biennial Pronghorn Antelope Workshop, Laramie, Wyoming, 18–21 May 2010; pp. 28–44. [Google Scholar]
- McDonald, D.T. Factors Affection Pronghorn Fawn Recruitment in Central Arizona. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, 2005; p. 89. [Google Scholar]
- Hodgman, T.P.; Davitt, B.B.; Nelson, J.R. Monitoring mule deer diet quality and intake with faecal indices. J. Range Manag. 1996, 49, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Kucera, T.E. Faecal indicators, diet, and population parameters in mule deer. J. Wildl. Manag. 1997, 61, 550–560. [Google Scholar] [CrossRef]
- Carrera, R.; Ballard, W.B.; Krausman, P.R.; Devos, J.; Wallace, M.C.; Cunningham, S.; Alcumbrac, O.J.; Christensen, S.A. Reproduction and nutrition of desert mule deer with and withouy predation. Southwest. Nat. 2015, 60, 285–298. [Google Scholar] [CrossRef]
- Prater, S. Elk Habitat Selection, Distribution, and Nutrition as Influenced by Cattle in East-Central Idaho. Master’s Thesis, University of Montana, Missoula, MT, USA, 1989; p. 2211. [Google Scholar]
- Mckinney, T.; Smith, T.W.; Devos, J.C. Evaluation of factors potentially influencing a desert bighorn sheep population. Wildl. Monogr. 2006, 164, 1–35. [Google Scholar] [CrossRef]
- Monteith, K.L.; Schmitz, L.E.; Jenks, J.A.; Delger, J.A.; Bowyer, R.T. Growth of male white-tailed deer: Consequences of maternal effects. J. Mammal. 2009, 90, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Leslie, D.M.; Jenks, J.A.; Chilelli, M.; Lavigne, G.R. Nitrogen and diaminopimelic acid in deer and moose feces. J. Wildl. Manag. 1989, 53, 216–218. [Google Scholar] [CrossRef]
- Leslie, D.M.; Bowyer, R.T.; Jenks, J. A Facts from feces: Nitrogen still measures up as a nutritional index for mammalian herbivores. J. Wildl. Manag. 2008, 72, 1420–1433. [Google Scholar] [CrossRef]
- Schwarm, A.; Schweigert, M.; Ortmann, S.; Hummel, J.; Janssens, G.P.J.; Streich, W.J.; Clauss, M. No easy solution for the fractionation of faecal nitrogen in captive wild herbivores: Results of a pilot study. J. Anim. Physiol. Anim. Nutr. 2009, 93, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, A.; Boons, G. The synthesis of diaminopimelic acid containing peptidoglycan fragments using metathesis cross coupling. Tetrahedron Lett. 2005, 46, 1675–1678. [Google Scholar] [CrossRef]
- Louvandini, H.; Vitti, D.M.S.S. Phosphorus metabolism and estimation of phosphorus requirements for sheep. Sci. Agric. 1996, 53, 184–189. [Google Scholar] [CrossRef]
- Bryant, M.P.; Robinson, I.M.; Chu, H. Observations on the nutrition of Bacteroides succinogenes—A ruminal cellulolytic bacterium. J. Dairy Sci. 1959, 42, 1831–1847. [Google Scholar] [CrossRef]
- Durand, M.; Komisarczuk, S. Influence of major minerals on rumen microbiota. J. Nutr. 1988, 118, 249–260. [Google Scholar] [CrossRef]
- Harder, H.; Khol-Parisini, A.; Metzler-Zebeli, B.U.; Klevenhusen, F.; Zebeli, Q. Treatment of grain with organic acids modulates ruminal microbial community structure and fermentation patterns at two different dietary phosphorus levels in vitro. J. Dairy Sci. 2015, 98, 8107–8129. [Google Scholar] [CrossRef] [Green Version]
- Kincaid, R.L.; Garikipati, D.K.; Nennich, T.D.; Harrison, J.H. Effect of grain source and exogenous phytase on phosphorus digestibility in dairy cows. J. Dairy Sci. 2005, 88, 2893–2902. [Google Scholar] [CrossRef]
- Santibáñez, F.P.; Santibáñez, C.; Caroca, P.; Morales, P.; González, N.; Gajardo, P.; Perry, C. Atlas del cambio climático en las zonas de régimen árido y semiárido de Chile; Universidad de Chile, Ministerio del Medio Ambiente: Santiago de Chile, Chile, 2014; p. 136. [Google Scholar]
- CIREN-CORFO. Estudio Agrológico. Región Metropolitana. Descripciones de suelos. Materiales y Símbolos; Publicación CIREN 115; Centro de Información de Recursos Naturales (CIREN): Santiago de Chile, Chile, 1996; p. 464. [Google Scholar]
- Castellaro, G.; Silva, M.; Santibáñez, F. Efecto de la radiación solar y la temperatura sobre las fenofases de las principales especies del pastizal mediterráneo anual. Avances en Producción Animal 1994, 19, 65–75. [Google Scholar]
- Ovalle, C.; Casado, M.A.; Acosta-Gallo, B.; Castro, I.; Del Pozo, A.; Barahona, V.; Sánchez-Jardón, L.; De Miguel, J.M.; Aravena, T.; Martín-Forés, I. El espinal de la Región Mediterránea de Chile; Ministerio de Agricultura. Centro Regional de Investigación La Cruz. Colección Libros INIA N° 34; Instituto de Investigaciones Agropecuarias (INIA): La Cruz, Chile, 2015; p. 212. [Google Scholar]
- Olivares, A. El espinal: Manejo silvopastoril de un recurso olvidado; Editorial Universitaria: Santiago de Chile, Chile, 2017; p. 184. [Google Scholar]
- Canseco, C.; Demanet, R.; Balocchi, O.; Parga, J.; Anwandter, V.; Abarzúa, A.; Teuber, N.; Lopetegie, J. Determinación de la disponibilidad de materia seca de las praderas en pastoreo. Manejo de Pastoreo; Proyecto FIA.: Osorno, Chile, 2007; p. 31. [Google Scholar]
- A.O.A.C. Official Methods of Analysis of the AOAC International, 17th ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2000. [Google Scholar]
- Goering, H.; Van Soest, P. Forage Fiber Analysis Apparatus, Reagents, Procedures and Some Applications; Agriculture Handbook No. 379; Agricultural Research Service, United States Department of Agriculture: Washington, DC, USA, 1970; p. 20. [Google Scholar]
- Horrocks, R.D.; Vallentine, J.F. Harvested Forages; Academic Press: San Diego, CA, USA, 1999; p. 426. [Google Scholar]
- Standing Committee on Agriculture, Ruminants Subcommittee (SCA). Nutrient Requirement of Domesticated Ruminants; CSIRO Publications: Melbourne, Australia, 2007; p. 296. [Google Scholar]
- Sader, A.; Oliveira, S.; Berchielli, T. Application of Kjeldahl and Dumas Combustion Methods for nitrogen analysis. Arch. Vet. Sci. 2004, 9, 73–79. [Google Scholar] [CrossRef]
- Davitt, B.B.; Nelson, J.R. Methodology for the determination of DAPA in feces of large ruminants. In Proceedings of the 1984 Western States and Provinces Elk Workshop, Alberta Fish and Wildlife, Edmonton, AB, Canada, 17–19 April 1984; pp. 133–147. [Google Scholar]
- Holechek, J.L.; Pieper, R.D.; Herbel, C.H. Range Management, Principles and Practices, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011; p. 444. [Google Scholar]
- Garnick, S.; Barboza, P.S.; Walker, J.W. Assessment of Animal-Based Methods Used for Estimating and Monitoring Rangeland Herbivore Diet Composition. Rangel. Ecol. Manag. 2018, 71, 449–457. [Google Scholar] [CrossRef]
- Sparks, D.R.; Malechek, J.C. Estimating percentage dry weight in diets using a microscope technique. J. Range Manag. 1968, 21, 264–265. [Google Scholar] [CrossRef] [Green Version]
- Holechek, J.L.; Gross, B. Evaluation of different calculation procedures for microhistological analysis. J. Range Manag. 1982, 35, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Castellaro, G.F.; Squella, T.; Ullrich, F.L.; Raggi, A. Algunas técnicas microhistológicas utilizadas en la determinación de la composición botánica de dietas de herbívoros. Agricultura Técnica Chile 2007, 67, 86–93. [Google Scholar]
- Ortega, I.; Berger, M.; Florez, M. Programa de Apoyo y Colaboración en la Investigación de Rumiantes Menores (SR-CRSP) en cooperación con el Instituto Boliviano de Tecnología Agropecuaria (IBTA). In Manual técnico de microhistología; Texas Tech University y: La Paz, Bolivia, 1993; p. 48. [Google Scholar]
- Westoby, M. An analysis of diet selection by large generalist herbivores. Am. Nat. 1974, 108, 290–304. [Google Scholar] [CrossRef]
- Kaps, M.; Lamberson, W.R. Biostatistics for Animal Science; CABI Publishing: Wallingford, UK, 2004; p. 445. [Google Scholar]
- Castellaro, G.; Squella, F. Modelo simple de simulación para la estimación del crecimiento, fenología y balance hídrico de praderas anuales de clima mediterráneo. Agricultura Técnica 2006, 66, 271–282. [Google Scholar] [CrossRef]
- Acuña, H.; Avendaño, J.; Ovalle, C. Caracterización y variabilidad de la pradera natural del secano interior de la zona Mediterránea subhúmeda. Agricultura Técnica 1983, 43, 27–38. [Google Scholar]
- Soto, P. Efecto del momento de utilización y la frecuencia de pastoreo en la producción primaria de la pradera mediterránea anual y la tasa de consumo ovino. Master’s Thesis, Facultad de Agronomía, Universidad de Chile, Santiago de Chile, Chile, 1979; p. 74. [Google Scholar]
- George, B.; Bell, M. Using Stage of Maturity to Predict the Quality of Annual Range Forage; Rangeland Management Series n° 8019; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 2001. [Google Scholar]
- George, M.R. Mediterranean Climate. In Ecology and Management of Annual Rangelands; Davis, C.A., George, M.R., Eds.; Department of Plant Science: Davis, CA, USA, 2016; p. 224. [Google Scholar]
- Hojjati, S.M.; Taylor, T.H.; Templeton, W.C. Nitrate Accumulation in Rye, Tall Fescue, and Bermuda grass as Affected by Nitrogen Fertilization. Agron. J. 1972, 64, 624–627. [Google Scholar] [CrossRef]
- Lyons, R.; Machen, R.; Forbes, T. ¿Por qué cambia la calidad del forraje de los pastizales? AgriLife Extension Texas A & M System. 1999. Available online: http://www.co.cowlitz.wa.us/DocumentCenter/View/1333 (accessed on 8 March 2018).
- Marshal, J.; Krausman, P.; Bleich, V. Rainfall, temperature, and forage dynamics affect nutritional quality of desert mule deer forage. Rangel. Ecol. Manag. 2005, 58, 360–365. [Google Scholar] [CrossRef]
- Olson, K.; Murray, M.; Fuller, T. Vegetation composition and nutritional quality of forage for gazelles in eastern Mongolia. Rangel. Ecol. Manag. 2010, 63, 593–598. [Google Scholar] [CrossRef]
- N.R.C. National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; The National Academic Press: Washington, DC, USA, 2007; p. 106. [Google Scholar] [CrossRef]
- Castellaro, G.; Orellana, C.; Escanilla, J.P. Manual básico de nutrición y alimentación de ganado ovino; Proyecto FIC: Región del Libertador Bernardo O’Higgins, Chile, 2016; p. 57. [Google Scholar]
- Court, J.; Webb-Ware, J.; Hides, S. Sheep Farming for Meat & WooI; CSIRO Publishing, Department of Primary Industries: Victoria, Australia, 2010; p. 322. [Google Scholar]
- Osborn, R.; Ginnett, T. Faecal Nitrogen and 2, 6-Diaminopimelic Acids as Indices to Dietary Nitrogen in White-Tailed Deer. Wildl. Soc. Bull. 2001, 29, 1131–1139. [Google Scholar]
- Peripolli, V.; Rosa, Ê.; Jardim, J.; Braccini, J. Faecal nitrogen to estimate intake and digestibility in grazing ruminants. Anim. Feed Sci. Technol. 2011, 163, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Escanilla, J.P. Indicadores fecales y sanguíneos y su relación con la composición botánica de la dieta de borregas Sufflok Down y Merino Precoz en pastizales de secano semiárido de Chile. Master’s Thesis, Universidad de Chile, Santiago de Chile, Chile, 2017; p. 130. [Google Scholar]
- Giraudo, C.; Villar, L.; Villagra, S.; Cohen, L. El nitrógeno faecal como indicador del estado nutricional de ovinos en pastoreo en la Norpatagonia. Revista Argentina de Producción Animal 2012, 32, 1–8. [Google Scholar]
- Mellado, M.; Olvera, A.; Quero, A.; Mendoza, G. Diets of prairie dogs, goats, and sheep on a desert rangeland. Rangel. Ecol. Manag. 2005, 58, 373–379. [Google Scholar] [CrossRef]
- Marini, J.C.; Fox, D.G.; Murphy, M.R. Nitrogen transactions along the gastrointestinal tract of cattle: A meta-analytical approach. J. Anim. Sci. 2007, 86, 660–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufva, G.S.; Bartley, E.E.; Arambel, M.J.; Nagaraja, T.G.; Dennis, S.M.; Galitzer, S.J.; Dayton, A.D. Diaminopimelic acid content of feed and rumen bacteria and its usefulness as a rumen bacterial marker. J. Dairy Sci. 1981, 65, 1754–1759. [Google Scholar] [CrossRef]
- Church, D. El rumiante: Fisiología digestiva y nutrición de los rumiantes; Editorial Acribia: Zaragoza, Spain, 1993; p. 652. [Google Scholar]
- Rowarth, J.S.; Gillingham, A.G.; Tillman, R.W.; Syers, J.K. Effects of season and fertilizer rate on phosphorus concentrations in pasture and sheep faeces in hill country. N. Z. J. Agric. Res. 1988, 31, 187–193. [Google Scholar] [CrossRef]
- McDowell, L.R.; Conrad, J.H.; Ellis, G.L. Mineral Deficiencies and Their Diagnosis in Symposium: Herbivore Nutrition in Sub-Tropics and Tropics—Problems and Perspectives, Pretoria, S. Africa; The Science Press: Johannesburg, South Africa, 1984; pp. 67–88. Available online: trove.nla.gov.au/version/22153457 (accessed on 8 March 2018).
- Verheyden, H.; Aubry, L.; Merlet, J.; Petibon, P.; Chauveau-Duriot, B.; Guillon, N.; Duncan, P. Faecal nitrogen, an index of diet quality in roe deer Capreolus capreolus? Wildl. Biol. 2011, 17, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Maskaľová, I.; Vajda, V.; Bujňák, L. 2, 6-diamonipimelic acid as a biological marker of rumen synthesis and fermentation capacities in the transition period and early lactation of dairy cows. Acta Vet. Brno 2014, 83, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Mbatha, K.R.; Ward, D. Using faecal profiling to assess the effects of different management types on diet quality in semi-arid savanna. Afr. J. Range For. Sci. 2009, 23, 29–38. [Google Scholar] [CrossRef]
- Stapelberg, F.H.; Van Rooyen, M.W.; Du, P.; Bothma, J. Spatial and temporal variation in nitrogen and phosphorus concentrations in faeces from springbok in the Kalahari. S. Afr. J. Wild. Res. 2008, 38, 82–87. [Google Scholar] [CrossRef]
- Domingues, D.; De Beni, M.; Dias Lauritano, R. Rumenology; Springer International Publishing: Basel, Switzerland, 2016; p. 314. [Google Scholar]
- Smith, R.H. Nuclear Techniques in Tropical Animal Diseases and Nutritional Disorders; International Atomic Energy Agency: Vienna, Austria, 1984; pp. 79–96. [Google Scholar]
Component | Grassland’s Phenological Stage | SEM 1 | p Value | ||
---|---|---|---|---|---|
Vegetative | Reproductive | Dry | |||
DMA (kg/ha) | 1361.9 c | 2173.1 b | 3549.6 a | 226.47 | <0.0001 |
DM (%) | 69.20 a | 63.50 b | 57.56 c | 0.91 | <0.0001 |
ME (MJ/kg) | 10.20 a | 9.22 b | 8.19 c | 0.16 | <0.0001 |
CP (%) | 29.15 a | 15.77 b | 10.39 c | 1.42 | <0.0001 |
P (%) | 0.54 a | 0.37 b | 0.23 c | 0.03 | <0.0001 |
Species | Grassland’s Phenological Stage | ||
---|---|---|---|
Vegetative | Reproductive | Dry | |
Perennials grasses | |||
Phalaris aquatica L. | nd | nd | 0.6 ± 2.0 |
Thinopyrum ponticum (Podp.) Z.W. Liu and R. R. -C. Wang | nd | nd | 2.9 ± 9.2 |
Annual grasses | |||
Bromus berterianus Colla. | 4.1 ± 13.1 | 18.4 ± 18.5 | 10.8 ± 18.0 |
Bromus hordeaceus L. | nd | 5.8 ± 17.3 | 5.9 ± 18.6 |
Hordeum murinum L. subsp. leporinum (Link) Arcang. | 41.6 ± 25.0 | 18.5 ± 20.0 | 33.2 ± 32.2 |
Phalaris minor Retz | nd | 2.6 ± 6.2 | 0.3 ± 0.6 |
Vulpia sp. | 9.0 ± 15.1 | 5.7 ± 7.6 | 11.4 ± 15.7 |
Lolium multiflorum Lam. | nd | nd | 0.5 ± 1.4 |
Poa annua L. | 4.4 ± 13.3 | 0.4 ± 1.1 | 0.06 ± 0.09 |
Briza minor L. | nd | 0.02 ± 0.1 | |
Total grasses | 59.1 ± 24.4 | 51.6 ± 19.2 | 65.6 ± 25.7 |
Graminoids | |||
Juncus bufonius L. | nd | 0.9 ± 2.9 | 0.2 ± 0.4 |
Total graminoids | nd | 0.9 ± 2.9 | 0.2 ± 0.4 |
Annual herbs | |||
Amsinckia menziessi (Lehm.) A. Nelson and J.F. Macbr. | 4.9 ± 8.4 | 2.1 ± 5.6 | 1.4 ± 2.4 |
Anthemis cotula L. | 0.2 ± 0.6 | 1.3 ± 3.5 | 0.6 ± 1.1 |
Brassica rapa L. | nd | 2.5 ± 5.3 | 0.7 ± 2.3 |
Chenopodium album L. | nd | 0.03 ± 0.1 | 1.8 ± 5.6 |
Chenopodium murale L. | nd | nd | 2.7 ± 8.4 |
Capsella bursa pastoris L. | 2.6 ± 4.1 | 2.2 ± 2.2 | 1.1 ± 1.6 |
Erodium spp 2. | nd | nd | 24.0 ± 27.0 |
Erodium botrys (Cav.) Bert. | 0.5 ± 1.2 | 1.0 ± 2.8 | nd |
Erodium cicutarium (L.) L’Hér. | nd | 3.2 ± 9.5 | nd |
Erodium moschatum (L.) L´Hér. | 29.8 ± 22.4 | 33.8 ± 23.5 | nd |
Hypochaeris sp. | 0.6 ± 1.4 | nd | nd |
Malva parviflora L. | 1.2 ± 3.3 | nd | 0.1 ± 0.2 |
Medicago polymorpha L. | 0.02 ± 0.04 | 0.8 ± 2.0 | 0.6 ± 1.8 |
Plagiobothrys procumbens (Colla) Colla. | nd | 0.5 ± 1.2 | nd |
Sisymbrium irio L. | 0.1 ± 0.2 | nd | nd |
Sonchus sp. | nd | nd | 1.3 ± 3.6 |
Urtica urens L. | 0.9 ± 2.8 | 0.01 ± 0.04 | nd |
Other annual herbs | 0.1 ± 0.2 | 0.3 ± 1.0 | nd |
Total annual herbs | 41.0 ± 24.4 | 47.6 ± 21.3 | 34.2 ± 25.9 |
Component 1 | Grassland’s Phenological Stage | SEM 2 | p Value | ||
---|---|---|---|---|---|
Vegetative | Reproductive | Dry | |||
DMI (kg/day) | 1.60 a | 1.56 a | 1.51 b | 0.01 | 0.0123 |
DMSdiet (%) | 70.80 a | 64.10 b | 60.80 c | 0.28 | <0.0001 |
MEdiet (MJ/kg) | 10.47 a | 9.32 b | 8.76 c | 0.22 | <0.0001 |
CPdiet (g/kg) | 324.24 a | 187.76 b | 134.78 c | 2.41 | <0.0001 |
Pdiet (g/kg) | 4.43 a | 3.73 b | 1.98 c | 0.03 | <0.0001 |
MEI (MJ/day) | 16.78 a | 14.56 b | 13.18 c | 0.46 | <0.0001 |
CPI (g/day) | 519.75 a | 293.38 b | 202.98 c | 40.31 | <0.0001 |
PI (g/day) | 7.10 a | 5.82 b | 2.98 c | 0.52 | <0.0001 |
Faecal Indices | DAPAf | FN | FP |
---|---|---|---|
DAPAf | --- | r = 0.608, p ≤ 0.05, n = 12 | r = 0.610, p ≤ 0.05, n = 12 |
FN | r = 0.608, p ≤ 0.05, n = 12 | --- | r = 0.916, p ≤ 0.01, n = 12 |
FP | r = 0.610, p ≤ 0.05, n = 12 | r = 0.916, p ≤ 0.01, n = 12 | --- |
Intake 1 | Fecal Index 2 | Regression Equation | n | R2 | SEM 3 | p Value |
---|---|---|---|---|---|---|
DMI | DAPAf | Y = 1.382 + 0.225X | 11 | 0.481 | 0.039 | 0.0179 |
FN | Y = 1.387 + 0.043X | 12 | 0.635 | 0.032 | 0.0019 | |
FP | Y = 1.468 + 0.089X | 12 | 0.775 | 0.025 | 0.0002 | |
MEI | DAPAf | Y = 10.051 + 6.147X | 11 | 0.358 | 1.390 | 0.0518 |
FN | Y = 8.379 + 1.613X | 12 | 0.927 | 0.447 | <0.0001 | |
FP | Y = 11.815 + 3.040X | 12 | 0.917 | 0.478 | <0.0001 | |
CPI | DAPAf | Y = −54.702 + 505.641X | 11 | 0.311 | 127.091 | 0.0746 |
FN | Y = −237.626 + 143.784X | 12 | 0.943 | 34.953 | <0.0001 | |
FP | Y = 76.742 + 262.935X | 12 | 0.878 | 51.148 | <0.0001 | |
PI | DAPAf | Y = −0.844 + 7.764X | 11 | 0.431 | 1.505 | 0.0281 |
FN | Y = −1.646 + 1.733X | 12 | 0.817 | 0.811 | 0.0001 | |
FP | Y = 1.848 + 3.467X | 12 | 0.910 | 0.568 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orellana, C.; Parraguez, V.H.; Arana, W.; Escanilla, J.; Zavaleta, C.; Castellaro, G. Use of Fecal Indices as a Non-Invasive Tool for Nutritional Evaluation in Extensive-Grazing Sheep. Animals 2020, 10, 46. https://doi.org/10.3390/ani10010046
Orellana C, Parraguez VH, Arana W, Escanilla J, Zavaleta C, Castellaro G. Use of Fecal Indices as a Non-Invasive Tool for Nutritional Evaluation in Extensive-Grazing Sheep. Animals. 2020; 10(1):46. https://doi.org/10.3390/ani10010046
Chicago/Turabian StyleOrellana, Carla, Víctor Hugo Parraguez, Wilmer Arana, Juan Escanilla, Carmen Zavaleta, and Giorgio Castellaro. 2020. "Use of Fecal Indices as a Non-Invasive Tool for Nutritional Evaluation in Extensive-Grazing Sheep" Animals 10, no. 1: 46. https://doi.org/10.3390/ani10010046
APA StyleOrellana, C., Parraguez, V. H., Arana, W., Escanilla, J., Zavaleta, C., & Castellaro, G. (2020). Use of Fecal Indices as a Non-Invasive Tool for Nutritional Evaluation in Extensive-Grazing Sheep. Animals, 10(1), 46. https://doi.org/10.3390/ani10010046