Exploring Additive, Synergistic or Antagonistic Effects of Natural Plant Extracts on In Vitro Beef Feedlot-Type Rumen Microbial Fermentation Conditions
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol and Treatments
2.2. Sample Collection and Chemical Analyses
2.3. Statistical Analyses
3. Results
3.1. Experiment 1 (Individual Essential Oils)
3.2. Experiment 2 (Combination of Essential Oils)
4. Discussion
4.1. Experiment 1 (Individual Essential Oils)
4.2. Experiment 2 (Combination of Essential Oils)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited Review: Essential oils as modifiers of rumen microbial fermentation. J. Anim. Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Benchaar, C.; McAllister, T.A.; Chouinard, P.Y. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 2008, 91, 4765–4777. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Kamel, C. Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim. Feed Sci. Technol. 2005, 123–124, 597–613. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of a specific blend of essential oil compounds and the type of diet on rumen microbial fermentation and nutrient flow from a continuous culture system. Anim. Feed Sci. Technol. 2005, 119, 29–41. [Google Scholar] [CrossRef]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 2005, 83, 2572–2579. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules. 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2013, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Beef Cattle, 7th rev. ed; Nat. Acad. Press: AcadWashington DC, USA, 1996. [Google Scholar]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [PubMed]
- Jouany, J.P. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci. Aliment. 1982, 2, 131–144. [Google Scholar]
- Benchaar, C.; Duynisveld, J.L.; Charmley, E. Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Can. J. Anim. Sci. 2006, 86, 91–96. [Google Scholar] [CrossRef]
- Nanon, A.; Suksombat, W.; Yang, W.Z. Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Anim. Feed Sci. Technol. 2014, 196, 50–59. [Google Scholar] [CrossRef]
- Wallace, R.J.; Czerkawski, J.W.; Breckenridge, G. Effect of monensin on the fermentation of basal rations in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 1981, 46, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Chalupa, W.; Corbett, W.; Brethour, J.R. Effects of monensin and amicloral on rumen fermentation. J. Anim. Sci. 1980, 51, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Castillejos, L.; Calsamiglia, S.; Ferret, A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Catrenich, C.E.; Charbonneau, D.L.; Bartolo, R.G. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J. Appl. Microbiol. 2003, 94, 240–247. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Martín-Tereso, J.; Ter Wijlen, H. In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim. Feed Sci. Technol. 2008, 145, 259–270. [Google Scholar] [CrossRef]
- Macheboeuf, D.; Morgavi, D.P.; Papon, Y.; Mousset, J.L.; Arturo-Schaan, M. Dose–response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim. Feed Sci. Technol. 2008, 145, 335–350. [Google Scholar] [CrossRef]
- Davidson, P.M.; Naidu, A.S. Phyto-phenols. In Natural Food Antimicrobial Systems; CRC Press: Boca Raton, FL, USA, 2000; pp. 265–293. [Google Scholar]
- Hristov, A.N.; Ropp, J.K.; Zaman, S.; Melgar, A. Effects of essential oils on in vitro ruminal fermentation and ammonia release. Anim. Feed Sci. Technol. 2008, 144, 55–64. [Google Scholar] [CrossRef]
- Gunal, M.; Ishlak, A.; AbuGhazaleh, A.A.; Khattab, W. Essential oils effect on rumen fermentation and biohydrogenation under in vitro conditions. Czech., J. Anim. Sci. 2014, 59, 450–459. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Kamel, C. Plant Extracts Affect In Vitro Rumen Microbial Fermentation. J. Dairy Sci. 2006, 89, 761–771. [Google Scholar] [CrossRef]
- Devant, M.; Ferret, A.; Gasa, J.; Calsamiglia, S.; Casals, R. Effects of protein concentration and degradability on performance, ruminal fermentation, and nitrogen metabolism in rapidly growing heifers fed high-concentrate diets from 100 to 230 kg body weight. J. Anim. Sci. 2000, 78, 1667–1676. [Google Scholar] [CrossRef]
Treatment Number | Combination of Essential Oils (%) | |||
---|---|---|---|---|
Tea-tree | Clove Bud | Thyme | Oregano | |
1 | 75 | 25 | - | - |
2 | 75 | - | 25 | - |
3 | 75 | - | - | 25 |
4 | 50 | 50 | - | - |
5 | 50 | - | 25 | 25 |
6 | 50 | 25 | 25 | - |
7 | 50 | 25 | - | 25 |
8 | 25 | 50 | 25 | - |
9 | 25 | 50 | - | 25 |
10 | 25 | 75 | - | - |
11 | - | 75 | 25 | - |
12 | - | 75 | - | 25 |
13 | - | 50 | 25 | 25 |
Treatment | pH | NH3, mg/dL | Total VFA, mM | Acetate, % | Propionate, % | Butyrate, % | Valerate, % | BCVFA 2, mM | A:P 3 |
---|---|---|---|---|---|---|---|---|---|
CTR | 5.33 | 13.2 | 133.2 | 61.8 | 18.8 | 13.4 | 3.46 | 3.47 | 3.28 |
TeTr10 a | 5.32 | 13.2 | 132.7 | 61.3 | 18.1 | 14.4 | 3.53 | 3.41 | 3.38 |
TeTr50 b | 5.33 | 13.2 | 129.0 | 56.5 * | 22.2 * | 15.2 * | 3.56 | 3.26 | 2.55 * |
TeTr200 c | 5.33 | 13.6 | 127.0 | 52.4 * | 25.2 * | 16.2 * | 3.53 | 3.54 | 2.11 * |
TeTr400 d | 5.38 | 13.2 | 127.8 | 60.2 | 18.3 | 15.2 * | 3.81 | 3.15 | 3.28 |
Ore10 a | 5.33 | 13.7 | 135.9 | 59.9 | 19.9 | 14.4 | 3.36 | 3.32 | 3.07 |
Ore50 b | 5.33 | 13.5 | 132.6 | 56.0 * | 23.3 * | 15.0 * | 3.25 | 3.29 | 2.43 * |
Ore200 c | 5.33 | 13.6 | 128.7 | 54.8 * | 23.5 * | 15.5 * | 3.53 | 3.32 | 2.33 * |
Ore400 d | 5.44 * | 13.6 | 131.1 | 60.8 | 17.6 | 15.6 * | 3.49 | 3.19 | 3.44 |
Clo10 a | 5.31 | 13.3 | 135.9 | 60.6 | 19.0 | 14.6 | 3.23 | 3.33 | 3.19 |
Clo50 b | 5.33 | 13.5 | 133.0 | 60.9 | 18.8 | 14.6 | 3.12 | 3.40 | 3.24 |
Clo200 c | 5.33 | 13.5 | 133.1 | 60.3 | 19.2 | 14.7 * | 3.22 | 3.41 | 3.14 |
Clo400 d | 5.44 * | 13.9 | 127.2 | 61.8 | 16.4 * | 15.8 * | 3.46 | 3.22 | 3.77 * |
MON | 5.44 * | 11.1 * | 130.0 | 53.9 * | 28.2 * | 12.5 | 3.39 | 2.64 * | 1.99 * |
SEM 1 | 0.02 | 0.80 | 2.63 | 0.95 | 0.83 | 0.28 | 0.14 | 0.20 | 0.10 |
CTR | 5.26 | 17.4 | 131.5 | 61.8 | 20.0 | 14.3 | 1.60 | 2.90 | 3.14 |
Thy10 a | 5.13 | 17.3 | 130.1 | 63.1 | 20.4 | 13.0 | 1.46 | 2.48 | 3.14 |
Thy50 b | 5.18 | 17.9 | 127.0 | 58.4 * | 24.8 * | 13.3 | 1.49 | 2.59 | 2.37 * |
Thy200 c | 5.25 | 16.8 | 127.0 | 58.3 * | 26.0 * | 12.2 * | 1.37 | 2.59 | 2.26 * |
Thy400 d | 5.37 | 14.4 * | 125.7 * | 64.9 * | 20.0 | 11.2 * | 1.59 | 2.44 * | 3.30 |
Ros10 a | 5.16 | 16.9 | 128.2 | 63.1 | 20.6 | 12.9 | 1.44 | 2.47 | 3.11 |
Ros50 b | 5.15 | 17.1 | 128.0 | 63.1 | 20.4 | 12.9 | 1.66 | 2.59 | 3.14 |
Ros200 c | 5.31 | 17.2 | 127.1 | 63.7 | 20.6 | 12.3 * | 1.39 | 2.56 | 3.17 |
Ros400 d | 5.31 | 17.4 | 125.3 * | 64.3 * | 20.2 | 11.6 * | 1.49 | 2.85 | 3.30 |
Sag10 a | 5.22 | 17.4 | 128.2 | 63.7 | 20.0 | 12.4 | 1.37 | 3.28 | 3.11 |
Sag50 b | 5.19 | 17.3 | 129.3 | 63.7 | 20.4 | 12.3 | 1.37 | 3.31 | 3.14 |
Sag200 c | 5.13 | 17.4 | 127.5 | 63.7 | 20.8 | 11.8 * | 1.33 | 3.34 | 3.08 |
Sag400 d | 5.16 | 14.5 * | 125.9 * | 60.7 | 22.4 * | 12.9 | 1.43 | 3.16 | 2.72 * |
MON | 5.24 | 11.3 * | 134.1 | 55.9 * | 25.8 * | 14.6 | 1.73 | 2.84 | 2.20 * |
SEM 1 | 0.05 | 0.71 | 2.00 | 0.71 | 0.44 | 0.70 | 0.14 | 0.16 | 0.08 |
Treatment | pH | NH3, mg/dL | VFA, mM | Acetate, % | Propionate, % | Butyrate, % | Valerate, % | BCVFA 2, mM | A:P 3 |
---|---|---|---|---|---|---|---|---|---|
CTR | 5.33 | 27.5 | 130.8 | 62.0 | 21.0 | 14.0 | 1.08 | 2.47 | 2.94 |
T1 (10) a | 5.32 | 25.2 | 129.1 | 61.5 | 21.3 | 14.3 | 1.05 | 2.54 | 2.91 |
T1 (50) b | 5.30 | 25.2 | 128.2 | 61.2 | 21.3 | 14.7 | 1.10 | 2.41 | 2.87 |
T1 (200) c | 5.30 | 26.5 | 128.6 | 58.6 * | 23.6 * | 14.3 | 1.20 | 2.36 | 2.48 * |
T1 (400) d | 5.28+ | 25.2 | 126.5 | 58.3 * | 24.4 * | 14.4 | 1.14 | 2.40 | 2.39 * |
MON | 5.29+ | 25.2 * | 123.5 + | 58.9 * | 25.9 * | 12.2 + | 1.29 | 2.10 * | 2.28 * |
SEM 1 | 0.01 | 1.34 | 2.70 | 0.68 | 0.53 | 0.51 | 0.09 | 0.05 | 0.09 |
CTR | 5.38 | 27.0 | 116.9 | 60.1 | 20.8 | 15.4 | 1.24 | 2.64 | 2.89 |
T2 (10) a | 5.39 | 24.9 | 116.7 | 60.1 | 21.5 | 14.6 | 1.30 | 2.69 | 2.82 |
T2 (50) b | 5.36 | 26.3 | 116.3 | 59.6 | 21.5 | 15.6 | 1.19 | 2.58 | 2.80 |
T2 (200) c | 5.38 | 26.1 | 114.6 | 59.6 | 21.7 | 15.0 | 1.38 | 2.60 | 2.75 * |
T2 (400) d | 5.37 | 27.0 | 115.0 | 56.9 * | 24.2 * | 15.4 | 1.36 | 2.59 | 2.36 * |
T3 (10) a | 5.36 | 27.3 | 115.7 | 60.0 | 20.6 | 15.6 | 1.20 | 2.64 | 2.88 |
T3 (50) b | 5.38 | 26.6 | 116.2 | 59.7 | 21.5 | 15.3 | 1.33 | 2.62 | 2.78 |
T3 (200) c | 5.36 | 26.0 | 114.9 | 59.3 | 21.5 | 14.8 | 1.16 | 2.59 | 2.81 |
T3 (400) d | 5.37 | 26.7 | 116.5 | 57.3 * | 24.0 * | 15.1 | 1.48 | 2.58 | 2.40 * |
MON | 5.36 | 22.7 | 114.2 | 57.5 * | 26.5 * | 2.03 * | 0.98 | 2.29 * | 2.17 * |
SEM1 | 0.01 | 1.34 | 2.70 | 0.68 | 0.53 | 0.51 | 0.09 | 0.05 | 0.09 |
CTR | 5.40 | 24.9 | 126.0 | 63.8 | 18.1 | 14.6 | 1.09 | 2.95 | 3.53 |
T4 (10) a | 5.39 | 25.6 | 127.2 | 62.7 | 19.0 | 14.7 | 1.10 | 3.01 | 3.30 |
T4 (50) b | 5.34 | 25.9 | 127.2 | 62.3 | 19.6 | 14.5 | 1.26 | 3.04 | 3.19 |
T4 (200) c | 5.38 | 24.9 | 127.2 | 63.2 | 18.7 | 14.6 | 1.18 | 2.90 | 3.41 |
T4 (400) d | 5.31 | 23.0 | 125.3 | 59.8 * | 22.5 * | 14.1 | 1.14 | 3.10 | 2.66 * |
T5 (10) a | 5.37 | 24.7 | 124.9 | 62.5 | 19.6 | 14.6 | 1.11 | 2.74 | 3.20 |
T5 (50) b | 5.33 | 25.1 | 127.2 | 63.0 | 18.7 | 14.9 | 1.14 | 2.84 | 3.37 |
T5 (200) c | 5.38 | 24.2 | 125.6 | 60.2 * | 21.9 * | 14.1 | 1.28 | 2.98 | 2.75 * |
T5 (400) d | 5.35 | 21.4 | 127.2 | 58.8 * | 22.7 * | 15.2 | 1.20 | 2.93 | 2.60 * |
T6 (10) a | 5.41 | 27.6 | 129.2 | 61.6 | 20.6 | 14.9 | 1.22 | 2.28 | 3.02 |
T6 (50) b | 5.37 | 27.7 | 125.9 | 61.1 | 20.8 | 14.1 | 1.20 | 2.37 | 3.05 |
T6 (200) c | 5.39 | 28.1 | 128.6 | 62.1 | 21.2 | 14.7 | 1.21 | 2.34 | 2.92 |
T6 (400) d | 5.38 | 27.1 | 127.2 | 59.3 * | 21.0 | 14.6 | 1.28 | 2.39 | 2.58 |
MON | 5.37 | 24.1 * | 123.5 + | 59.6 * | 25.1 * | 12.3 + | 1.31 | 2.03 * | 2.38 * |
SEM 1 | 0.01 | 1.12 | 2.70 | 0.90 | 0.69 | 0.48 | 0.10 | 0.08 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fandiño, I.; Fernandez-Turren, G.; Ferret, A.; Moya, D.; Castillejos, L.; Calsamiglia, S. Exploring Additive, Synergistic or Antagonistic Effects of Natural Plant Extracts on In Vitro Beef Feedlot-Type Rumen Microbial Fermentation Conditions. Animals 2020, 10, 173. https://doi.org/10.3390/ani10010173
Fandiño I, Fernandez-Turren G, Ferret A, Moya D, Castillejos L, Calsamiglia S. Exploring Additive, Synergistic or Antagonistic Effects of Natural Plant Extracts on In Vitro Beef Feedlot-Type Rumen Microbial Fermentation Conditions. Animals. 2020; 10(1):173. https://doi.org/10.3390/ani10010173
Chicago/Turabian StyleFandiño, Ignacio, Gonzalo Fernandez-Turren, Alfred Ferret, Diego Moya, Lorena Castillejos, and Sergio Calsamiglia. 2020. "Exploring Additive, Synergistic or Antagonistic Effects of Natural Plant Extracts on In Vitro Beef Feedlot-Type Rumen Microbial Fermentation Conditions" Animals 10, no. 1: 173. https://doi.org/10.3390/ani10010173
APA StyleFandiño, I., Fernandez-Turren, G., Ferret, A., Moya, D., Castillejos, L., & Calsamiglia, S. (2020). Exploring Additive, Synergistic or Antagonistic Effects of Natural Plant Extracts on In Vitro Beef Feedlot-Type Rumen Microbial Fermentation Conditions. Animals, 10(1), 173. https://doi.org/10.3390/ani10010173