Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae
Abstract
:1. Introduction
2. Bacteriophages Infecting Dickeya and Pectobacterium spp.: Overview and Classification
Principles of Genomic Comparison
3. Morphotype Myoviridae
3.1. The Ackermannviridae Family
3.2. The Chaseviridae Family
3.3. The Vequintavirinae Subfamily
3.4. The Ounavirinae Subfamily
3.5. The Tevenvirinae Subfamily
3.6. The Mimasvirus Genus
3.7. The Alexandravirus and Salmondvirus Genera
3.8. The Peatvirus Genus
4. Morphotype Podoviridae
4.1. The Autographiviridae Family
4.2. The Schitoviridae Family
4.3. The Kafunavirus Genus
4.4. Pectobacterium Phage DU_PP_III
5. Morphotype Siphoviridae
5.1. The Demerecviridae Family
5.2. Unclassified Siphoviridae
6. How Can the Knowledge of Phage Diversity Be Used in Practice?
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- van der Wolf, J.M.; de Boer, S.H.; Czajkowski, R.; Cahill, G.; van Gijsegem, F.; Davey, T.; Dupuis, B.; Ellicott, J.; Jafra, S.; Kooman, M.; et al. Management of Diseases Caused by Pectobacterium and Dickeya Species. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 175–216. [Google Scholar] [CrossRef]
- Toth, I.K.; Barny, M.; Brurberg, M.B.; Condemine, G.; Czajkowski, R.; Elphinstone, J.G.; Helias, V.; Johnson, S.B.; Moleleki, L.N.; Pirhonen, M.; et al. Pectobacterium and Dickeya: Environment to Disease Development. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 39–84. [Google Scholar] [CrossRef]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The Future of Phage Biocontrol in Integrated Plant Protection for Sustainable Crop Production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar] [CrossRef]
- Svircev, A.; Roach, D.; Castle, A. Framing the Future with Bacteriophages in Agriculture. Viruses 2018, 10, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, I.K.; Barny, M.; Czajkowski, R.; Elphinstone, J.G.; Li, X. (Sean); Pédron, J.; Pirhonen, M.; van Gijsegem, F. Pectobacterium and Dickeya: Taxonomy and Evolution. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 13–37. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Q.; Loria, R. A Re-Evaluation of the Taxonomy of Phytopathogenic Genera Dickeya and Pectobacterium Using Whole-Genome Sequencing Data. Syst. Appl. Microbiol. 2016, 39, 252–259. [Google Scholar] [CrossRef]
- Gorbalenya, A.E.; Krupovic, M.; Mushegian, A.; Kropinski, A.M.; Siddell, S.G.; Varsani, A.; Adams, M.J.; Davison, A.J.; Dutilh, B.E.; Harrach, B.; et al. The New Scope of Virus Taxonomy: Partitioning the Virosphere into 15 Hierarchical Ranks. Nat. Microbiol. 2020, 5, 668. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol. Mol. Biol. Rev. 2020, 84, e00061–19. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.M.B.; Hill, C. A Place for Viruses on the Tree of Life. Front. Microbiol. 2021, 11, 3449. [Google Scholar] [CrossRef]
- Rohwer, F.; Edwards, R. The Phage Proteomic Tree: A Genome-Based Taxonomy for Phage. J. Bacteriol. 2002, 184, 4529–4535. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Kropinski, A.V.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Zrelovs, N.; Dislers, A.; Kazaks, A. Motley Crew: Overview of the Currently Available Phage Diversity. Front. Microbiol. 2020, 11, 2417. [Google Scholar] [CrossRef]
- Czajkowski, R. Bacteriophages of Soft Rot Enterobacteriaceae —a Minireview. Fems Microbiol. Lett. 2016, 363, fnv230. [Google Scholar] [CrossRef] [Green Version]
- Hyman, P.; Abedon, S.T. Bacteriophage Host Range and Bacterial Resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. [Google Scholar] [PubMed]
- Chan, B.K.; Abedon, S.T. Phage Therapy Pharmacology. Phage Cocktails. Adv. Appl. Microbiol. 2012, 78, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage Cocktails and the Future of Phage Therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Meaden, S.; Paszkiewicz, K.; Koskella, B. The Cost of Phage Resistance in a Plant Pathogenic Bacterium Is Context-Dependent. Evolution 2015, 69, 1321–1328. [Google Scholar] [CrossRef]
- Örmälä, A.-M.; Jalasvuori, M. Phage Therapy: Should Bacterial Resistance to Phages Be a Concern, Even in the Long Run? Bacteriophage 2013, 3, e24219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Muñoz, S.L.; Koskella, B. Bacteria-Phage interactions in natural environments. In Advances in Applied Microbiology; Academic Press Inc.: Cambridge, MA, USA; Volume 89, pp. 135–183. 2014. [Google Scholar] [CrossRef]
- Wright, R.C.T.; Friman, V.P.; Smith, M.C.M.; Brockhurst, M.A. Cross-Resistance Is Modular in Bacteria–Phage Interactions. PLoS Biol. 2018, 16, e2006057. [Google Scholar] [CrossRef]
- Isaev, A.B.; Musharova, O.S.; Severinov, K.V. Microbial Arsenal of Antiviral Defenses – Part I. Biochem. (Mosc.) 2021, 86, 319–337. [Google Scholar] [CrossRef]
- Isaev, A.B.; Musharova, O.S.; Severinov, K.V. Microbial Arsenal of Antiviral Defenses. Part II. Biochem. (Mosc.) 2021, 86, 449–470. [Google Scholar] [CrossRef]
- Short, F.L.; Akusobi, C.; Broadhurst, W.R.; Salmond, G.P.C. The Bacterial Type III Toxin-Antitoxin System, ToxIN, Is a Dynamic Protein-RNA Complex with Stability-Dependent Antiviral Abortive Infection Activity. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Blower, T.R.; Chai, R.; Przybilski, R.; Chindhy, S.; Fang, X.; Kidman, S.E.; Tan, H.; Luisi, B.F.; Fineran, P.C.; Salmond, G.P.C. Evolution of Pectobacterium Bacteriophage ΦM1 to Escape Two Bifunctional Type III Toxin-Antitoxin and Abortive Infection Systems through Mutations in a Single Viral Gene. Appl. Environ. Microbiol. 2017, 83, e03229–16. [Google Scholar] [CrossRef] [Green Version]
- Watson, B.N.J.; Staals, R.H.J.; Fineran, P.C. CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. mBio 2018, 9, e02406–17. [Google Scholar] [CrossRef] [Green Version]
- Watson, B.N.J.; Vercoe, R.B.; Salmond, G.P.C.; Westra, E.R.; Staals, R.H.J.; Fineran, P.C. Type I-F CRISPR-Cas Resistance against Virulent Phages Results in Abortive Infection and Provides Population-Level Immunity. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pinilla-Redondo, R.; Shehreen, S.; Marino, N.D.; Fagerlund, R.D.; Brown, C.M.; Sørensen, S.J.; Fineran, P.C.; Bondy-Denomy, J. Discovery of Multiple Anti-CRISPRs Highlights Anti-Defense Gene Clustering in Mobile Genetic Elements. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Watson, B.N.J.; Easingwood, R.A.; Tong, B.; Wolf, M.; Salmond, G.P.C.; Staals, R.H.J.; Bostina, M.; Fineran, P.C. Different Genetic and Morphological Outcomes for Phages Targeted by Single or Multiple CRISPR-Cas Spacers. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180090. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, R. May the Phage Be with You? Prophage-like Elements in the Genomes of Soft Rot Pectobacteriaceae: Pectobacterium Spp. and Dickeya Spp. Front. Microbiol. 2019, 10, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoledowska, S.; Motyka-Pomagruk, A.; Sledz, W.; Mengoni, A.; Lojkowska, E. High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genom. 2018, 19, 751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golanowska, M.; Potrykus, M.; Motyka-Pomagruk, A.; Kabza, M.; Bacci, G.; Galardini, M.; Bazzicalupo, M.; Makalowska, I.; Smalla, K.; Mengoni, A.; et al. Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species. Front. Microbiol. 2018, 9, 1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolesnik, L.V. Adsorption and Reproduction of the Erwinia Carotovora Bacteriophages. Mikrobiol. Zhurnal 1976, 38, 308–311. [Google Scholar]
- Kishko, Y.G.; Ruban, V.I.; Tovkach, F.I.; Murashchyk, I.G.; Danileychenko, V.V. Structure of Erwinia Carotovora Temperate Bacteriophage 59 and Its DNA. J. Virol. 1983, 46, 1018–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faltus, I.I.; Kishko Ya., G. Physiochemical Properties of DNA of Virulent and Moderate Erwinia Carotovora Phages. Mikrobiol. Zhurnal 1980, 42, 609–614. [Google Scholar]
- Comeau, A.M.; Tremblay, D.; Moineau, S.; Rattei, T.; Kushkina, A.I.; Tovkach, F.I.; Krisch, H.M.; Ackermann, H.-W. Phage Morphology Recapitulates Phylogeny: The Comparative Genomics of a New Group of Myoviruses. PLoS ONE 2012, 7, e40102. [Google Scholar] [CrossRef] [Green Version]
- Korol, N.; van den Bossche, A.; Romaniuk, L.; Noben, J.P.; Lavigne, R.; Tovkach, F. Experimental Evidence for Proteins Constituting Virion Components and Particle Morphogenesis of Bacteriophage ZF40. Fems Microbiol. Lett. 2016, 363, fnw042. [Google Scholar] [CrossRef] [Green Version]
- Schoonejans, E.; Expert, D.; Toussaint, A. Characterization and Virulence Properties of Erwinia Chrysanthemi Lipopolysaccharide-Defective, Phi EC2-Resistant Mutants. J. Bacteriol. 1987, 169, 4011–4017. [Google Scholar] [CrossRef] [Green Version]
- Hugouvieux-Cotte-Pattat, N.; Reverchon, S.; Robert-Baudouy, J. Expanded Linkage Map of Erwinia Chrysanthemi Strain 3937. Mol. Microbiol. 1989, 3, 573–581. [Google Scholar] [CrossRef]
- Potrykus, M.; Golanowska, M.; Hugouvieux-Cotte-Pattat, N.; Lojkowska, E. Regulators Involved in Dickeya Solani Virulence, Genetic Conservation, and Functional Variability. Mol. Plant-Microbe Interact. Mpmi 2014, 27, 700–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard-Varona, C.; Hargreaves, K.R.; Abedon, S.T.; Sullivan, M.B. Lysogeny in Nature: Mechanisms, Impact and Ecology of Temperate Phages. ISME J. 2017, 11, 1511–1520. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.M.; van Vaerenbergh, J.; Vandenheuvel, D.; Dunon, V.; Ceyssens, P.J.; de Proft, M.; Kropinski, A.M.; Noben, J.P.; Maes, M.; Lavigne, R. T4-Related Bacteriophage LIMEstone Isolates for the Control of Soft Rot on Potato Caused by “Dickeya Solani”. PloS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Lee, J.-H.; Shin, H.; Ji, S.; Roh, E.; Jung, K.; Ryu, S.; Choi, J.; Heu, S. Complete Genome Sequence of Pectobacterium Carotovorum Subsp. Carotovorum Bacteriophage My1. J. Virol. 2012, 86, 11410–11411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttimer, C.; Hendrix, H.; Oliveira, H.; Casey, A.; Neve, H.; McAuliffe, O.; Ross, R.P.; Hill, C.; Noben, J.-P.; O’Mahony, J.; et al. Things Are Getting Hairy: Enterobacteria Bacteriophage VB_PcaM_CBB. Front. Microbiol. 2017, 8, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.; Qiang, Y.; Zhang, W. ANItools Web: A Web Tool for Fast Genome Comparison within Multiple Bacterial Strains. Database: J. Biol. Databases Curation 2016. [Google Scholar] [CrossRef]
- Lee, I.; Kim, Y.O.; Park, S.C.; Chun, J. OrthoANI: An Improved Algorithm and Software for Calculating Average Nucleotide Identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Ågren, J.; Sundström, A.; Håfström, T.; Segerman, B. Gegenees: Fragmented Alignment of Multiple Genomes for Determining Phylogenomic Distances and Genetic Signatures Unique for Specified Target Groups. PloS ONE 2012, 7, e39107. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.E.; Mau, B.; Perna, N.T. ProgressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PloS ONE 2010, 5, e11147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-Based Phylogeny and Classification of Prokaryotic Viruses. Bioinform. (Oxf. Engl.) 2017, 33, 3396–3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses 2020, 12, 1268. [Google Scholar] [CrossRef]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.Fr: Robust Phylogenetic Analysis for the Non-Specialist. Nucleic Acids Res. 2008, 36 (Suppl. 2), W465–W469. [Google Scholar] [CrossRef]
- Gascuel, O. BIONJ: An Improved Version of the NJ Algorithm Based on a Simple Model of Sequence Data. Mol. Biol. Evol. 1997, 14, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Geneious | Bioinformatics Software for Sequence Data Analysis. Available online: https://www.geneious.com/ (accessed on 15 June 2021).
- Kang, H.S.; McNair, K.; Cuevas, D.; Bailey, B.; Segall, A.; Edwards, R. Prophage Genomics Reveals Patterns in Phage Genome Organization and Replication. bioRxiv 2017, 114819. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.L. Bacteriophage-Mediated Horizontal Gene Transfer: Transduction. Bacteriophages 2017, 1–42. [Google Scholar] [CrossRef]
- Rokyta, D.R.; Burch, C.L.; Caudle, S.B.; Wichman, H.A. Horizontal Gene Transfer and the Evolution of Microvirid Coliphage Genomes. J. Bacteriol. 2006, 188, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Glazko, G.; Makarenkov, V.; Liu, J.; Mushegian, A. Evolutionary History of Bacteriophages with Double-Stranded DNA Genomes. Biol. Direct 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Misawa, K.; Kuma, K.K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. TrimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Darriba, Di.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinform. (Oxf. Engl. ) 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian Phylogenetic Inference under Mixed Models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Bamford, D.H.; Grimes, J.M.; Stuart, D.I. What Does Structure Tell Us about Virus Evolution? Curr. Opin. Struct. Biol. 2005, 15, 655–663. [Google Scholar] [CrossRef]
- Smith, K.C.; Castro-Nallar, E.; Fisher, J.N.B.; Breakwell, D.P.; Grose, J.H.; Burnett, S.H. Phage Cluster Relationships Identified through Single Gene Analysis. Bmc Genom. 2013, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Low, S.J.; Džunková, M.; Chaumeil, P.A.; Parks, D.H.; Hugenholtz, P. Evaluation of a Concatenated Protein Phylogeny for Classification of Tailed Double-Stranded DNA Viruses Belonging to the Order Caudovirales. Nat. Microbiol. 2019, 4, 1306–1315. [Google Scholar] [CrossRef]
- Gontcharov, A.A.; Marin, B.; Melkonian, M. Are Combined Analyses Better Than Single Gene Phylogenies? A Case Study Using SSU RDNA and RbcL Sequence Comparisons in the Zygnematophyceae (Streptophyta). Mol. Biol. Evol. 2004, 21, 612–624. [Google Scholar] [CrossRef]
- Ackermann, H.-W. Phage Classification and Characterization. Methods Mol. Biol. (CliftonN.J.) 2009, 501, 127–140. [Google Scholar] [CrossRef]
- Ackermann, H.W. Tailed Bacteriophages: The Order Caudovirales. Adv. Virus Res. 1998, 51, 135–201. [Google Scholar] [CrossRef]
- Sanz-Gaitero, M.; Seoane-Blanco, M.; van Raaij, M.J. Structure and Function of Bacteriophages. In Bacteriophages; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1–73. [Google Scholar] [CrossRef]
- Kropinski, A.M.; Prangishvili, D.; Lavigne, R. Position Paper: The Creation of a Rational Scheme for the Nomenclature of Viruses of Bacteria and Archaea. Environ. Microbiol. 2009, 11, 2775–2777. [Google Scholar] [CrossRef]
- van der Wolf, J.M.; Nijhuis, E.H.; Kowalewska, M.J.; Saddler, G.S.; Parkinson, N.; Elphinstone, J.G.; Pritchard, L.; Toth, I.K.; Lojkowska, E.; Potrykus, M.; et al. Dickeya Solani Sp. Nov., a Pectinolytic Plant-Pathogenic Bacterium Isolated from Potato (Solanum Tuberosum). Int. J. Syst. Evol. Microbiol. 2014, 64, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Carstens, A.; Djurhuus, A.; Kot, W.; Jacobs-Sera, D.; Hatfull, G.; Hansen, L. Unlocking the Potential of 46 New Bacteriophages for Biocontrol of Dickeya Solani. Viruses 2018, 10, 621. [Google Scholar] [CrossRef] [Green Version]
- Day, A.; Ahn, J.; Fang, X.; Salmond, G.P.C. Environmental Bacteriophages of the Emerging Enterobacterial Phytopathogen, Dickeya Solani, Show Genomic Conservation and Capacity for Horizontal Gene Transfer between Their Bacterial Hosts. Front. Microbiol. 2017, 8, 1654. [Google Scholar] [CrossRef]
- Pickard, D.; Toribio, A.L.; Petty, N.K.; van Tonder, A.; Yu, L.; Goulding, D.; Barrell, B.; Rance, R.; Harris, D.; Wetter, M.; et al. A Conserved Acetyl Esterase Domain Targets Diverse Bacteriophages to the Vi Capsular Receptor of Salmonella Enterica Serovar Typhi. J. Bacteriol. 2010, 192, 5746–5754. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.M.; Ackermann, H.W.; Anany, H.; Blasdel, B.; Connerton, I.F.; Goulding, D.; Griffiths, M.W.; Hooton, S.P.; Kutter, E.M.; Kropinski, A.M.; et al. A Suggested New Bacteriophage Genus: “Viunalikevirus. Arch. Virol. 2012, 157, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.M.; Krupovic, M.; Knezevic, P.; Ackermann, H.W.; Barylski, J.; Brister, J.R.; Clokie, M.R.C.C.; Duffy, S.; Dutilh, B.E.; Edwards, R.A.; et al. Taxonomy of Prokaryotic Viruses: 2016 Update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2017, 162, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Kabanova, A.P.; Shneider, M.M.; Korzhenkov, A.A.; Bugaeva, E.N.; Miroshnikov, K.K.; Zdorovenko, E.L.; Kulikov, E.E.; Toschakov, S.V.; Ignatov, A.N.; Knirel, Y.A.; et al. Host Specificity of the Dickeya Bacteriophage PP35 Is Directed by a Tail Spike Interaction With Bacterial O-Antigen, Enabling the Infection of Alternative Non-Pathogenic Bacterial Host. Front. Microbiol. 2018, 9, 3288. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, R.; Ozymko, Z.; Siwinska, J.; Ossowicki, A.; de Jager, V.; Narajczyk, M.; Łojkowska, E. The Complete Genome, Structural Proteome, Comparative Genomics and Phylogenetic Analysis of a Broad Host Lytic Bacteriophage ΦD3 Infecting Pectinolytic Dickeya Spp. Stand. Genom. Sci. 2015, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, R.; Ozymko, Z.; Zwirowski, S.; Lojkowska, E. Complete Genome Sequence of a Broad-Host-Range Lytic Dickeya Spp. Bacteriophage ΦD5. Arch. Virol. 2014, 159, 3153–3155. [Google Scholar] [CrossRef] [Green Version]
- Petrzik, K.; Vacek, J.; Brázdová, S.; Ševčík, R.; Koloniuk, I. Diversity of Limestone Bacteriophages Infecting Dickeya Solani Isolated in the Czech Republic. Arch. Virol. 2021, 166, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Dai, N.; Walsh, S.E.; Müller, S.; Fraser, M.E.; Kauffman, K.M.; Guan, C.; Corrêa, I.R.; Weigele, P.R. Identification and Biosynthesis of Thymidine Hypermodifications in the Genomic DNA of Widespread Bacterial Viruses. Proc. Natl. Acad. Sci. USA 2018, 115, E3116–E3125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brok-Volchanskaya, V.S.; Kadyrov, F.A.; Sivogrivov, D.E.; Kolosov, P.M.; Sokolov, A.S.; Shlyapnikov, M.G.; Kryukov, V.M.; Granovsky, I.E. Phage T4 SegB Protein Is a Homing Endonuclease Required for the Preferred Inheritance of T4 TRNA Gene Region Occurring in Co-Infection with a Related Phage. Nucleic Acids Res. 2008, 36, 2094. [Google Scholar] [CrossRef] [Green Version]
- Matilla, M.A.; Fang, X.; Salmond, G.P.C. Viunalikeviruses Are Environmentally Common Agents of Horizontal Gene Transfer in Pathogens and Biocontrol Bacteria. ISME J. 2014, 8, 2143–2147. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, R.; Ozymko, Z.; de Jager, V.; Siwinska, J.; Smolarska, A.; Ossowicki, A.; Narajczyk, M.; Lojkowska, E. Genomic, Proteomic and Morphological Characterization of Two Novel Broad Host Lytic Bacteriophages ΦPD10.3 and ΦPD23.1 Infecting Pectinolytic Pectobacterium Spp. and Dickeya Spp. PloS ONE 2015, 10, e0119812. [Google Scholar] [CrossRef] [Green Version]
- Fokine, A.; Rossmann, M.G. Molecular Architecture of Tailed Double-Stranded DNA Phages. Bacteriophage 2014, 4, e28281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbirz, S.; Müller, J.J.; Uetrecht, C.; Clark, A.J.; Heinemann, U.; Seckler, R. Crystal Structure of Escherichia Coli Phage HK620 Tailspike: Podoviral Tailspike Endoglycosidase Modules Are Evolutionarily Related. Mol. Microbiol. 2008, 69, 303–316. [Google Scholar] [CrossRef]
- Steinbacher, S.; Baxa, U.; Miller, S.; Weintraub, A.; Seckler, R.; Huber, R. Crystal Structure of Phage P22 Tailspike Protein Complexed with Salmonella Sp. O-Antigen Receptors. Proc. Natl. Acad. Sci. USA 1996, 93, 10584–10588. [Google Scholar] [CrossRef] [Green Version]
- Olszak, T.; Shneider, M.M.; Latka, A.; Maciejewska, B.; Browning, C.; Sycheva, L.V.; Cornelissen, A.; Danis-Wlodarczyk, K.; Senchenkova, S.N.; Shashkov, A.S.; et al. The O-Specific Polysaccharide Lyase from the Phage LKA1 Tailspike Reduces Pseudomonas Virulence. Sci. Rep. 2017, 7, 16302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.M.; Tu, I.F.; Yang, F.L.; Ko, T.P.; Liao, J.H.; Lin, N.T.; Wu, C.Y.; Ren, C.T.; Wang, A.H.J.; Chang, C.M.; et al. Structural Basis for Fragmenting the Exopolysaccharide of Acinetobacter Baumannii by Bacteriophage ▪aB6 Tailspike Protein. Sci. Rep. 2017, 7, 42711. [Google Scholar] [CrossRef] [Green Version]
- Leiman, P.G.; Molineux, I.J. Evolution of a New Enzyme Activity from the Same Motif Fold. Mol. Microbiol. 2008, 69, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Knecht, L.E.; Veljkovic, M.; Fieseler, L. Diversity and Function of Phage Encoded Depolymerases. Front. Microbiol. 2020, 10, 2949. [Google Scholar] [CrossRef] [PubMed]
- Ossowska, K.; Czerwicka, M.; Sledz, W.; Zoledowska, S.; Motyka, A.; Golanowska, M.; Condemine, G.; Lojkowska, E.; Kaczyski, Z. The Uniform Structure of O-Polysaccharides Isolated from Dickeya Solani Strains of Different Origin. Carbohydr. Res. 2017, 445, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Furevi, A.; Perepelov, A.V.; Guo, X.; Cao, H.; Wang, Q.; Reeves, P.R.; Knirel, Y.A.; Wang, L.; Widmalm, G. Structure and genetics of Escherichia coli O antigens. Fems Microbiol. Rev. 2020, 44, 655–683. [Google Scholar] [CrossRef] [Green Version]
- Senchenkova, S.N.; Knirel, Y.A.; Shashkov, A.S.; Ahmed, M.; Mavridis, A.; Rudolph, K. Structure of the O-polysaccharide of Erwinia carotovora ssp. carotovora GSPB 436. Carbohydr. Res. 2003, 338, 2025–2057. [Google Scholar] [CrossRef]
- Czerwicka, M.; Marszewska, K.; Bychowska, A.; Dziadziuszko, H.; Brzozowski, K.; Łojkowska, E.; Stepnowski, P.; Kaczyński, Z. Chemical structure of the O-polysaccharide isolated from Pectobacterium atrosepticum SCRI 1039. Carbohydr. Res. 2011, 346, 2978–2981. [Google Scholar] [CrossRef]
- Ossowska, K.; Czerwicka, M.; Sledz, W.; Zoledowska, S.; Motyka, A.; Szulta, S.; Lojkowska, E.; Kaczyński, Z. The structure of O-polysaccharides isolated from plant pathogenic bacteria Pectobacterium wasabiae IFB5408 and IFB5427. Carbohydr. Res. 2016, 426, 46–49. [Google Scholar] [CrossRef]
- Gorshkov, V.; Islamov, B.; Mikshina, P.; Petrova, O.; Burygin, G.; Sigida, E.; Shashkov, A.; Daminova, A.; Ageeva, M.; Idiyatullin, B.; et al. Pectobacterium atrosepticum exopolysaccharides: Identification, molecular structure, formation under stress and in planta conditions. Glycobiology 2017, 27, 1016–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shneider, M.M.; Lukianova, A.A.; Evseev, P.V.; Shpirt, A.M.; Kabilov, M.R.; Tokmakova, A.D.; Miroshnikov, K.K.; Obraztsova, E.A.; Baturina, O.A.; Shashkov, A.S.; et al. Autographivirinae Bacteriophage Arno 160 Infects Pectobacterium Carotovorum via Depolymerization of the Bacterial O-Polysaccharide. Int. J. Mol. Sci. 2020, 21, 3170. [Google Scholar] [CrossRef]
- Lukianova, A.A.; Shneider, M.M.; Evseev, P.V.; Shpirt, A.M.; Bugaeva, E.N.; Kabanova, A.P.; Obraztsova, E.A.; Miroshnikov, K.K.; Senchenkova, S.N.; Shashkov, A.S.; et al. Morphologically Different Pectobacterium Brasiliense Bacteriophages PP99 and PP101: Deacetylation of O-Polysaccharide by the Tail Spike Protein of Phage PP99 Accompanies the Infection. Front. Microbiol. 2020, 10, 3147. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Szpakowska, N.; Sledz, W.; Motyka-Pomagruk, A.; Ossowska, K.; Lojkowska, E.; Kaczyński, Z. The structure of the O-polysaccharide isolated from pectinolytic gram-negative bacterium Dickeya aquatica IFB0154 is different from the O-polysaccharides of other Dickeya species. Carbohydr. Res. 2020, 497, 108135. [Google Scholar] [CrossRef]
- Ranjan, M.; Khokhani, D.; Nayaka, S.; Srivastava, S.; Keyser, Z.P.; Ranjan, A. Genomic diversity and organization of complex polysaccharide biosynthesis clusters in the genus Dickeya. PloS ONE 2021, 16, e0245727. [Google Scholar] [CrossRef]
- Plattner, M.; Shneider, M.M.; Arbatsky, N.P.; Shashkov, A.S.; Chizhov, A.O.; Nazarov, S.; Prokhorov, N.S.; Taylor, N.M.I.; Buth, S.A.; Gambino, M.; et al. Structure and Function of the Branched Receptor-Binding Complex of Bacteriophage CBA120. J. Mol. Biol. 2019, 431, 3718–3739. [Google Scholar] [CrossRef]
- Sørensen, A.N.; Woudstra, C.; Holst Sørensen, M.C.; Brøndsted, L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput. Struct. Biotechnol. J. 2021. [Google Scholar] [CrossRef]
- Jamalludeen, N.; Kropinski, A.M.; Johnson, R.P.; Lingohr, E.; Harel, J.; Gyles, C.L. Complete Genomic Sequence of Bacteriophage ΦEcoM-GJ1, a Novel Phage That Has Myovirus Morphology and a Podovirus-Like RNA Polymerase. Appl. Environ. Microbiol. 2008, 74, 516. [Google Scholar] [CrossRef] [Green Version]
- Jamalludeen, N.; Johnson, R.P.; Friendship, R.; Kropinski, A.M.; Lingohr, E.J.; Gyles, C.L. Isolation and Characterization of Nine Bacteriophages That Lyse O149 Enterotoxigenic Escherichia Coli. Vet. Microbiol. 2007, 124. [Google Scholar] [CrossRef]
- Lim, J.-A.; Shin, H.; Lee, D.H.; Han, S.-W.; Lee, J.-H.; Ryu, S.; Heu, S. Complete Genome Sequence of the Pectobacterium Carotovorum Subsp. Carotovorum Virulent Bacteriophage PM1. Arch. Virol. 2014, 159, 2185–2187. [Google Scholar] [CrossRef]
- Hyman, P.; van Raaij, M. Bacteriophage T4 Long Tail Fiber Domains. Biophys. Rev. 2018, 10, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Born, Y.; Fieseler, L.; Marazzi, J.; Lurz, R.; Duffy, B.; Loessner, M.J. Novel Virulent and Broad-Host-Range Erwinia Amylovora Bacteriophages Reveal a High Degree of Mosaicism and a Relationship to Enterobacteriaceae Phages. Appl. Environ. Microbiol. 2011, 77, 5945–5954. [Google Scholar] [CrossRef] [Green Version]
- Blower, T.R.; Evans, T.J.; Przybilski, R.; Fineran, P.C.; Salmond, G.P.C. Viral Evasion of a Bacterial Suicide System by RNA–Based Molecular Mimicry Enables Infectious Altruism. PLoS Genet. 2012, 8, e1003023. [Google Scholar] [CrossRef]
- Buttimer, C.; Lynch, C.; Hendrix, H.; Neve, H.; Noben, J.-P.; Lavigne, R.; Coffey, A. Isolation and Characterization of Pectobacterium Phage VB_PatM_CB7: New Insights into the Genus Certrevirus. Antibiotics 2020, 9, 352. [Google Scholar] [CrossRef]
- Kering, K.K.; Zhang, X.; Nyaruaba, R.; Yu, J.; Wei, H. Application of Adaptive Evolution to Improve the Stability of Bacteriophages during Storage. Viruses 2020, 12, 423. [Google Scholar] [CrossRef] [Green Version]
- Muturi, P.; Yu, J.; Maina, A.N.; Kariuki, S.; Mwaura, F.B.; Wei, H. Bacteriophages Isolated in China for the Control of Pectobacterium Carotovorum Causing Potato Soft Rot in Kenya. Virol. Sin. 2019, 34, 287. [Google Scholar] [CrossRef] [PubMed]
- Hambly, E.; Tétart, F.; Desplats, C.; Wilson, W.H.; Krisch, H.M.; Mann, N.H. A Conserved Genetic Module That Encodes the Major Virion Components in Both the Coliphage T4 and the Marine Cyanophage S-PM2. Proc. Natl. Acad. Sci. USA 2001, 98, 11411–11416. [Google Scholar] [CrossRef] [Green Version]
- Bruttin, A.; Brüssow, H. Human Volunteers Receiving Escherichia Coli Phage T4 Orally: A Safety Test of Phage Therapy. Antimicrob. Agents Chemother. 2005, 49, 2874–2878. [Google Scholar] [CrossRef] [Green Version]
- Denou, E.; Bruttin, A.; Barretto, C.; Ngom-Bru, C.; Brüssow, H.; Zuber, S. T4 Phages against Escherichia Coli Diarrhea: Potential and Problems. Virology 2009, 388, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.A.; McCallin, S.; Barretto, C.; Berger, B.; Pittet, A.C.; Sultana, S.; Krause, L.; Huq, S.; Bibiloni, R.; Bruttin, A.; et al. Oral T4-like Phage Cocktail Application to Healthy Adult Volunteers from Bangladesh. Virology. 2012, 434, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Chapman, G.; Hillier, J.; Johnson, F.H. Observations on the Bacteriophagy of Erwinia Carotovora. J. Bacteriol. 1951, 61, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Davitashvili, M.D.; Tsiklauri, L.Z. Extraction and Study of Bacteriophages, Used against Agents of Potato Soft Rot. Eur. Res. 2012, 36, 2075–2078. [Google Scholar]
- Pirhonen, M.; Palva, E.T. Occurrence of Bacteriophage T4 Receptor in Erwinia-Carotovora. Mol. Gen. Genet. 1988, 214, 170–172. [Google Scholar] [CrossRef]
- Lim, J.-A.; Lee, D.H.; Heu, S. Isolation and Genomic Characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium Carotovorum Subsp. Carotovorum. Plant Pathol. J. 2015, 31, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Pajunen, M.I.; Jun, J.W.; Skurnik, M. T4-like Bacteriophages Isolated from Pig Stools Infect Yersinia Pseudotuberculosis and Yersinia Pestis Using Lps and Ompf as Receptors. Viruses 2021, 13, 296. [Google Scholar] [CrossRef]
- Trojet, S.N.; Caumont-Sarcos, A.; Perrody, E.; Comeau, A.M.; Krisch, H.M. The Gp38 Adhesins of the T4 Superfamily: A Complex Modular Determinant of the Phage’s Host Specificity. Genome Biol. Evol. 2011, 3, 674–686. [Google Scholar] [CrossRef] [Green Version]
- Day, A.; Ahn, J.; Salmond, G.P.C. Jumbo Bacteriophages Are Represented Within an Increasing Diversity of Environmental Viruses Infecting the Emerging Phytopathogen, Dickeya Solani. Front. Microbiol. 2018, 9, 2169. [Google Scholar] [CrossRef]
- Evseev, P.; Sykilinda, N.; Gorshkova, A.; Kurochkina, L.; Ziganshin, R.; Drucker, V.; Miroshnikov, K. Pseudomonas Phage PaBG—A Jumbo Member of an Old Parasite Family. Viruses 2020, 12, 721. [Google Scholar] [CrossRef]
- Kurochkina, L.P.; Semenyuk, P.I.; Sykilinda, N.N.; Miroshnikov, K.A. The Unique Two-Component Tail Sheath of Giant Pseudomonas Phage PaBG. Virology 2018, 515, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Kalischuk, M.; Hachey, J.; Thomas, D.; Johnson, D.; Kawchuk, L. Complete Genome Sequence of Phytopathogenic Pectobacterium Atrosepticum Lytic Bacteriophage Peat2. Am. J. Potato Res. 2019, 96, 614–616. [Google Scholar] [CrossRef]
- Buttimer, C.; Hendrix, H.; Lucid, A.; Neve, H.; Noben, J.-P.; Franz, C.; O’Mahony, J.; Lavigne, R.; Coffey, A. Novel N4-Like Bacteriophages of Pectobacterium Atrosepticum. Pharmaceuticals 2018, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Djurhuus, A.M.; Carstens, A.B.; Neve, H.; Kot, W.; Hansen, L.H. Two New Dickeya Dadantii Phages with Odd Growth Patterns Expand the Diversity of Phages Infecting Soft Rot Pectobacteriaceae. PHAGE 2020, 1, 251–259. [Google Scholar] [CrossRef]
- Hinkle, D.C. Evidence for Direct Involvement of T7 RNA Polymerase Bacteriophage DNA Replication. J. Virol. 1980, 34, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Studier, F.W. Multiple Roles of T7 RNA Polymerase and T7 Lysozyme during Bacteriophage T7 Infection. J. Mol. Biol. 2004, 340, 707–730. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.T.; Muller, D.K.; Coleman, J. E Processivity in Early Stages of Transcription by T7 RNA Polymerase. Biochemistry 1988, 27, 3966–3974. [Google Scholar] [CrossRef]
- Evseev, P.V.; Lukianova, A.A.; Shneider, M.M.; Korzhenkov, A.A.; Bugaeva, E.N.; Kabanova, A.P.; Miroshnikov, K.K.; Kulikov, E.E.; Toshchakov, S.V.; Ignatov, A.N.; et al. Origin and Evolution of Studiervirinae Bacteriophages Infecting Pectobacterium: Horizontal Transfer Assists Adaptation to New Niches. Microorganisms 2020, 8, 1707. [Google Scholar] [CrossRef]
- Buttimer, C.; Lucid, A.; Neve, H.; Franz, C.M.; O’Mahony, J.; Turner, D.; Lavigne, R.; Coffey, A. Pectobacterium Atrosepticum Phage VB_PatP_CB5: A Member of the Proposed Genus ’Phimunavirus’. Viruses 2018, 10, 394. [Google Scholar] [CrossRef] [Green Version]
- Kabanova, A.; Shneider, M.; Bugaeva, E.; Ha, V.T.N.; Miroshnikov, K.; Korzhenkov, A.; Kulikov, E.; Toschakov, S.; Ignatov, A.; Miroshnikov, K. Genomic Characteristics of VB_PpaP_PP74, a T7-like Autographivirinae Bacteriophage Infecting a Potato Pathogen of the Newly Proposed Species Pectobacterium Parmentieri. Arch. Virol. 2018, 163, 1691–1694. [Google Scholar] [CrossRef]
- Pedersen, J.S.; Carstens, A.B.; Djurhuus, A.M.; Kot, W.; Neve, H.; Hansen, L.H. Pectobacterium Phage Jarilo Displays Broad Host Range and Represents a Novel Genus of Bacteriophages Within the Family Autographiviridae. PHAGE 2020, 1, 237–244. [Google Scholar] [CrossRef]
- Nobrega, F.L.; Vlot, M.; Jonge, P.A. de; Dreesens, L.L.; Beaumont, H.J.E.; Lavigne, R.; Dutilh, B.E.; Brouns, S.J.J. Targeting Mechanisms of Tailed Bacteriophages. Nat. Rev. Microbiol. 2018, 16, 760–773. [Google Scholar] [CrossRef]
- Lee, S.; Vu, N.-T.; Oh, E.-J.; Rahimi-Midani, A.; Thi, T.-N.; Song, Y.-R.; Hwang, I.-S.; Choi, T.-J.; Oh, C.-S. Biocontrol of Soft Rot Caused by Pectobacterium Odoriferum with Bacteriophage PhiPccP-1 in Kimchi Cabbage. Microorganisms 2021, 9, 779. [Google Scholar] [CrossRef]
- Lim, J.A.; Jee, S.; Lee, D.H.; Roh, E.; Jung, K.; Oh, C.; Heu, S. Biocontrol of Pectobacterium Carotovorum Subsp. Carotovorum Using Bacteriophage PP1. J. Microbiol. Biotechnol. 2013, 23, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Zaczek-Moczydłowska, M.A.; Young, G.K.; Trudgett, J.; Plahe, C.; Fleming, C.C.; Campbell, K.; O’Hanlon, R. Phage Cocktail Containing Podoviridae and Myoviridae Bacteriophages Inhibits the Growth of Pectobacterium Spp. under in Vitro and in Vivo Conditions. PloS ONE 2020, 15, e0230842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugaeva, E.N.; Voronina, M.V.; Vasiliev, D.M.; Lukianova, A.A.; Landyshev, N.N.; Ignatov, A.N.; Miroshnikov, K.A. Use of a Specific Phage Cocktail for Soft Rot Control on Ware Potatoes: A Case Study. Viruses 2021, 13, 1095. [Google Scholar] [CrossRef]
- Carstens, A.B.; Djurhuus, A.M.; Kot, W.; Hansen, L.H. A Novel Six-Phage Cocktail Reduces Pectobacterium Atrosepticum Soft Rot Infection in Potato Tubers under Simulated Storage Conditions. Fems Microbiol. Lett. 2019, 366, i97–i104. [Google Scholar] [CrossRef]
- Ross, A.; Ward, S.; Hyman, P. More Is Better: Selecting for Broad Host Range Bacteriophages. Front. Microbiol. 2016, 6, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, J.; Turner, D.; Millard, A.D.; Mahadevan, P.; Kropinski, A.M.; Adriaenssens, E.M. From Orphan Phage to a Proposed New Family–the Diversity of N4-like Viruses. Antibiotics 2020, 9, 663. [Google Scholar] [CrossRef]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Davison, A.J.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; et al. Changes to Virus Taxonomy and to the International Code of Virus Classification and Nomenclature Ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 2021, 1, 1–16. [Google Scholar] [CrossRef]
- ICTV. Available online: https://talk.ictvonline.org/files/master-species-lists/m/msl/12314 (accessed on 18 July 2021).
- Smolarska, A.; Rabalski, L.; Narajczyk, M.; Czajkowski, R. Isolation and Phenotypic and Morphological Characterization of the First Podoviridae Lytic Bacteriophages ΦA38 and ΦA41 Infecting Pectobacterium Parmentieri (Former Pectobacterium Wasabiae). Eur. J. Plant Pathol. 2017, 150, 413–425. [Google Scholar] [CrossRef]
- Rothman-Denes, L.B.; Schito, G.C. Novel Transcribing Activities in N4-Infected Escherichia Coli. Virology 1974, 60, 65–72. [Google Scholar] [CrossRef]
- Zivin, R.; Zehring, W.; Rothman-Denes, L.B. Transcriptional Map of Bacteriophage N4. Location and Polarity of N4 RNAs. J. Mol. Biol. 1981, 152, 335–356. [Google Scholar] [CrossRef]
- Willis, S.H.; Kazmierczak, K.M.; Carter, R.H.; Rothman-Denes, L.B. N4 RNA Polymerase II, a Heterodimeric RNA Polymerase with Homology to the Single-Subunit Family of RNA Polymerases. J. Bacteriol. 2002, 184, 4952–4961. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.H.; Demidenko, A.A.; Hattingh-Willis, S.; Rothman-Denes, L.B. Phage N4 RNA Polymerase II Recruitment to DNA by a Single-Stranded DNA-Binding Protein. Genes Dev. 2003, 17, 2334–2345. [Google Scholar] [CrossRef] [Green Version]
- Falco, S.C.; Zehring, W.; Rothman-Denes, L.B. DNA-Dependent RNA Polymerase from Bacteriophage N4 Virions. Purification and Characterization. J. Biol. Chem. 1980, 255, 4339–4347. [Google Scholar] [CrossRef]
- Iyer, L.M.; Burroughs, A.M.; Anand, S.; de Souza, R.F.; Aravind, L. Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. J. Bacteriol. 2017, 199, 245–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmierczak, K.M.; Davydova, E.K.; Mustaev, A.A.; Rothman-Denes, L.B. The Phage N4 Virion RNA Polymerase Catalytic Domain Is Related to Single-Subunit RNA Polymerases. Embo J. 2002, 21, 5815–5823. [Google Scholar] [CrossRef] [Green Version]
- Davydova, E.K.; Kaganman, I.; Kazmierczak, K.M.; Rothman-Denes, L.B. Identification of Bacteriophage N4 Virion RNA Polymerase-Nucleic Acid Interactions in Transcription Complexes. J. Biol. Chem. 2009, 284, 1962–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.S.; Davydova, E.K.; Rothman-Denes, L.B. X-ray Crystal Structure of the Polymerase Domain of the Bacteriophage N4 Virion RNA Polymerase. Proc. Natl. Acad. Sci. USA 2008, 105, 5046–5051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulikov, E.; Kropinski, A.M.; Golomidova, A.; Lingohr, E.; Govorun, V.; Serebryakova, M.; Prokhorov, N.; Letarova, N.; Manykian, A.; Letarov, A. Isolation and Characterization of a Novel Indigenous Intestinal N4-Related Coliphage VB_EcoP_G7C. Virology 2012, 426, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Katharios, P.; Kalatzis, P.G.; Kokkari, C.; Sarropoulou, E. Middelboe, M Isolation and Characterization of a N4-like Lytic Bacteriophage Infecting Vibrio Splendidus, a Pathogen of Fish and Bivalves. PloS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.Z.M.; Millard, A.D.; Mann, N.H.; Schäfer, H. Comparative Genomics Defines the Core Genome of the Growing N4-like Phage Genus and Identifies N4-like Roseophage Specific Genes. Front. Microbiol. 2014, 5, 506. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. Bmc Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved Microbial Gene Identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Söding, J.; Biegert, A.; Lupas, A.N. The HHpred Interactive Server for Protein Homology Detection and Structure Prediction. Nucleic Acids Res. 2005, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, L.; Stephens, A.; Nam, S.Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at Its Core. J. Mol. Biol. 2018, 430, 2237–2243. [Google Scholar] [CrossRef]
- Schattner, P.; Brooks, A.N.; Lowe, T.M. The TRNAscan-SE, Snoscan and SnoGPS Web Servers for the Detection of TRNAs and SnoRNAs. Nucleic Acids Res. 2005, 33 (Suppl. 2), W686–W689. [Google Scholar] [CrossRef] [PubMed]
- Laslett, D.; Canback, B. ARAGORN, a Program to Detect TRNA Genes and TmRNA Genes in Nucleotide Sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef]
- Olsen, N.S.; Hendriksen, N.B.; Hansen, L.H.; Kot, W. A New High-Throughput Screening Method for Phages: Enabling Crude Isolation and Fast Identification of Diverse Phages with Therapeutic Potential. PHAGE 2020, 1, 137–148. [Google Scholar] [CrossRef]
- Reilly, B.E. A Study of the Bacteriophages of Bacillus Subtilis and Their Infectious Nucleic Acids. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 1965. [Google Scholar]
- Meijer, W.J.J.; Horcajadas, J.A.; Salas, M. Φ29 Family of Phages. Microbiol. Mol. Biol. Rev. 2001, 65, 261. [Google Scholar] [CrossRef] [Green Version]
- Chelikani, V.; Ranjan, T.; Kondabagil, K. Revisiting the Genome Packaging in Viruses with Lessons from the “Giants”. Virology 2014, 466–467, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Basta, T.; Häring, M.; Garrett, R.A.; Prangishvili, D. Genome of the Acidianus Bottle-Shaped Virus and Insights into the Replication and Packaging Mechanisms. Virology 2007, 364, 237–243. [Google Scholar] [CrossRef] [Green Version]
- King, A.J.; van der Vliet, P.C. A Precursor Terminal Protein-Trinucleotide Intermediate during Initiation of Adenovirus DNA Replication: Regeneration of Molecular Ends in Vitro by a Jumping Back Mechanism. Embo J. 1994, 13, 5786. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, M.; Simpson, A.; Tao, Y.; Leiman, P.; Badasso, M.; He, Y. Structure of the Bacteriophage Phi29 DNA Packaging Motor. Nature 2000, 408, 745–750. [Google Scholar] [CrossRef]
- Ackermann, H.W. 5500 Phages Examined in the Electron Microscope. Arch. Virol. 2007, 152, 227–243. [Google Scholar] [CrossRef]
- Goulet, A.; Spinelli, S.; Mahony, J.; Cambillau, C. Conserved and Diverse Traits of Adhesion Devices from Siphoviridae Recognizing Proteinaceous or Saccharidic Receptors. Viruses 2020, 12, 512. [Google Scholar] [CrossRef]
- Cumby, N.; Reimer, K.; Mengin-Lecreulx, D.; Davidson, A.R.; Maxwell, K.L. The Phage Tail Tape Measure Protein, an Inner Membrane Protein and a Periplasmic Chaperone Play Connected Roles in the Genome Injection Process of E.coli Phage HK97. Mol. Microbiol. 2015, 96, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.R.; Cardarelli, L.; Pell, L.G.; Radford, D.R.; Maxwell, K.L. Long Noncontractile Tail Machines of Bacteriophages. Adv. Exp. Med. Biol. 2012, 726, 115–142. [Google Scholar] [CrossRef]
- Garciadoval, C.; Castón, J.R.; Luque, D.; Granell, M.; Otero, J.M.; Llamas-Saiz, A.L.; Renouard, M.; Boulanger, P.; van Raaij, M.J. Structure of the Receptor-Binding Carboxy-Terminal Domain of the Bacteriophage T5 L-Shaped Tail Fibre with and without Its Intra-Molecular Chaperone. Viruses 2015, 7, 6424–6440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaczek-Moczydłowska, M.A.; Young, G.K.; Trudgett, J.; Fleming, C.C.; Campbell, K.; O’Hanlon, R. Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium Spp. Viruses 2020, 12, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alič, Š.; Naglič, T.; Tušek-Žnidarič, M.; Ravnikar, M.; Rački, N.; Peterka, M.; Dreo, T. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya Spp. Front. Microbiol. 2017, 8, 1870. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Vincent, M.; Sun, Y.; Yu, H.; Wang, J.; Bao, Q.; Kong, H.; Hu, S. Complete Genome Sequence of Bacteriophage T5. Virology 2005, 332, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Kulakov, L.A.; Ksenzenko, V.N.; Shlyapnikov, M.G.; Kochetkov, V.V.; del Casale, A.; Allen, C.C.R.; Larkin, M.J.; Ceyssens, P.J.; Lavigne, R. Genomes of “PhiKMV-like Viruses” of Pseudomonas Aeruginosa Contain Localized Single-Strand Interruptions. Virology 2009, 391, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Korf, I.H.E.; Meier-Kolthoff, J.P.; Adriaenssens, E.M.; Kropinski, A.M.; Nimtz, M.; Rohde, M.; van Raaij, M.J.; Wittmann, J. Still Something to Discover: Novel Insights into Escherichia Coli Phage Diversity and Taxonomy. Viruses 2019, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Dion, M.B.; Oechslin, F.; Moineau, S. Phage Diversity, Genomics and Phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Serwer, P.; Hayes, S.J.; Thomas, J.A.; Hardies, S.C. Propagating the Missing Bacteriophages: A Large Bacteriophage in a New Class. Virol. J. 2007, 4, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avramucz, Á.; Møller-Olsen, C.; Grigonyte, A.M.; Paramalingam, Y.; Millard, A.; Sagona, A.P.; Fehér, T. Analysing Parallel Strategies to Alter the Host Specificity of Bacteriophage T7. Biology 2021, 10, 556. [Google Scholar] [CrossRef] [PubMed]
- Dunne, M.; Prokhorov, N.S.; Loessner, M.J.; Leiman, P.G. Reprogramming Bacteriophage Host Range: Design Principles and Strategies for Engineering Receptor Binding Proteins. Curr. Opin. Biotechnol. 2021, 68, 272–281. [Google Scholar] [CrossRef]
- Łobocka, M.; Dąbrowska, K.; Górski, A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021, 35, 1–26. [Google Scholar] [CrossRef]
- Latka, A.; Leiman, P.G.; Drulis-Kawa, Z.; Briers, Y. Modeling the Architecture of Depolymerase-Containing Receptor Binding Proteins in Klebsiella Phages. Front. Microbiol. 2019, 10, 2649. [Google Scholar] [CrossRef] [PubMed]
Phage | Isolation Host | GenBank Accession no. | Genome Size, kbp | % GC | ORFs | Reference |
---|---|---|---|---|---|---|
Limestone | Dickeya solani | HE600015 | 152.4 | 49.3% | 201 | [41] |
ϕD3 | Pectobacterium sp. and Dickeya sp. | KM209228 | 152.3 | 49.4% | 190 | [81] |
RC-2014 | Dickeya sp. | KJ716335 | 155.3 | 49.6% | 196 | [82] |
ϕJA15 | D. solani | KY942056 | 153.8 | 49.2% | 198 | [76] |
ϕXF4 | D. solani | KY942057 | 151.5 | 49.4% | 195 | [76] |
PP35 | D. solani | MG266157 | 152.0 | 49.3% | 198 | [80] |
Kamild | D. solani | MH807812 | 152.6 | 49.2% | 198 | [75] |
Coodle | D. solani | MH807820 | 152.5 | 49.1% | 202 | [75] |
Ds3CZ | D. solani | MN788369 | 155.3 | 49.1% | 201 | [83] |
Ds5CZ | D. solani | MN813048 | 154.7 | 49.1% | 206 | [83] |
Ds9CZ | D. solani | MN813049 | 154.7 | 49.1% | 204 | [83] |
Ds16CZ | D. solani | MN813050 | 152.8 | 49.2% | 203 | [83] |
Ds20CZ | D. solani | MN813051 | 154.7 | 49.1% | 202 | [83] |
Ds23CZ | D. solani | MN813052 | 149.4 | 49.4% | 204 | [83] |
Ds25CZ | D. solani | MN813053 | 151.7 | 49.1% | 194 | [83] |
Phage | Isolation Host | GenBank Accession No. | Genome Size, kbp | % GC | ORFs | Reference |
---|---|---|---|---|---|---|
DU_PP_I | Pectobacterium sp. | MF979560 | 145.0 | 50.3% | 267 | Direct Submission |
DU_PP_IV | Pectobacterium sp. | MF979563 | 145.2 | 50.3% | 268 | Direct Submission |
PcCB7V | Pectobacterium sp. 7V | MW367417 | 146.1 | 50.4% | 269 | Direct Submission |
ϕTE | P. atrosepticum | JQ015307 | 142.3 | 50.1% | 242 | [112] |
vB_PatM_CB7 | P. atrosepticum | KY514263 | 142.8 | 50.1% | 253 | [113] |
Phage | Isolation Host | GenBank Accession No. | Genome Size, kbp | % GC | ORFs | Reference |
---|---|---|---|---|---|---|
Arno162 | P. atrosepticum | MK290737 | 91.7 | 44.5% | 146 | Direct Submission |
Arno18 | P. versatile | MK290738 | 91.7 | 44.5% | 147 | Direct Submission |
Wc4 | P. carotovorum subsp. carotovorum | MN270891 | 92.0 | 44.7% | 145 | [115] |
Wc4-1 | P. carotovorum subsp. carotovorum | MN270892 | 92.0 | 44.7% | 145 | [114] |
Phage | Isolation Host | GenBank Accession No. | Genome Size, kbp | % GC | ORFs | Reference |
---|---|---|---|---|---|---|
JA11 | D. solani | MH389777 | 255.4 | 44.5% | 321 | [126] |
JA13 | D. solani | MH460460 | 254.1 | 44.5% | 323 | [126] |
JA29 | D. solani | MH460461 | 253.3 | 43.8% | 318 | [126] |
JA33 | D. solani | MH460462 | 255.4 | 44.5% | 321 | [126] |
Phage | Isolation Host | GenBank Accession No. | Genome Size, kbp | % GC | ORFs | Reference |
---|---|---|---|---|---|---|
vB_PatP_CB1 | P. atrosepticum | KY514264 | 76.0 | 48.7% | 100 | [130] |
vB_PatP_CB3 | P. atrosepticum | KY514265 | 76.2 | 48.7% | 105 | [130] |
vB_PatP_CB4 | P. atrosepticum | KY549659 | 76.6 | 48.6% | 103 | [130] |
Horatius | P. versatile | MN812691 | 73.7 | 48.5% | 102 | Direct submission |
Nepra | P. atrosepticum | MH059638 | 74.5 | 48.7% | 92 | [145] |
ϕA38 | P. parmentieri | KY083726 | 75.8 | 48.7% | 97 | [150] |
ϕA41 | P. parmentieri | KY769270 | 75.8 | 48.7% | 97 | [150] |
Possum | P. versatile | MN812687 | 73.8 | 48.5% | 102 | Direct submission |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miroshnikov, K.A.; Evseev, P.V.; Lukianova, A.A.; Ignatov, A.N. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms 2021, 9, 1819. https://doi.org/10.3390/microorganisms9091819
Miroshnikov KA, Evseev PV, Lukianova AA, Ignatov AN. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms. 2021; 9(9):1819. https://doi.org/10.3390/microorganisms9091819
Chicago/Turabian StyleMiroshnikov, Konstantin A., Peter V. Evseev, Anna A. Lukianova, and Alexander N. Ignatov. 2021. "Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae" Microorganisms 9, no. 9: 1819. https://doi.org/10.3390/microorganisms9091819
APA StyleMiroshnikov, K. A., Evseev, P. V., Lukianova, A. A., & Ignatov, A. N. (2021). Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms, 9(9), 1819. https://doi.org/10.3390/microorganisms9091819