Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis
Abstract
:1. Background
1.1. Introduction
1.2. The Diversity of Clostridioides difficile Genome
1.3. The Current Status of Resistance of Clostridioides difficile to Various Antimicrobial Agents
2. The Role of the Mobile Genetic Elements of Clostridioides difficile in the Acquisition and Transmission of Antimicrobial Resistance
2.1. Transposons Associated with Antimicrobial Resistance
2.1.1. MLSB Antibiotics
2.1.2. Tetracyclines
2.1.3. Vancomycin
2.1.4. Linezolid
2.1.5. Chloramphenicol
2.2. Extra-Chromosomal Elements (Plasmids) Associated with Antimicrobial Resistance
2.3. Bacteriophages as a Potential Viral Shuttle Carrying Antimicrobial Resistance Genes
2.4. The Role of Clostridioides difficile as a Reservoir for the Dissemination of Antimicrobial Resistance Determinants
3. In Silico Analysis of 2190 Clostridioides difficile Genomes
3.1. Procedures
3.2. Findings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Full Name of Term |
AMR | antimicrobial resistance |
CDI | Clostridioides difficile infection |
CRISPR | clustered regularly interspersed short palindromic repeat |
CTn | conjugative transposon |
DNA | deoxyribonucleic acid |
ECE | extra-chromosomal element |
GTP | guanosine triphosphate |
ICE | integrative and conjugative elements |
IS | insertion sequence |
MGE | mobile genetic element |
MLSB | macrolide-lincosamide and streptogramin B |
MTn | multi-purpose transposon |
PCR | polymerase chain reaction |
PMN | polymorphonuclear neutrophils |
RNA | ribonucleic acid |
Tn | transposon |
TndX | conjugative transposon site-specific recombinase |
WGS | whole-genome sequencing |
References
- Lawson, P.A.; Citron, D.M.; Tyrrell, K.L.; Finegold, S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 2016, 40, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popoff, M.R.; Rubin, E.J.; Gill, D.M.; Bouquet, P. Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect. Immun. 1988, 56, 2299–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.Y.; Elzouki, A.N. Clostridium difficile infection: A review of the literature. Asian Pac. J. Trop. Med. 2014, 7 (Suppl. 1), S6–S13. [Google Scholar] [CrossRef] [Green Version]
- Hensgens, M.P.; Keessen, E.C.; Squire, M.M.; Riley, T.V.; Koene, M.G.; de Boer, E.; Lipman, L.J.; Kuijper, E.J. European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridium difficile (ESGCD) Clostridium difficile infection in the community: A zoonotic disease? Clin. Microbiol. Infect. 2012, 18, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Baines, S.D.; Wilcox, M.H. Antimicrobial resistance and reduced susceptibility in Clostridium difficile: Potential consequences for induction, treatment, and recurrence of C. difficile infection. Antibiotics 2015, 4, 267–298. [Google Scholar] [CrossRef] [Green Version]
- Sholeh, M.; Krutova, M.; Forouzesh, M.; Mironov, S.; Sadeghifard, N.; Molaeipour, L.; Maleki, A.; Kouhsari, E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 158. [Google Scholar] [CrossRef]
- Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016, 3, 23–42. [Google Scholar]
- Knight, D.R.; Elliott, B.; Chang, B.J.; Perkins, T.T.; Riley, T.V. Diversity and evolution in the genome of Clostridium difficile. Clin. Microbiol. Rev. 2015, 28, 721–741. [Google Scholar] [CrossRef] [Green Version]
- Sebaihia, M.; Wren, B.W.; Mullany, P.; Fairweather, N.F.; Minton, N.; Stabler, R.; Thomson, N.R.; Roberts, A.P.; Cerdeño-Tárraga, A.M.; Wang, H.; et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 2006, 38, 779–786. [Google Scholar] [CrossRef]
- Monot, M.; Boursaux-Eude, C.; Thibonnier, M.; Vallenet, D.; Moszer, I.; Medigue, C.; Martin-Verstraete, I.; Dupuy, B. Reannotation of the genome sequence of Clostridium difficile strain 630. J. Med. Microbiol. 2011, 60, 1193–1199. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, M.S.; Allan, E.; Mullany, P.; Roberts, A.P. Draft genome sequence of the nontoxigenic Clostridium difficile strain CD37. J. Bacteriol. 2012, 194, 2125–2126. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.E.; Worden, P.; Chapman, T.A.; Roy Chowdhury, P.; Charles, I.G.; Djordjevic, S.P. The genome of Clostridium difficile. Gut Pathog. 2014, 24, 4. [Google Scholar] [CrossRef] [Green Version]
- Stabler, R.A.; Valiente, E.; Dawson, L.F.; He, M.; Parkhill, J.; Wren, B.W. In-depth genetic analysis of Clostridium difficile PCR-ribotype 027 strains reveals high genome fluidity including point mutations and inversions. Gut Microbes 2010, 1, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Adams, V.; Lyras, D.; Farrow, K.A.; Rood, J.I. The clostridial mobilisable transposons. Cell Mol. Life Sci. 2002, 59, 2033–2043. [Google Scholar] [CrossRef]
- Brouwer, M.S.; Warburton, P.J.; Roberts, A.P.; Mullany, P.; Allan, E. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS ONE 2011, 6, e23014. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.P.; Allan, E.; Mullany, P. The impact of horizontal gene transfer on the biology of Clostridium difficile. Adv. Microbiol. Physiol. 2014, 65, 63–82. [Google Scholar]
- Brouwer, M.S.; Roberts, A.P.; Mullany, P.; Allan, E. Clostridium difficile reveals a related set of conjugative transposons carrying a variety of accessory genes. Mob. Genet. Elem. 2012, 2, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Mullany, P.; Pallen, M.; Wilks, M.; Stephen, J.R.; Tabaqchali, S. A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 1996, 174, 145–150. [Google Scholar] [CrossRef]
- Hornung, B.V.H.; Kuijper, E.J.; Smits, W.K. An in silico survey of Clostridioides difficile extrachromosomal elements. Microb. Genom. 2019, 5, e000296. [Google Scholar]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.W.; Sun, X. Update on antimicrobial resistance in Clostridium difficile: Resistance mechanisms and antimicrobial susceptibility testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spigaglia, P.; Barbanti, F.; Mastrantonio, P. European Study Group on Clostridium difficile (ESGCD). Multidrug resistance in European Clostridium difficile clinical isolates. J. Antimicrob. Chemother. 2011, 66, 2227–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banawas, S.S. Clostridium difficile infections: A global overview of drug sensitivity and resistance mechanisms. BioMed Res. Int. 2018, 2018, 8414257. [Google Scholar] [CrossRef] [Green Version]
- Hachler, H.; Berger-Bachi, B.; Kayser, G.H. Genetic characterization of a Clostridium difficile erythromycin-clindamycin resistance determinant that is transferable to Staphylococcus aureus. Antimicrob. Agents Chemother. 1987, 31, 1039–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullany, P.; Wilks, M.; Tabaqchali, S. Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn5398. J. Antimicrob. Chemother. 1995, 35, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Farrow, K.; Lyras, D.; Rood, J. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology 2001, 147, 2717–2728. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Sebaihia, M.; Lawley, T.D.; Stabler, R.A.; Dawson, L.F.; Martin, M.J.; Holt, K.E.; Seth-Smith, H.M.; Quail, M.A.; Rance, R.; et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA 2010, 107, 7527–7532. [Google Scholar] [CrossRef] [Green Version]
- Wasels, F.; Monot, M.; Spigaglia, P.; Barbanti, F.; Ma, L.; Bouchier, C.; Dupuy, B.; Mastrantonio, P. Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb. Drug Resis. 2014, 20, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Goh, S.; Hussain, H.; Chang, B.J.; Emmett, W.; Riley, T.V.; Mullany, P. phage φc2 mediates transduction of tn6215, encoding erythromycin resistance, between Clostridium difficile strains. mBio 2013, 4, e00840-13. [Google Scholar] [CrossRef] [Green Version]
- Wasels, F.; Spigaglia, P.; Barbanti, F.; Monot, M.; Villa, L.; Dupuy, B.; Carattoli, A.; Mastrantonio, P. Integration of erm(B)-containing elements through large chromosome fragment exchange in Clostridium difficile. Mob. Genet. Elem. 2015, 5, 12–16. [Google Scholar] [CrossRef]
- Imwattana, K.; Kiratisin, P.; Riley, T.V.; Knight, D.R. Genomic basis of antimicrobial resistance in non-toxigenic Clostridium difficile in Southeast Asia. Anaerobe 2020, 66, 102290. [Google Scholar] [CrossRef]
- Dingle, K.E.; Didelot, X.; Quan, T.P.; Eyre, D.W.; Stoesser, N.; Marwick, C.A.; Coia, J.; Brown, D.; Buchanan, S.; Ijaz, U.Z.; et al. Role for tetracycline selection in recent evolution of agriculture-associated Clostridium difficile PCR Ribotype 078. mBio 2019, 10, e02790-18. [Google Scholar] [CrossRef] [Green Version]
- Isidro, J.; Menezes, J.; Serrano, M.; Borges, V.; Paixão, P.; Mimoso, M.; Martins, F.; Toscano, C.; Santos, A.; OHenriques, A.; et al. Genomic study of a Clostridium difficile multidrug resistant outbreak-related clone reveals novel determinants of resistance. Fr. Microbiol. 2018, 6, 2994. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Zhang, L.; Chen, X.; Jiang, C.; Yu, B.; Wang, X.; Peng, Y. Antimicrobial susceptibility and resistance mechanisms of clinical Clostridium difficile from a Chinese tertiary hospital. Int. J. Antimicrob. Agents 2013, 41, 80–84. [Google Scholar] [CrossRef]
- Mullany, P.; Allan, E.; Roberts, A.P. Mobile genetic elements in Clostridium difficile and their role in genome function. Res. Microbiol. 2015, 166, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Knetsch, C.W.; Connor, T.R.; Mutreja, A.; van Dorp, S.M.; Sanders, I.M.; Browne, H.P.; Harris, D.; Lipman, L.; Keessen, E.C.; Corver, J.; et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. EuroSurveillance 2014, 19, 20954. [Google Scholar] [CrossRef]
- Spigaglia, P.; Barbanti, F.; Mastrantonio, P. Tetracycline resistance gene tet(W) in the pathogenic bacterium Clostridium difficile. Antimicrob. Agents Chemother. 2008, 52, 770–773. [Google Scholar] [CrossRef] [Green Version]
- Corver, J.; Bakker, D.; Brouwer, M.S.; Harmanus, C.; Hensgens, M.P.; Roberts, A.P.; Lipman, L.J.; Kuijper, E.J.; van Leeuwen, H.C. Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiol. 2012, 12, 130. [Google Scholar] [CrossRef] [Green Version]
- Ammam, F.; Marvaud, J.C.; Lambert, T. Distribution of the vanG-like gene cluster in Clostridium difficile clinical isolates. Can. J. Microbiol. 2012, 58, 547–551. [Google Scholar] [CrossRef]
- Ammam, F.; Meziane-Cherif, D.; Mengin-Lecreulx, D.; Blanot, D.; Patin, D.; Boneca, I.G.; Courvalin, P.; Lambert, T.; Candela, T. The functional vanGCd cluster of Clostridium difficile does not confer vancomycin resistance. Mol. Microbiol. 2013, 89, 612–625. [Google Scholar] [CrossRef]
- Knight, D.R.; Androga, G.O.; Ballard, S.A.; Howden, B.P.; Riley, T.V. A phenotypically silent vanB2 operon carried on a Tn1549-like element in Clostridium difficile. mSphere 2016, 1, e00177-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giessing, A.M.; Jensen, S.S.; Rasmussen, A.; Hansen, L.H.; Gondela, A.; Long, K.; Vester, B.; Kirpekar, F. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. RNA 2009, 15, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, S.; Werckenthin, C.; Kehrenberg, C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob. Agents Chemother. 2000, 44, 2530–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vester, B. The cfr and cfr-like multiple resistance genes. Res. Microbiol. 2018, 169, 61–66. [Google Scholar] [CrossRef]
- Roberts, M. Mechanisms of MLS Resistance. Available online: http://faculty.washington.edu/marilynr/ermwebA.pdf (accessed on 8 October 2019).
- Marín, M.; Martín, A.; Alcalá, L.; Cercenado, E.; Iglesias, C.; Reigadas, E.; Bouza, E. Clostridium difficile isolates with high linezolid MICs harbor the multiresistance gene cfr. Antimicrob. Agents Chemother. 2015, 59, 586–589. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, S.; Wang, Y. Nomenclature and functionality of the so-called cfr gene from Clostridium difficile. Antimicrob. Agents Chemother. 2015, 59, 2476–2477. [Google Scholar] [CrossRef] [Green Version]
- Candela, T.; Marvaud, J.C.; Nguyen, T.K.; Lambert, T. A cfr-like gene cfr(C) conferring linezolid resistance is common in Clostridium difficile. Int. J. Antimicrob. Agents 2017, 50, 496–500. [Google Scholar] [CrossRef]
- Stojković, V.; Ulate, M.F.; Hidalgo-Villeda, F.; Aguilar, E.; Monge-Cascante, C.; Pizarro-Guajardo, M.; Tsai, K.; Tzoc, E.; Camorlinga, M.; Paredes-Sabja, D.; et al. cfr(B), cfr(C), and a new cfr-like gene, cfr(E), in Clostridium difficile strains recovered across Latin America. Antimicrob. Agents Chemother. 2019, 64, e01074-19. [Google Scholar] [CrossRef]
- Wren, B.W.; Mullany, P.; Clayton, C.; Tabaqchali, S. Molecular cloning and genetic analysis of a chloramphenicol acetyltransferase determinant from Clostridium difficile. Antimicrob. Agents Chemother. 1998, 32, 1213–1217. [Google Scholar] [CrossRef] [Green Version]
- Wren, B.W.; Mullany, P.; Clayton, C.; Tabaqchali, S. Nucleotide sequence of a chloramphenicol acetyl transferase gene from Clostridium difficile. Nucleic Acids Res. 1989, 17, 4877. [Google Scholar] [CrossRef]
- Lyras, D.; Storie, C.; Huggins, A.S.; Crellin, P.K.; Bannam, T.L.; Rood, J.I. Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens. Antimicrob. Agents Chemother. 1998, 42, 1563–1567. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, B.K.; Edwards, A.N.; Anderson, S.E.; Woods, E.C.; McBride, S.M. Regulation and anaerobic function of the Clostridioides difficile beta-lactamase. Antimicrob. Agents Chemother. 2019, 64, e01496-19. [Google Scholar] [CrossRef]
- Boekhoud, I.M.; Hornung, B.V.H.; Sevilla, E.; Harmanus, C.; Bos-Sanders, I.M.J.G.; Terveer, E.M.; Bolea, R.; Corver, J.; Kuijper, E.J.; Smits, W.K. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat. Commun. 2020, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 2015, 16, 472–482. [Google Scholar] [CrossRef]
- Von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Fr. Microbiol. 2016, 19, 173. [Google Scholar] [CrossRef] [Green Version]
- Khodadoost, L.; Hussain, H.; Mullany, P. Plasmids can transfer to Clostridium difficile CD37 and 630deltaerm both by a DNase resistant conjugation-like mechanism and a DNase sensitive mechanism. FEMS Microbiol. Lett. 2017, 364, 21. [Google Scholar] [CrossRef]
- Marsh, J.W.; Pacey, M.P.; Ezeonwuka, C.; Ohm, S.L.; Snyder, D.; Cooper, V.S.; Harrison, L.H.; Doi, Y.; Mustapha, M.M. Clostridioides difficile: A potential source of NpmA in the clinical environment. J. Antimicrob. Chemother. 2019, 74, 521–523. [Google Scholar] [CrossRef]
- Toth, M.; Stewart, N.K.; Smith, C.; Vakulenko, S.B. Intrinsic class D β-lactamases of Clostridium difficile. mBio 2018, 9, e01803-18. [Google Scholar] [CrossRef] [Green Version]
- Amy, J.; Johanesen, P.; Lyras, D. Extrachromosomal and integrated genetic elements in Clostridium difficile. Plasmid 2015, 80, 97–110. [Google Scholar] [CrossRef]
- Johanesen, P.A.; Mackin, K.E.; Hutton, M.L.; Awad, M.M.; Larcombe, S.; Amy, J.M.; Lyras, D. Disruption of the gut microbiome: Clostridium difficile infection and the threat of antibiotic resistance. Genes 2015, 6, 1347–1360. [Google Scholar] [CrossRef]
Mobile Genetic Element | Genomes in Which MGEs Were Identified (n) | Genomes with MGEs in Which at Least One AMR Gene Was Identified (n) |
---|---|---|
Tn6009 | 408 | 71 |
Tn6105 | 269 | 31 |
CTn7 | 248 | 85 |
Tn6192 | 214 | 94 |
Tn6194 | 108 | 104 |
IS256 | 93 | 35 |
CTn4 | 38 | 13 |
Tn6106 | 31 | 10 |
CTn1 | 21 | 10 |
Tn6218 | 21 | 21 |
CTn6 | 21 | 5 |
CTn5 | 20 | 8 |
Tn4453 | 13 | 13 |
Tn5397 | 9 | 9 |
Tn6073 | 9 | 3 |
CTn2 | 6 | 0 |
Tn6215 | 6 | 6 |
Tn5801 (B6) | 5 | 5 |
MTnSag1 | 4 | 2 |
Tn6164 | 4 | 4 |
ISMlu7 | 3 | 0 |
Tn5398 | 3 | 3 |
Tn6104 | 2 | 0 |
IS5 | 1 | 0 |
ISAba34 | 1 | 0 |
ISClte3 | 1 | 0 |
ISEc36 | 1 | 0 |
ISEfa9 | 1 | 0 |
ISRgn1 | 1 | 0 |
ISRgn2 | 1 | 0 |
Tn6107 | 1 | 0 |
Tn6263 | 1 | 1 |
Antimicrobial-Resistance Gene | Proportion among All Genes |
---|---|
erm(B) | 17.03% |
blaCDD | 12.20% |
vanT | 11.32% |
vanR | 11.21% |
vanG | 10.88% |
vanS | 10.77% |
vanZ1 | 5.82% |
aac(6′)-Ie/aph(2″)-Ia | 4.84% |
tet(M) | 4.29% |
cat(P) | 1.87% |
ant(6)-la | 1.65% |
blaCDD-2 | 1.65% |
aph(3″)-IIIa | 1.10% |
sat4 | 1.10% |
cfr(C) | 0.88% |
aadE | 0.55% |
spw | 0.55% |
tet(44) | 0.55% |
ant(6)-lb | 0.44% |
cfr(B) | 0.33% |
dfrF | 0.22% |
lnu(C) | 0.22% |
nmpA | 0.22% |
aad9 | 0.11% |
aph(2″)-lf | 0.11% |
blaCDD-1 | 0.11% |
MGE 2 | Genomes with MGEs in Which at Least One AMR Gene Was Identified (n) 2 | MGEs in Which Antimicrobial-Resistance Genes Were Harbored (n) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
erm(B) | blaCDD | vanT | vanR | vanG | vanS | vanZ1 | aac(6′)-Ie/aph(2″)-Ia | tet(M) | ||
Tn6194 | 104 | 104 | 23 | 4 | 4 | 4 | 4 | 15 | 7 | |
Tn6192 | 94 | 5 | 29 | 27 | 28 | 27 | 27 | 8 | 4 | |
CTn7 | 85 | 1 | 51 | 27 | 29 | 28 | 27 | 6 | 4 | |
Tn6009 | 71 | 4 | 4 | 4 | 1 | 1 | 1 | 2 | 4 | |
IS256 | 35 | 3 | 1 | 12 | 3 | 2 | 13 | 15 | ||
Tn6105 | 31 | 1 | 3 | 6 | 18 | 16 | 17 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartalidis, P.; Skoulakis, A.; Tsilipounidaki, K.; Florou, Z.; Petinaki, E.; Fthenakis, G.C. Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms 2021, 9, 1383. https://doi.org/10.3390/microorganisms9071383
Kartalidis P, Skoulakis A, Tsilipounidaki K, Florou Z, Petinaki E, Fthenakis GC. Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms. 2021; 9(7):1383. https://doi.org/10.3390/microorganisms9071383
Chicago/Turabian StyleKartalidis, Philip, Anargyros Skoulakis, Katerina Tsilipounidaki, Zoi Florou, Efthymia Petinaki, and George C. Fthenakis. 2021. "Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis" Microorganisms 9, no. 7: 1383. https://doi.org/10.3390/microorganisms9071383
APA StyleKartalidis, P., Skoulakis, A., Tsilipounidaki, K., Florou, Z., Petinaki, E., & Fthenakis, G. C. (2021). Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms, 9(7), 1383. https://doi.org/10.3390/microorganisms9071383