Iron Acquisition of Urinary Tract Infection Escherichia coli Involves Pathogenicity in Caenorhabditis elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture of Bacteria and Nematodes
2.2. Phylogenetic and Virulence Factor Analyses
2.3. Mutant Construction of E. coli UTI89
2.4. Liquid Pathogenicity Assay
2.5. Solid Killing Assay
2.6. Statistical Analysis
3. Results
3.1. Epidemiological Characterization of the Clinically Isolated E. coli Strains
3.2. Liquid Pathogenicity Assay of E. coli with C. elegans
3.3. Iron Acquisition of UPEC Involved in the Pathogenicity in C. elegans
4. Discussion
4.1. Liquid Pathogenicity Assay
4.2. Iron Acquisition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med. 2002, 113, 5–13. [Google Scholar] [CrossRef]
- Francois, M.; Hanslik, T.; Dervaux, B.; Le Strat, Y.; Souty, C.; Vaux, S.; Maugat, S.; Rondet, C.; Sarazin, M.; Heym, B.; et al. The economic burden of urinary tract infections in women visiting general practices in France: A cross-sectional survey. BMC Health Serv. Res. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Iv, H.L.S.; Conover, M.S.; Chou, W.-C.; Hibbing, M.E.; Manson, A.L.; Dodson, K.W.; Hannan, T.J.; Roberts, P.L.; Stapleton, A.E.; Hooton, T.M.; et al. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci. Transl. Med. 2017, 9, eaaf1283. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.-W.; Mahajan-Miklos, S.; Ausubel, F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 1999, 96, 715–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garsin, D.A.; Sifri, C.D.; Mylonakis, E.; Qin, X.; Singh, K.V.; Murray, B.E.; Calderwood, S.B.; Ausubel, F.M. A simple model host for identifying Gram-positive virulence factors. Proc. Natl. Acad. Sci. USA 2001, 98, 10892–10897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurz, C.; Chauvet, S.; Andrès, E.; Aurouze, M.; Vallet, I.; Michel, G.P.; Uh, M.; Celli, J.; Filloux, A.; De Bentzmann, S.; et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 2003, 22, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Chou, T.-C.; Chiu, H.-C.; Kuo, C.-J.; Wu, C.-M.; Syu, W.-J.; Chiu, W.-T.; Chen, C.-S. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell. Microbiol. 2013, 15, 82–97. [Google Scholar] [CrossRef]
- Couillault, C.; Ewbank, J.J. Diverse Bacteria Are Pathogens of Caenorhabditis elegans. Infect. Immun. 2002, 70, 4705–4707. [Google Scholar] [CrossRef] [Green Version]
- Diard, M.; Baeriswyl, S.; Clermont, O.; Gouriou, S.; Picard, B.; Taddei, F.; Denamur, E.; Matic, I. Caenorhabditis elegans as a simple model to study phenotypic and genetic virulence determinants of extraintestinal pathogenic Escherichia coli. Microbes Infect. 2007, 9, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-J.; Wang, S.-T.; Lin, C.-M.; Chiu, H.-C.; Huang, C.-R.; Lee, D.-Y.; Chang, G.-D.; Chou, T.-C.; Chen, J.-W.; Chen, C.-S. A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli. Cell Death Dis. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Lavigne, J.-P.; Blanc-Potard, A.-B.; Bourg, G.; Moreau, J.; Chanal, C.; Bouziges, N.; O’Callaghan, D.; Sotto, A. Virulence genotype and nematode-killing properties of extra-intestinal Escherichia coli producing CTX-M β-lactamases. Clin. Microbiol. Infect. 2006, 12, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, J.-P.; Vergunst, A.C.; Goret, L.; Sotto, A.; Combescure, C.; Blanco, J.; O’Callaghan, D.; Nicolas-Chanoine, M.-H. Virulence Potential and Genomic Mapping of the Worldwide Clone Escherichia coli ST131. PLoS ONE 2012, 7, e34294. [Google Scholar] [CrossRef] [PubMed]
- Merkx-Jacques, A.; Coors, A.; Brousseau, R.; Masson, L.; Mazza, A.; Tien, Y.-C.; Topp, E. Evaluating the Pathogenic Potential of Environmental Escherichia coli by Using the Caenorhabditis elegans Infection Model. Appl. Environ. Microbiol. 2013, 79, 2435–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, B.-H.; Chang, Y.-F.; Scaria, J.; Chang, C.-C.; Chou, L.-W.; Tien, N.; Wu, J.-J.; Tseng, C.-C.; Wang, M.-C.; Hsu, Y.-M.; et al. Identification of Escherichia coli Genes Associated with Urinary Tract Infections. J. Clin. Microbiol. 2012, 50, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Brenner, S. The Genetics of Caenorhabditis Elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Stell, A.L. Extended Virulence Genotypes of Escherichia coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; O’Bryan, T.T.; Delavari, P.; Kuskowski, M.; Stapleton, A.; Carlino, U.; Russo, T.A. Clonal relationships and extended virulence genotypes among Escherichia coli isolates from women with a first or recurrent episode of cystitis. J. Infect. Dis. 2001, 183, 1508–1517. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Porter, S.; Johnston, B.; Kuskowski, M.A.; Spurbeck, R.R.; Mobley, H.L.; Williamson, D.A. Host characteristics and bacterial traits predict experimental virulence for Escherichia coli bloodstream isolates from patients with urosepsis. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Luo, Y.; Ma, Y.; Zhao, Q.; Wang, L.; Guo, L.; Ye, L.; Zhang, Y.; Yang, J. Similarity and Divergence of Phylogenies, Antimicrobial Susceptibilities, and Virulence Factor Profiles of Escherichia coli Isolates Causing Recurrent Urinary Tract Infections That Persist or Result from Reinfection. J. Clin. Microbiol. 2012, 50, 4002–4007. [Google Scholar] [CrossRef] [Green Version]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bingen, E.; Picard, B.; Brahimi, N.; Mathy, S.; Desjardins, P.; Elion, J.; Denamur, E. Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J. Infect. Dis. 1998, 177, 642–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, J.P.; Crowley, J.R.; Pinkner, J.S.; Walker, J.N.; Tsukayama, P.; Stamm, W.E.; Hooton, T.M.; Hultgren, S.J. Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli. PLoS Pathog. 2009, 5, e1000305. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.G.; Payne, S.M. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 1997, 23, 825–833. [Google Scholar] [CrossRef]
- Hagan, E.C.; Mobley, H.L.T. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia colifor kidney infection. Mol. Microbiol. 2009, 71, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Brumbaugh, A.R.; Smith, S.N.; Subashchandrabose, S.; Himpsl, S.D.; Hazen, T.H.; Rasko, D.A.; Mobley, H.L.T. Blocking Yersiniabactin Import Attenuates Extraintestinal Pathogenic Escherichia coli in Cystitis and Pyelonephritis and Represents a Novel Target to Prevent Urinary Tract Infection. Infect. Immun. 2015, 83, 1443–1450. [Google Scholar] [CrossRef] [Green Version]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.G.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Genet. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Watts, R.E.; Totsika, M.; Challinor, V.L.; Mabbett, A.N.; Ulett, G.C.; De Voss, J.J.; Schembri, M.A. Contribution of Siderophore Systems to Growth and Urinary Tract Colonization of Asymptomatic Bacteriuria Escherichia coli. Infect. Immun. 2012, 80, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Hantke, K.; Nicholson, G.; Rabsch, W.; Winkelmann, G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc. Natl. Acad. Sci. USA 2003, 100, 3677–3682. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E.C.; Brumbaugh, A.R.; Mobley, H.L.T. Redundancy and Specificity of Escherichia coli Iron Acquisition Systems during Urinary Tract Infection. Infect. Immun. 2011, 79, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Cassat, J.E.; Skaar, E.P. Iron in Infection and Immunity. Cell Host Microbe 2013, 13, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.P.; Leibold, E.A. Mechanisms of iron metabolism in Caenorhabditis elegans. Front. Pharmacol. 2014, 5, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortman, G.A.M.; Mulder, M.L.M.; Richters, T.J.W.; Shanmugam, N.K.N.; Trebicka, E.; Boekhorst, J.; Timmerman, H.M.; Roelofs, R.; Wiegerinck, E.T.; Laarakkers, C.M.; et al. Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens. Eur. J. Immunol. 2015, 45, 2553–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, J.; Song, H.-O.; Park, B.-J.; Singaravelu, G.; Sun, J.L.; Ahnn, J.; Cho, J.H. Functional assessment of Nramp-like metal transporters and manganese in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2009, 390, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.T.; Møller-Jensen, J.; Kristensen, A.R.; Andersen, J.S.; Riddle, N.L.; Kallipolitis, B.H. Quantitative proteomics identifies ferritin in the innate immune response of C. elegans. Virulence 2011, 2, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.U.; Carta, L.K.; Lesuisse, E.; Hamza, I. Lack of heme synthesis in a free-living eukaryote. Proc. Natl. Acad. Sci. USA 2005, 102, 4270–4275. [Google Scholar] [CrossRef] [Green Version]
- Flo, T.H.; Smith, K.D.; Sato, S.; Rodriguez, D.J.; Holmes, M.A.; Strong, R.K.; Akira, S.; Aderem, A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nat. Cell Biol. 2004, 432, 917–921. [Google Scholar] [CrossRef]
- Fischbach, M.A.; Lin, H.; Zhou, L.; Yu, Y.; Abergel, R.J.; Liu, D.R.; Raymond, K.N.; Wanner, B.L.; Strong, R.K.; Walsh, C.T.; et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl. Acad. Sci. USA 2006, 103, 16502–16507. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.E.; Heffernan, J.R.; Henderson, J.P. The iron hand of uropathogenic Escherichia coli: The role of transition metal control in virulence. Future Microbiol. 2018, 13, 745–756. [Google Scholar] [CrossRef]
Fecal (n = 50) | UTI (n = 83) | p1 | ||||
---|---|---|---|---|---|---|
Phylogenetic Group | ||||||
A | 24 | 48% | 6 | 7% | <0.001 | |
B1 | 3 | 6% | 8 | 10% | ns | |
B2 | 18 | 36% | 56 | 67% | 0.001 | |
D | 5 | 10% | 13 | 16% | ns | |
Virulence Factors | ||||||
Toxin | vat | 13 | 26% | 40 | 48% | 0.017 |
tsh | 3 | 6% | 5 | 6% | ns | |
sitA | 28 | 56% | 71 | 86% | <0.001 | |
picU | 0 | 0% | 11 | 13% | 0.007 | |
cdtB | 0 | 0% | 3 | 4% | ns | |
sat | 6 | 12% | 31 | 37% | 0.001 | |
hlyA | 8 | 16% | 23 | 28% | ns | |
cnf1 | 3 | 6% | 17 | 20% | 0.025 | |
Adhesin | bmaE | 0 | 0% | 0 | 0% | ns |
ibeA | 9 | 18% | 4 | 5% | 0.017 | |
fimH | 48 | 96% | 81 | 98% | ns | |
sfaH | 2 | 4% | 8 | 10% | ns | |
hek | 7 | 14% | 28 | 34% | 0.015 | |
afa/draBC | 1 | 2% | 9 | 11% | ns | |
focH | 2 | 4% | 14 | 17% | 0.029 | |
papG II | 6 | 12% | 34 | 41% | <0.001 | |
papG III | 2 | 4% | 5 | 6% | ns | |
iha | 10 | 20% | 33 | 40% | 0.022 | |
Iron acquisition | feoB | 50 | 100% | 83 | 100% | ns |
fyuA | 25 | 50% | 71 | 86% | <0.001 | |
irp2 | 25 | 50% | 72 | 87% | <0.001 | |
chuA | 23 | 46% | 69 | 83% | <0.001 | |
iutA | 19 | 38% | 54 | 65% | <0.004 | |
iucC | 18 | 36% | 51 | 61% | 0.007 | |
ireA | 5 | 10% | 23 | 28% | 0.016 | |
iroN | 13 | 26% | 32 | 39% | ns | |
Others | ompT | 17 | 34% | 43 | 52% | ns |
traT | 23 | 46% | 60 | 72% | 0.003 | |
cvaC | 7 | 14% | 13 | 16% | ns | |
malX | 17 | 34% | 54 | 65% | <0.001 | |
usp | 13 | 26% | 52 | 63% | <0.001 |
Groups | Gene a | Absent | Present | pb |
---|---|---|---|---|
Toxin | vat | 1.34 ± 0.52 | 1.48 ± 0.47 | ns |
tsh | 1.39 ± 0.51 | 1.50 ± 0.37 | ns | |
sitA | 1.32 ± 0.54 | 1.42 ± 0.49 | ns | |
picU | 1.41 ± 0.49 | 1.20 ± 0.65 | ns | |
cdtB | 1.40 ± 0.50 | 1.29 ± 0.61 | ns | |
sat | 1.39 ± 0.49 | 1.42 ± 0.55 | ns | |
hlyA | 1.41 ± 0.48 | 1.36 ± 0.58 | ns | |
cnf1 | 1.38 ± 0.49 | 1.49 ± 0.59 | ns | |
Adhesin | ibeA | 1.40 ± 0.51 | 1.34 ± 0.39 | ns |
fimH | 0.93 ± 0.52 | 1.41 ± 0.50 | ns | |
sfaH | 1.39 ± 0.50 | 1.47 ± 0.60 | ns | |
hek | 1.40 ± 0.47 | 1.38 ± 0.59 | ns | |
afa/draBC | 1.38 ± 0.51 | 1.56 ± 0.41 | ns | |
focH | 1.43 ± 0.49 | 1.19 ± 0.58 | ns | |
papG II | 1.36 ± 0.52 | 1.48 ± 0.46 | ns | |
papG III | 1.38 ± 0.50 | 1.66 ± 0.52 | ns | |
iha | 1.39 ± 0.49 | 1.42 ± 0.54 | ns | |
Iron acquisition | fyuA | 1.17 ± 0.49 | 1.48 ± 0.48 | 0.001 |
irp2 | 1.17 ± 0.49 | 1.48 ± 0.48 | 0.002 | |
chuA | 1.14 ± 0.53 | 1.51 ± 0.45 | <0.001 | |
iutA | 1.37 ± 0.52 | 1.42 ± 0.49 | ns | |
iucC | 1.35 ± 0.53 | 1.44 ± 0.48 | ns | |
ireA | 1.37 ± 0.52 | 1.50 ± 0.42 | ns | |
iroN | 1.38 ± 0.51 | 1.42 ± 0.49 | ns | |
Others | ompT | 1.31 ± 0.49 | 1.50 ± 0.50 | 0.02 |
traT | 1.28 ± 0.55 | 1.47 ± 0.46 | 0.004 | |
cvaC | 1.38 ± 0.53 | 1.51 ± 0.34 | ns | |
malX | 1.26 ± 0.55 | 1.51 ± 0.43 | 0.004 | |
usp | 1.23 ± 0.54 | 1.57 ± 0.40 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, M.; Ma, Y.-F.; Wang, S.-T.; Chen, C.-S.; Teng, C.-H. Iron Acquisition of Urinary Tract Infection Escherichia coli Involves Pathogenicity in Caenorhabditis elegans. Microorganisms 2021, 9, 310. https://doi.org/10.3390/microorganisms9020310
Hashimoto M, Ma Y-F, Wang S-T, Chen C-S, Teng C-H. Iron Acquisition of Urinary Tract Infection Escherichia coli Involves Pathogenicity in Caenorhabditis elegans. Microorganisms. 2021; 9(2):310. https://doi.org/10.3390/microorganisms9020310
Chicago/Turabian StyleHashimoto, Masayuki, Yi-Fen Ma, Sin-Tian Wang, Chang-Shi Chen, and Ching-Hao Teng. 2021. "Iron Acquisition of Urinary Tract Infection Escherichia coli Involves Pathogenicity in Caenorhabditis elegans" Microorganisms 9, no. 2: 310. https://doi.org/10.3390/microorganisms9020310
APA StyleHashimoto, M., Ma, Y.-F., Wang, S.-T., Chen, C.-S., & Teng, C.-H. (2021). Iron Acquisition of Urinary Tract Infection Escherichia coli Involves Pathogenicity in Caenorhabditis elegans. Microorganisms, 9(2), 310. https://doi.org/10.3390/microorganisms9020310