Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Culture on Selective Media, and DNA Extraction
2.2. Water Chemical Analysis
2.3. DNA Amplification and Sequencing
2.4. Clustering, Alignment, and Phylogenetic Analysis of 16S rRNA Gene Fragments
2.5. Data Analysis
3. Results
3.1. Sampling Sites, Water Parameters, and Culture Conditions
3.2. General 16S Metabarcoding Data and α-Diversity
3.3. Comparison between Environmental and Culture Treatments
3.4. Culture Detection of Abundant Environmental OTUs: Focus on the Pseudomonas Genus
3.5. Culture Detection of Rare OTUs: Focus on the Pectobacterium Genus
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Větrovský, T.; Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, J.; Glendinning, L.; Wisedchanwet, T.; Watson, M. The madness of microbiome: Attempting to find consensus “best practice” for 16S microbiome studies. Appl. Environ. Microbiol. 2018, 84, e02627-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugon, P.; Lagier, J.-C.; Colson, P.; Bittar, F.; Raoult, D. Repertoire of human gut microbes. Microb. Pathog. 2017, 106, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.-C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016, 1, 16203. [Google Scholar] [CrossRef]
- Sogin, M.L.; Morrison, H.G.; Huber, J.A.; Mark Welch, D.; Huse, S.M.; Neal, P.R.; Arrieta, J.M.; Herndl, G.J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 2006, 103, 12115–12120. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.D.J.; Neufeld, J.D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015, 13, 217–229. [Google Scholar] [CrossRef]
- Khammar, N.; Malhautier, L.; Degrange, V.; Lensi, R.; Fanlo, J.-L. Evaluation of dispersion methods for enumeration of microorganisms from peat and activated carbon biofilters treating volatile organic compounds. Chemosphere 2004, 54, 243–254. [Google Scholar] [CrossRef]
- King, E.O.; Ward, M.K.; Raney, D.E. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 1954, 44, 301–307. [Google Scholar]
- Schaad, N.W. Serological identification of plant pathogenic bacteria. Ann. Rev. Phytopathol. 1979, 17, 123–147. [Google Scholar] [CrossRef]
- Faye, P.; Bertrand, C.; Pédron, J.; Barny, M.-A. Draft genomes of “Pectobacterium peruviense” strains isolated from fresh water in France. Stand. Genom. Sci. 2018, 13. [Google Scholar] [CrossRef]
- Cigna, J.; Dewaegeneire, P.; Beury, A.; Gobert, V.; Faure, D. A gapA PCR-sequencing Assay for Identifying the Dickeya and Pectobacterium Potato Pathogens. Plant. Disease 2017, 101, 1278–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulet, M.; Lalucat, J.; García-Valdés, E. DNA sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 2010, 12, 1513–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borschinger, B.; Bartoli, C.; Chandeysson, C.; Guilbaud, C.; Parisi, L.; Bourgeay, J.F.; Buisson, E.; Morris, C.E. A set of PCRs for rapid identification and characterization of Pseudomonas syringae phylogroups. J. Appl. Microbiol. 2016, 121, 903. [Google Scholar] [CrossRef] [PubMed]
- Guilbaud, C.; Morris, C.E.; Barakat, M.; Ortet, P.; Berge, O. Isolation and identification of Pseudomonas syringae facilitated by a PCR targeting the whole P. syringae group. FEMS Microbiol. Ecol. 2016, 92, fiv146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochelle-Newall, E.; Hulot, F.D.; Janeau, J.L.; Merroune, A. CDOM fluorescence as a proxy of DOC concentration in natural waters: A comparison of four contrasting tropical systems. Environ. Monit. Assess. 2014, 186, 589–596. [Google Scholar] [CrossRef]
- Fasching, C.; Ulseth, A.J.; Schelker, J.; Steniczka, G.; Battin, T.J. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnol. Oceanogr. 2016, 61, 558–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fichot, C.G.; Benner, R. The spectral slope coefficient of chromophoric dissolved organic matter (S 275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 2012, 57, 1453–1466. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miSeq illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Paul, D.R. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, D.; Villger, S.; Bortoli, J.; Leprieur, F. Partitioning Beta Diversity into Turnover and Nestedness Components. Available online: https://cran.r-project.org/web/packages/betapart/ (accessed on 27 July 2020).
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity: Partitioning beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness: Species replacement and nestedness. Glob. Ecol. Biogeogr. 2012, 21, 1223–1232. [Google Scholar] [CrossRef]
- Minich, J.J.; Sanders, J.G.; Amir, A.; Humphrey, G.; Gilbert, J.A.; Knight, R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 2019, 4, e00186-19. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, L.; Singer, G.A.; Fasching, C.; Battin, T.J.; Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 2013, 7, 1651–1660. [Google Scholar] [CrossRef] [Green Version]
- Hassell, N.; Tinker, K.A.; Moore, T.; Ottesen, E.A. Temporal and spatial dynamics in microbial community composition within a temperate stream network: Microbial community assembly in streams. Environ. Microbiol. 2018, 20, 3560–3572. [Google Scholar] [CrossRef]
- Le, H.T.; Rochelle-Newall, E.; Auda, Y.; Ribolzi, O.; Sengtaheuanghoung, O.; Thébault, E.; Soulileuth, B.; Pommier, T. Vicinal land use change strongly drives stream bacterial community in a tropical montane catchment. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef]
- Judd, K.E.; Crump, B.C.; Kling, G.W. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 2006, 87, 2068–2079. [Google Scholar] [CrossRef]
- Llirós, M.; Inceoğlu, Ö.; García-Armisen, T.; Anzil, A.; Leporcq, B.; Pigneur, L.-M.; Viroux, L.; Darchambeau, F.; Descy, J.-P.; Servais, P. Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status. PLoS ONE 2014, 9, e116145. [Google Scholar] [CrossRef]
- Berge, O.; Monteil, C.L.; Bartoli, C.; Chandeysson, C.; Guilbaud, C.; Sands, D.C.; Morris, C.E. A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS ONE 2014, 9, e105547. [Google Scholar] [CrossRef] [PubMed]
- Pédron, J.; Bertrand, C.; Taghouti, G.; Portier, P.; Barny, M.-A. Pectobacterium aquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 2019, 69, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
Water Characterization | Estimated CFUs/Plate | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | Alt. m | Temp. °C | Conductivity µS | DOC mg C/L | Turbidity NTU | TSA 10% CFUs/Plate | KBC CFUs/Plate | PCR Estimated Psy/KBC Plate | % Estimated Psy/tot CFUs KBC | CVP CFUs/Plate | Visual Detection of CFUs SRP $/Plate | % CFUs SRP $/tot CFUs CVP |
UD | 790 | 10.5 | 354 | 0.93 | 85.8 | 2.20 × 105 | 9.47 × 102 | 100 | 9.4 | 1.38 × 103 | 0 | 0 |
MD | 620 | 11.4 | 609 | 0.67 | 3.1 | 4.36 × 105 | 8.88 × 102 | 50 | 5.8 | 1.91 × 103 | 0 | 0 |
LD | 188 | 15.2 | 511 | 1.03 | 31.8 | 3.40 × 105 | 5.75 × 103 | 13 | 0.2 | 3.55 × 103 | 17 | 0.48 |
Direct 16S Sequencing | 16S Sequencing after Culture on | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Culture Medium | - | TSA 10% | CVP | KBC | ||||||||
Site | UD | MD | LD | UD | MD | LD | UD | MD | LD | UD | MD | LD |
Total reads | 85,599 ± 2938 | 101,035 ± 3075 | 84,069 ± 11854 | 90,608 ± 10333 | 78,434 ± 8679 | 98,430 ± 12130 | 76,154 ± 7470 | 81,785 ± 9358 | 72,327 ± 13572 | 99,951 ± 3342 | 71,423 ± 5633 | 94,730 ± 1673 |
Assigned reads | 60,248 ± 3516 | 73,796 ± 1735 | 54,233 ± 7161 | 48,712 ± 2715 | 39,252 ± 3584 | 52,778 ± 3506 | 41,229 ± 6368 | 45,519 ± 4981 | 42,132 ± 6664 | 54,372 ± 1357 | 37,808 ± 4772 | 50,880 ± 4019 |
Good’s coverage | 0.994 ± 2.10−4 | 0.996 ± 9.10−4 | 0.994 ± 0.00 | 0.999 ± 1.10−4 | 0.999 ± 1.10−4 | 0.999 ± 1.10−4 | 0.999 ± 6.10−5 | 0.999 ± 1.10−4 | 0.999 ± 7.10−5 | 0.999 ± 1.10−4 | 0.999 ± 7.10−5 | 0.999 ± 2.10−4 |
OTUs | 3793 ± 313 | 2142 ± 132 | 1269 ± 143 | 736 ± 108 | 699 ± 38 | 640 ± 71 | 392 ± 10 | 333 ± 49 | 349 ± 37 | 444 ± 49 | 281 ± 48 | 407 ± 30 |
Shannon H Index | 6.76 ± 0.05 | 5.47 ± 0.18 | 3.93 ± 0.10 | 3.16 ± 0.24 | 3.20 ± 0.14 | 2.61 ± 0.06 | 1.74 ± 0.30 | 1.78 ± 0.17 | 1.80 ± 0.26 | 2.33 ± 0.16 | 2.09 ± 0.08 | 2.09 ± 0.26 |
Pielou J Index | 0.82 ± 0.00 | 0.71 ± 0.03 | 0.55 ± 0.01 | 0.48 ± 0.04 | 0.49 ± 0.02 | 0.40 ± 0.01 | 0.29 ± 0.05 | 0.31 ± 0.02 | 0.31 ± 0.04 | 0.38 ± 0.03 | 0.37 ± 0.02 | 0.35 ± 0.04 |
Phyla | 42 ± 1 | 37 ± 1 | 29 ± 1 | 6 ± 1 | 5 ± 0 | 5 ± 0 | 4 ± 1 | 5 ± 0 | 5 ± 0 | 5 ± 0 | 5 ± 1 | 5 ± 0 |
Genera | 736 ± 13 | 540 ± 26 | 339 ± 10 | 120 ± 3 | 90 ± 8 | 97 ± 3 | 47 ± 2 | 48 ± 3 | 48 ± 4 | 49 ± 2 | 41 ± 5 | 44 ± 3 |
Site | Pseudomonas | |||
---|---|---|---|---|
Pseudomonas Reads | % Total Reads | Enrichment Factor Medium:Environment | ||
ENV | UD | 461 | 0.49 | NA |
MD | 454 | 0.49 | NA | |
LD | 86 | 0.09 | NA | |
CVP | UD | 78719 | 84.41 | 171 |
MD | 78061 | 83.70 | 172 | |
LD | 69772 | 74.81 | 811 | |
KBC | UD | 42406 | 45.47 | 92 |
MD | 54321 | 58.25 | 119. | |
LD | 27835 | 29.85 | 324 | |
TSA | UD | 7919 | 8.49 | 17 |
MD | 8716 | 9.35 | 19 | |
LD | 5031 | 5.39 | 58 |
Site | Pectobacterium | ||||
---|---|---|---|---|---|
CFUs SRP | % Total CFUs | SRP Reads | % Total Reads | ||
ENV | UD | NA | NA | 0 | 0 |
MD | NA | NA | 0 | 0 | |
LD | NA | NA | 0 | 0 | |
CVP | UD | 0 | 0 | 16 | 0.017 |
MD | 0 | 0 | 2 | 0.002 | |
LD | 51 | 0.48 | 928 | 0.995 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pédron, J.; Guyon, L.; Lecomte, A.; Blottière, L.; Chandeysson, C.; Rochelle-Newall, E.; Raynaud, X.; Berge, O.; Barny, M.-A. Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa. Microorganisms 2020, 8, 1129. https://doi.org/10.3390/microorganisms8081129
Pédron J, Guyon L, Lecomte A, Blottière L, Chandeysson C, Rochelle-Newall E, Raynaud X, Berge O, Barny M-A. Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa. Microorganisms. 2020; 8(8):1129. https://doi.org/10.3390/microorganisms8081129
Chicago/Turabian StylePédron, Jacques, Léa Guyon, Amandine Lecomte, Lydie Blottière, Charlotte Chandeysson, Emma Rochelle-Newall, Xavier Raynaud, Odile Berge, and Marie-Anne Barny. 2020. "Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa" Microorganisms 8, no. 8: 1129. https://doi.org/10.3390/microorganisms8081129
APA StylePédron, J., Guyon, L., Lecomte, A., Blottière, L., Chandeysson, C., Rochelle-Newall, E., Raynaud, X., Berge, O., & Barny, M.-A. (2020). Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa. Microorganisms, 8(8), 1129. https://doi.org/10.3390/microorganisms8081129