The Lactobacillus brevis 47 f Strain Protects the Murine Intestine from Enteropathy Induced by 5-Fluorouracil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain, Culture Media and Growth Conditions
2.2. Animals
2.3. Gut Tissue Analysis by Light Microscopy
2.4. Measurements of Malonic Dialdehyde (MDA)
2.5. Statistical Analysis
3. Results
3.1. Experimental Enteropathy Induced by 5 FU
3.2. L. brevis 47 f attenuates 5 FU Induced MDA Elevation in the Intestine and the Plasma
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giorgio, M. Oxidative stress and the unfulfilled promises of antioxidant agents. Ecancermedicalscience 2015, 9, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wei, X.; Sun, Y.; Du, J.; Li, X.; Xun, Z.; Li, Y.C. High fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G453–G462. [Google Scholar] [CrossRef] [PubMed]
- Perez, S.; Talens-Visconti, R.; Rius-Perez, S.; Finamor, I.; Sastre, J. Redox signaling in the gastrointestinal tract. Free Radic. Biol. Med. 2017, 104, 75–103. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; et al. Oxidative stress in autism spectrum disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.P.; Aryal, P.; Robinson, S.; Rafiu, R.; Obrenovich, M.; Perry, G. Polyphenols in Alzheimer’s disease and in the gut-brain axis. Microorganisms 2020, 8, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goschorska, M.; Gutowska, I.; Baranowska-Bosiacka, I.; Barczak, K.; Chlubek, D. The use of antioxidants in the treatment of migraine. Antioxidants 2020, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef] [PubMed]
- Marsova, M.V.; Abilev, S.K.; Poluektova, E.U.; Danilenko, V.N. A bioluminescent test system reveals valuable antioxidant properties of Lactobacillus strains from human microbiota. World J. Microbiol. Biotechnol. 2018, 34, 27. [Google Scholar] [CrossRef]
- Chandra, P.; Sharma, R.K.; Arora, D.S. Antioxidant compounds from microbial sources: A review. Food Res. Int. 2020, 129, 108849. [Google Scholar] [CrossRef] [PubMed]
- Leeber, S.; Bron, A.P.; Marco, M.L.; Van Pijkeren, J.-P.; O’Connell Motherway, M.; Colin, H.; Pot, B.; Roos, S.; Klaenhammer, T. Identification of probiotic effector molecules: Present state and future perspectives. Curr. Opin. Biotechnol. 2018, 49, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wu, Y.; Wang, Y.; Fu, A.; Gong, L.; Li, W.; Li, Y. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Appl. Microbiol. Biotechnol. 2017, 101, 3015–3026. [Google Scholar] [CrossRef] [PubMed]
- Westfall, S.; Lomis, N.; Prakash, S. Ferulic acid produced by Lactobacillus fermentum influences developmental growth through a dTOR-mediated mechanism. Mol. Biotechnol. 2019, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.M.; Levit, R.; de Giori, G.S.; LeBlanc, J.G. Vitamin producing lactic acid bacteria as complementary treatments for intestinal inflammation. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2018, 17, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, Y.; Yang, X.; Zheng, L.; Wang, Z.; Wu, L.; Jiang, J.; Yang, T.; Ma, L.; Fu, Z.; Wang, W.; et al. Lactobacillus and Bifidobacterium Improved physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol. Nutr. Food Res. 2019, 63, 1900603. [Google Scholar] [CrossRef] [PubMed]
- Cogdill, A.P.; Gaudreau, P.O.; Arora, R.; Gopalakrishnan, V.; Wargo, J.A. The impact of intratumoral and gastrointestinal microbiota on systemic cancer therapy. Trends Immunol. 2018, 39, 900–920. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers 2019, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Hinoi, T.; Adachi, T.; Miguchi, M.; Niitsu, H.; Kochi, M.; Sada, H.; Sotomaru, Y.; Sakamoto, N.; Sentani, K.; et al. Synbiotics suppress colitis-induced tumorigenesis in a colon-specific cancer mouse model. PLoS ONE 2019, 14, e0216393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Zhang, J.; Yi, R.; Zhou, X.; Long, X.; Pan, Y.; Zhao, X. Preventive effect of Lactobacillus fermentum CQPC08 on 4-nitroquineline-1-oxide induced tongue cancer in C57 BL/6 mice. Foods 2019, 8, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R.J.; Keefe, D.M.; Lalla, R.V.; Bateman, E.; Blijlevens, N.; Fijlstra, M.; King, E.E.; Stringer, A.M.; van der Velden, W.J.; Yazbeck, R.; et al. Systematic review of agents for the management of gastrointestinal mucositis in cancer patients. Support. Care Cancer 2013, 21, 313–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demers, M.; Dagnault, A.; Desjardins, J. A randomized double-blind controlled trial: Impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin. Nutr. 2014, 33, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.M.; Gibson, R.J.; Coller, J.K.; Blijlevens, N.; Bossi, P.; Al-Dasooqi, N.; Bateman, E.H.; Chiang, K.; de Mooij, C.; Mayo, B.; et al. Systematic review of agents for the management of cancer treatment-related gastrointestinal mucositis and clinical practice guidelines. Support. Care Cancer 2019, 27, 4011–4022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routy, B.; Gopalakrishnan, V.; Daillère, R.; Zitvogel, L.; Wargo, J.A.; Kroemer, G. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 2018, 15, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Gori, S.; Inno, A.; Belluomini, L.; Bocus, P.; Bisoffi, Z.; Russo, A.; Arcaro, G. Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit. Rev. Oncol. Hematol. 2019, 143, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Korver, S.K.; Gibson, R.J.; Bowen, J.M.; Coller, J.K. Toll-like receptor/interleukin-1 domain innate immune signalling pathway genetic variants are candidate predictors for severe gastrointestinal toxicity risk following 5-fluorouracil-based chemotherapy. Cancer Chemother. Pharm. 2019, 83, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Ilson, D.H. Advances in the treatment of gastric cancer. Curr. Opin. Gastroenterol. 2018, 34, 465–468. [Google Scholar] [CrossRef]
- Krishna, S.G.; Zhao, W.; Grazziutti, M.L.; Sanathkumar, N.; Barlogie, B.; Anaissie, E.J. Incidence and risk factors for lower alimentary tract mucositis after 1529 courses of chemotherapy in a homogenous population of oncology patients: Clinical and research implications. Cancer 2011, 117, 648–655. [Google Scholar] [CrossRef]
- Arakawa, T.; Kobayashi, K.; Yoshikawa, T.; Tarnawski, A. Rebamipide: Overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig. Dis. Sci. 1998, 43, 5S–13S. [Google Scholar] [PubMed]
- Tanigawa, T.; Watanabe, T.; Ohkawa, F.; Nadatani, Y.; Otani, K.; Machida, H.; Okazaki, H.; Yamagami, H.; Watanabe, K.; Tominaga, K.; et al. Rebamipide, a mucoprotective drug, inhibits NSAIDs-induced gastric mucosal injury: Possible involvement of the downregulation of 15-hydroxyprostaglandin dehydrogenase. J. Clin. Biochem. Nutr. 2011, 48, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Kurata, S.; Nakashima, T.; Osaki, T.; Uematsu, N.; Shibamori, M.; Sakurai, K.; Kamiya, S. Rebamipide protects small intestinal mucosal injuries caused by indomethacin by modulating intestinal microbiota and the gene expression in intestinal mucosa in a rat model. J. Clin. Biochem. Nutr. 2015, 56, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, J.H.; Moon, W.; Park, J.; Park, S.J.; Song, G.A.; Han, S.H.; Lee, J.H. Rebamipide attenuates 5-Fluorouracil-induced small intestinal mucositis in a mouse model. Biol. Pharm. Bull. 2015, 38, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enami, A.; Masuda, N.; Yamamura, J.; Mizutani, M.; Yasojima, H.; Shikata, A.; Masaoka, M.; Takada, S.; Bamba, N.; Yamamoto, M.; et al. Therapeutic effect of rebamipide for oral mucositis associated with FEC therapy for breast cancer. Gan Kagaku Ryoho 2014, 41, 1407–1412. [Google Scholar]
- Yunes, R.A.; Poluektova, E.U.; Vasileva, E.V.; Odorskaya, M.V.; Marsova, M.V.; Kovalev, G.I.; Danilenko, V.N. A multi-strain potential probiotic formulation of GABA-producing Lactobacillus plantarum 90 sk and Bifidobacterium adolescentis 150 with antidepressant effects. Probiotics Antimicrob. Proteins 2019. [Google Scholar] [CrossRef]
- Lane, D.J.; Weisburg, W.G.; Barns, S.M.; Pelletier, D.A. 16 S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Juríková, M.; Danihel, L.; Polák, Š.; Varga, I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Review. Acta Histochem. 2016, 118, 544–552. [Google Scholar] [CrossRef]
- Li, B.; Liang, L.; Deng, H.; Guo, J.; Shu, H.; Zhang, L. Efficacy and safety of probiotics in irritable bowel syndrome: A systematic review and meta-analysis. Front. Pharm. 2020, 11, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamo, R.Z.; Quigley, E.M.M. Irritable bowel syndrome and colonic diverticular disease: Overlapping symptoms and overlapping therapeutic approaches. Curr. Opin. Gastroenterol. 2019, 35, 27–33. [Google Scholar] [CrossRef]
- Moal, V.L. Anti-infective activities of Lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 2014, 27, 167–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Lv, J.; Pan, L.; Zhang, Y. Roles and applications of probiotic Lactobacillus strains. Appl. Microbiol. Biotechnol. 2018, 102, 8135–8143. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Galdeano, C.M.; Cazorla, S.I.; Dumit, J.M.L.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef]
- Saadat, Y.R.; Khosroushahi, A.Y.; Gargari, B.P. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr. Polym. 2019, 217, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, M.J.; Harmsen, H.J.; de Bont, E.S.; Tissing, W.J. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog. 2010, 6, e1000879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.R.; Kim, J.; Oh, J.Y.; Kim, H.Y.; Kim, Y.J.; Chang, M.S. Protective effect of Salvia miltiorrhiza Bunge on 5-fluorouracil-induced oral mucositis. Int. J. Mol. Med. 2017, 40, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Cario, E. Toll-like receptors in the pathogenesis of chemotherapy-induced gastrointestinal toxicity. Curr. Opin. Support. Palliat. Care 2016, 10, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 2017, 8, 838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, B.; Dong, L.; Chang, P. Potential of omega-3 polyunsaturated fatty acids in managing chemotherapy- or radiotherapy-related intestinal microbial dysbiosis. Adv. Nutr. 2019, 10, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.M.; Leonel, A.J.; Melo, M.A.; Santos, R.R.; Cara, D.C.; Cardoso, V.N.; Correia, M.I.; Alvarez-Leite, J.I. Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-fluorouracil administration. Lipids 2012, 47, 669–678. [Google Scholar] [CrossRef]
- Suo, H.; Zhao, X.; Qian, Y.; Sun, P.; Zhu, K.; Li, J.; Sun, B. Lactobacillus fermentum Suo Attenuates HCl/Ethanol Induced Gastric Injury in Mice through Its Antioxidant Effects. Nutrients 2016, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Wu, X.; Luo, M.; Wei, H.; Xu, D.; Xu, F. Lactobacillus rhamnosus FLRH93 protects against intestinal damage in mice induced by 5-fluorouracil. J. Dairy Sci. 2020, 103, 5003–5018. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Feng, Y.; Liu, M.; Chen, L.; Meng, Q.; Tang, X.; Wang, S.; Liu, L.; Li, L.; Shen, W.; et al. Single-cell RNA sequencing analysis reveals alginate oligosaccharides preventing chemotherapy-induced mucositis. Mucosal Immunol. 2020, 13, 437–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arends, J. How to feed patients with gastrointestinal mucositis. Curr. Opin. Support. Palliat. Care 2018, 12, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Lu, Q.; Wang, H.; Zhu, X.; Guan, Z. Effects of probiotics combined with enteral nutrition on immune function and inflammatory response in postoperative patients with gastric cancer. J. BUON 2018, 23, 678–683. [Google Scholar] [PubMed]
- Sinno, M.H.; Coquerel, Q.; Boukhettala, N.; Coëffier, M.; Gallas, S.; Terashi, M.; Ibrahim, A.; Breuillé, D.; Déchelotte, P.; Fetissov, S.O. Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration. Physiol. Behav. 2010, 101, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Hughes, H.K.; Rose, D.; Ashwood, P. The gut microbiota and dysbiosis in autism spectrum disorders. Curr. Neurol. Neurosci. Rep. 2018, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Fetissov, S.O.; Averina, O.V.; Danilenko, V.N. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition 2019, 61, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Sharon, G.; Cruz, N.J.; Kang, D.W.; Gandal, M.J.; Wang, B.; Kim, Y.M.; Zink, E.M.; Casey, C.P.; Taylor, B.C.; Lane, C.J.; et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 2019, 177, 1600–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias-Vázquez, L.; Van Ginkel Riba, G.; Arija, V.; Canals, J. Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis. Nutrients 2020, 12, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averina, O.V.; Kovtun, A.S.; Polyakova, S.I.; Savilova, A.M.; Rebrikov, D.V.; Danilenko, V.N. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J. Med. Microbiol. 2020, 69, 558–571. [Google Scholar] [CrossRef] [PubMed]
Group | Treatment |
---|---|
Control (#1) | Saline × 3 days |
Test (#2) | 5 FU 100 mg/kg in saline × 3 days |
Test (#3) | L. brevis 47 f 108 CFU × 3 times gavage |
Test (#4) | L. brevis 47 f 108 CFU × 3 times + 5 FU 100 mg/kg × 3 days |
Test (#5) | Rebamipid 150 mg/kg × 3 times |
Test (#6) | Rebamipid 150 mg/kg × 3 times + 5 FU 100 mg/kg × 3 days |
Parameter | Saline | 5 FU | L. brevis 47 f | Rebamipid | L. brevis 47 f + 5 FU | Rebamipid + 5 FU |
---|---|---|---|---|---|---|
Height of villi, µm | 175 ± 14 | 102 ± 12 * | 166 ± 16 | 176 ± 14 | 149 ± 11 | 130 ± 16 |
Goblet cells/100 epitheliocytes | 29 ± 8 | 11 ± 6 * | 21 ± 6 | 22 ± 4 | 21 ± 6 | 20 ± 5 |
Intraepithelial lymphocytes/ 100 epitheliocytes | 20 ± 4 | 27 ± 7 | 25 ± 3 | 26 ± 3 | 24 ± 4 | 23 ± 2 |
Group | Treatment | MDA | ||
---|---|---|---|---|
Day 3/27 * | Day 7/31 | Day 10/34 | ||
1 | Saline | 0.7 ± 0.4 | 0.9 ± 0.6 | 0.6 ± 0.4 |
2 | 5 FU | 2.4 ± 0.4 | 4.2 ± 0.4 | 4.9 ± 0.6 |
3 | L. brevis 47 f t | 0.7 ± 0.3 | 1.1 ± 0.3 | 1.3 ± 0.4 |
4 | L. brevis 47 f + 5 FU | 0.9 ± 0.3 * | 1.9 ± 0.6 * | 2.6 ± 0.6 * |
5 | Rebamipid | 0.5 ± 0.2 | 1.3 ± 0.3 | 1.0 ± 0.2 |
6 | Rebamipid + 5 FU | 1.4 ± 0.3 | 3.3 ± 0.4 | 5.0 ± 0.5 |
Group | Treatment | MDA | ||
---|---|---|---|---|
Day 3 | Day 7 | Day 10 | ||
1 | Saline | 0.3 ± 0.1 | 0.320 ± 0.123 | 0.334 ± 0.066 |
2 | 5 FU | 3.1 ± 0.4 | 3.3 ± 0.6 | 3.8 ± 0.5 |
3 | L. brevis 47 f | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.5 ± 0.1 |
4 | L. brevis 47 f + 5 FU | 1.5 ± 0.3 * | 1.6 ± 0.2 * | 1.4 ± 0.3 * |
5 | Rebamipid | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 |
6 | Rebamipid + 5 FU | 1.4 ± 0.3 | 2.4 ± 0.5 | 3.9 ± 0.4 |
Group | Treatment | Plasma MDA | ||
---|---|---|---|---|
Day 3 | Day 7 | Day 10 | ||
1 | Saline | 3.4 ± 0.5 | 3.2 ± 0.5 | 3.4 ± 0.4 |
2 | 5 FU | 6.4 ± 0.8 | 6.2 ± 0.8 | 6.4 ± 0.9 |
3 | L. brevis 47 f | 2.6 ± 0.3 | 2.6 ± 0.4 | 3.2 ± 0.6 |
4 | L. brevis 47 f + 5 FU | 3.8 ± 0.7 * | 3.3 ± 0.6 * | 3.5 ± 0.4 * |
5 | Rebamipid | 3.2 ± 0.3 | 3.1 ± 0.6 | 3.6 ± 0.6 |
6 | Rebamipid + 5 FU | 5.5 ± 0.5 | 5.7 ± 0.4 | 5.3 ± 0.5 |
Group | Treatment | Plasma MDA | ||
---|---|---|---|---|
Day 3 | Day 7 | Day 10 | ||
1 | Saline | 3.0 ± 0.4 | 3.4 ± 0.4 | 3.3 ± 0.5 |
2 | 5 FU | 6.9 ± 0.5 | 7.0 ± 0.6 | 8.3 ± 0.4 |
3 | L. brevis 47 f | 3.2 ± 0.4 | 2.9 ± 0.4 | 3.4 ± 0.3 |
4 | L. brevis 47 f + 5 FU | 4.3 ± 0.5* | 4.6 ± 0.4* | 4.6 ± 0.3* |
5 | Rebamipid | 2.9 ± 0.2 | 3.1 ± 0.4 | 3.5 ± 0.4 |
6 | Rebamipid + 5 FU | 6.1 ± 0.4 | 7.4 ± 0.5 | 6.1 ± 0.6 |
Group | Treatment | Plasma | Intestine | ||
---|---|---|---|---|---|
Males | Females | Males | Females | ||
1 | Saline | 1 | 1 | 1 | 1 |
2 | 5 FU | 1.9 | 2.3 | 6.3 | 12 |
3 | L. brevis 47 f | 0.8 | 1 | 1.7 | 1.2 |
4 | L. brevis 47 f + 5 FU | 1.1 | 1.4 | 3.3 | 4.7 |
5 | Rebamipid | 1 | 1 | 1.2 | 1.1 |
6 | Rebamipid + 5 FU | 1.7 | 2 | 6.4 | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsova, M.; Odorskaya, M.; Novichkova, M.; Polyakova, V.; Abilev, S.; Kalinina, E.; Shtil, A.; Poluektova, E.; Danilenko, V. The Lactobacillus brevis 47 f Strain Protects the Murine Intestine from Enteropathy Induced by 5-Fluorouracil. Microorganisms 2020, 8, 876. https://doi.org/10.3390/microorganisms8060876
Marsova M, Odorskaya M, Novichkova M, Polyakova V, Abilev S, Kalinina E, Shtil A, Poluektova E, Danilenko V. The Lactobacillus brevis 47 f Strain Protects the Murine Intestine from Enteropathy Induced by 5-Fluorouracil. Microorganisms. 2020; 8(6):876. https://doi.org/10.3390/microorganisms8060876
Chicago/Turabian StyleMarsova, Maria, Maya Odorskaya, Maria Novichkova, Valentina Polyakova, Serikbay Abilev, Elena Kalinina, Alexander Shtil, Elena Poluektova, and Valery Danilenko. 2020. "The Lactobacillus brevis 47 f Strain Protects the Murine Intestine from Enteropathy Induced by 5-Fluorouracil" Microorganisms 8, no. 6: 876. https://doi.org/10.3390/microorganisms8060876
APA StyleMarsova, M., Odorskaya, M., Novichkova, M., Polyakova, V., Abilev, S., Kalinina, E., Shtil, A., Poluektova, E., & Danilenko, V. (2020). The Lactobacillus brevis 47 f Strain Protects the Murine Intestine from Enteropathy Induced by 5-Fluorouracil. Microorganisms, 8(6), 876. https://doi.org/10.3390/microorganisms8060876