New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Molecular Characterization
2.3. Microfermentations
2.4. Technological Characterization
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Genetic, Molecular, and Technological Characterization of the C. zemplinina Strains
3.2. Analysis of Volatile Compounds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdo, H.; Catacchio, C.R.; Ventura, M.; D’Addabbo, P.; Calabrese, F.M.; Laurent, J.; David-Vaizant, V.; Alexandre, H.; Guilloux-Bénatier, M.; Rousseaux, S. Colonization of Wild Saccharomyces cerevisiae Strains in a New Winery. Beverages 2020, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Grangeteau, C.; Roullier-Gall, C.; Rousseaux, S.; Gougeon, R.D.; Schmitt-Kopplin, P.; Alexandre, H.; Guilloux-Benatier, M. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb. Biotechnol. 2017, 10, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Grangeteau, C.; Gerhards, D.; von Wallbrunn, C.; Alexandre, H.; Rousseaux, S.; Guilloux-Benatier, M. Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar. Front. Microbiol. 2016, 7, 268. [Google Scholar] [CrossRef] [PubMed]
- Tempère, S.; Marchal, A.; Barbe, J.-C.; Bely, M.; Masneuf-Pomarede, I.; Marullo, P.; Albertin, W. The complexity of wine: Clarifying the role of microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 3995–4007. [Google Scholar] [CrossRef] [PubMed]
- Berbegal, C.; Spano, G.; Tristezza, M.; Grieco, F.; Capozzi, V. Microbial Resources and Innovation in the Wine Production Sector. South Afr. J. Enol. Vitic. 2017, 38, 156–166. [Google Scholar] [CrossRef]
- Roca-Mesa, H.; Sendra, S.; Mas, A.; Beltran, G.; Torija, M.-J. Nitrogen Preferences during Alcoholic Fermentation of Different Non-Saccharomyces Yeasts of Oenological Interest. Microorganisms 2020, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Canonico, L.; Solomon, M.; Comitini, F.; Ciani, M.; Varela, C. Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol. 2019, 84, 103247. [Google Scholar] [CrossRef]
- Du Plessis, H.; Du Toit, M.; Nieuwoudt, H.; Van der Rijst, M.; Hoff, J.; Jolly, N. Modulation of Wine Flavor using Hanseniaspora uvarum in Combination with Different Saccharomyces cerevisiae, Lactic Acid Bacteria Strains and Malolactic Fermentation Strategies. Fermentation 2019, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Berbegal, C.; Fragasso, M.; Russo, P.; Bimbo, F.; Grieco, F.; Spano, G.; Capozzi, V. Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. Fermentation 2019, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Morata, A.; Escott, C.; Bañuelos, M.A.; Loira, I.; del Fresno, J.M.; González, C.; Suárez-Lepe, J.A. Contribution of Non-Saccharomyces Yeasts to Wine Freshness. A Review. Biomolecules 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Benito, Á.; Calderón, F.; Benito, S. The Influence of Non-Saccharomyces Species on Wine Fermentation Quality Parameters. Fermentation 2019, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Roudil, L.; Russo, P.; Berbegal, C.; Albertin, W.; Spano, G.; Capozzi, V. Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector. Recent Pat. Food Nutr. Agric. 2019, 10, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Englezos, V.; Rantsiou, K.; Cravero, F.; Torchio, F.; Ortiz-Julien, A.; Gerbi, V.; Rolle, L.; Cocolin, L. Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Appl. Microbiol. Biotechnol. 2016, 100, 5515–5526. [Google Scholar] [CrossRef]
- Masneuf-Pomarede, I.; Juquin, E.; Miot-Sertier, C.; Renault, P.; Laizet, Y.; Salin, F.; Alexandre, H.; Capozzi, V.; Cocolin, L.; Colonna-Ceccaldi, B.; et al. The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Res. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Mateus, D.; Sousa, S.; Coimbra, C.; S Rogerson, F.; Simões, J. Identification and Characterization of Non-Saccharomyces Species Isolated from Port Wine Spontaneous Fermentations. Foods 2020, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Berbegal, C.; Tufariello, M.; Grieco, F.; Spano, G.; Grieco, F. Impact of co-inoculation of Saccharomyces cerevisiae, Hanseniaspora uvarum and Oenococcus oeni autochthonous strains in controlled multi starter grape must fermentations. LWT-Food Sci. Technol. 2019, 109, 241–249. [Google Scholar] [CrossRef]
- Tristezza, M.; Tufariello, M.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production. Front. Microbiol. 2016, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, C.; Russo, P.; Beneduce, L.; Massa, S.; Spano, G.; Capozzi, V. Non-Saccharomyces biodiversity in wine and the ‘microbial terroir’: A survey on Nero di Troia wine from the Apulian region, Italy. Ann. Microbiol. 2016, 66, 143–150. [Google Scholar] [CrossRef]
- Garofalo, C.; Tristezza, M.; Grieco, F.; Spano, G.; Capozzi, V. From grape berries to wine: Population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World J. Microbiol. Biotechnol. 2016, 32, 59. [Google Scholar] [CrossRef]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Spano, G.; Capozzi, V.; Logrieco, A.; Mita, G.; Grieco, F. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 2013, 36, 335–342. [Google Scholar] [CrossRef]
- Magyar, I.; Tóth, T. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Rantsiou, K.; Dolci, P.; Giacosa, S.; Torchio, F.; Tofalo, R.; Torriani, S.; Suzzi, G.; Rolle, L.; Cocolin, L. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl. Environ. Microbiol. 2012, 78, 1987–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binati, R.L.; Lemos Junior, W.J.F.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef]
- Tofalo, R.; Patrignani, F.; Lanciotti, R.; Perpetuini, G.; Schirone, M.; Di Gianvito, P.; Pizzoni, D.; Arfelli, G.; Suzzi, G. Aroma Profile of Montepulciano d’Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts. Front. Microbiol. 2016, 7, 610. [Google Scholar] [CrossRef] [PubMed]
- Zara, G.; Mannazzu, I.; Caro, A.D.; Budroni, M.; Pinna, M.B.; Murru, M.; Farris, G.A.; Zara, S. Wine quality improvement through the combined utilisation of yeast hulls and Candida zemplinina/Saccharomyces cerevisiae mixed starter cultures. Aust. J. Grape Wine Res. 2014, 20, 199–207. [Google Scholar] [CrossRef]
- Englezos, V.; Torchio, F.; Cravero, F.; Marengo, F.; Giacosa, S.; Gerbi, V.; Rantsiou, K.; Rolle, L.; Cocolin, L. Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris (synonym Candida zemplinina) and Saccharomyces cerevisiae. LWT-Food Sci. Technol. 2016, 73, 567–575. [Google Scholar] [CrossRef]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.-J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef]
- Bleve, G.; Tufariello, M.; Durante, M.; Perbellini, E.; Ramires, F.A.; Grieco, F.; Cappello, M.S.; De Domenico, S.; Mita, G.; Tasioula-Margari, M.; et al. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives. Front. Microbiol. 2014, 5, 570. [Google Scholar] [CrossRef] [Green Version]
- Tufariello, M.; Maiorano, G.; Rampino, P.; Spano, G.; Grieco, F.; Perrotta, C.; Capozzi, V.; Grieco, F. Selection of an autochthonous yeast starter culture for industrial production of Primitivo “Gioia del Colle” PDO/DOC in Apulia (Southern Italy). LWT-Food Sci. Technol. 2019, 99, 188–196. [Google Scholar] [CrossRef]
- Tofalo, R.; Schirone, M.; Torriani, S.; Rantsiou, K.; Cocolin, L.; Perpetuini, G.; Suzzi, G. Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiol. 2012, 29, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Pfliegler, W.P.; Horváth, E.; Kállai, Z.; Sipiczki, M. Diversity of Candida zemplinina isolates inferred from RAPD, micro/minisatellite and physiological analysis. Microbiol. Res. 2014, 169, 402–410. [Google Scholar] [CrossRef]
- De Benedictis, M.; Bleve, G.; Grieco, F.; Tristezza, M.; Tufariello, M.; Grieco, F. An optimized procedure for the enological selection of non-Saccharomyces starter cultures. Antonie Van Leeuwenhoek 2011, 99, 189–200. [Google Scholar] [CrossRef]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Grieco, F.; Tufariello, M.; Quarta, A.; Mita, G.; Spano, G.; Grieco, F. Autochthonous fermentation starters for the industrial production of Negroamaro wines. J. Ind. Microbiol. Biotechnol. 2012, 39, 81–92. [Google Scholar] [CrossRef]
- Fragasso, M.; Antonacci, D.; Pati, S.; Tufariello, M.; Baiano, A.; Forleo, L.R.; Caputo, A.R.; Notte, E.L. Influence of Training System on Volatile and Sensory Profiles of Primitivo Grapes and Wines. Am. J. Enol. Vitic. 2012, 63, 477–486. [Google Scholar] [CrossRef]
- Tufariello, M.; Capone, S.; Siciliano, P. Volatile components of Negroamaro red wines produced in Apulian Salento area. Food Chem. 2012, 132, 2155–2164. [Google Scholar] [CrossRef]
- Capone, S.; Tufariello, M.; Siciliano, P. Analytical characterisation of Negroamaro red wines by “Aroma Wheels”. Food Chem. 2013, 141, 2906–2915. [Google Scholar] [CrossRef]
- Capozzi, V.; Garofalo, C.; Chiriatti, M.A.; Grieco, F.; Spano, G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol. Res. 2015, 181, 75–83. [Google Scholar] [CrossRef]
- Sgouros, G.; Chalvantzi, I.; Mallouchos, A.; Paraskevopoulos, Y.; Banilas, G.; Nisiotou, A. Biodiversity and Enological Potential of Non-Saccharomyces Yeasts from Nemean Vineyards. Fermentation 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Fragasso, M.; Russo, P. Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms 2020, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Tofalo, R.; Schirone, M.; Telera, G.C.; Manetta, A.C.; Corsetti, A.; Suzzi, G. Influence of organic viticulture on non-Saccharomyces wine yeast populations. Ann. Microbiol. 2011, 61, 57–66. [Google Scholar] [CrossRef]
- Russo, P.; Fragasso, M.; Berbegal, C.; Grieco, F.; Spano, G.; Capozzi, V. Chapter 2: Microorganisms Able to Produce Biogenic Amines and Factors Affecting Their Activity. In Biogenic Amines in Food; Royal Society of Chemistry: Cambridge, UK, 2019; pp. 18–40. [Google Scholar]
- Tufariello, M.; Chiriatti, M.A.; Grieco, F.; Perrotta, C.; Capone, S.; Rampino, P.; Tristezza, M.; Mita, G.; Grieco, F. Influence of autochthonous Saccharomyces cerevisiae strains on volatile profile of Negroamaro wines. LWT-Food Sci. Technol. 2014, 58, 35–48. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef] [Green Version]
- Marullo, P.; Aigle, M.; Bely, M.; Masneuf-Pomarède, I.; Durrens, P.; Dubourdieu, D.; Yvert, G. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res. 2007, 7, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Salinas, F.; Cubillos, F.A.; Soto, D.; Garcia, V.; Bergström, A.; Warringer, J.; Ganga, M.A.; Louis, E.J.; Liti, G.; Martinez, C. The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae. PLoS ONE 2012, 7, e49640. [Google Scholar] [CrossRef] [Green Version]
- Grieco, F.; Tristezza, M.; Vetrano, C.; Bleve, G.; Panico, E.; Grieco, F.; Mita, G.; Logrieco, A. Exploitation of autochthonous micro-organism potential to enhance the quality of Apulian wines. Ann. Microbiol. 2011, 61, 67–73. [Google Scholar] [CrossRef]
- Berbegal, C.; Peña, N.; Russo, P.; Grieco, F.; Pardo, I.; Ferrer, S.; Spano, G.; Capozzi, V. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol. 2016, 57, 187–194. [Google Scholar] [CrossRef]
- Di Toro, M.R.; Capozzi, V.; Beneduce, L.; Alexandre, H.; Tristezza, M.; Durante, M.; Tufariello, M.; Grieco, F.; Spano, G. Intraspecific biodiversity and ‘spoilage potential’ of Brettanomyces bruxellensis in Apulian wines. LWT-Food Sci. Technol. 2015, 60, 102–108. [Google Scholar] [CrossRef]
- Berbegal, C.; Borruso, L.; Fragasso, M.; Tufariello, M.; Russo, P.; Brusetti, L.; Spano, G.; Capozzi, V. A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine. Int. J. Mol. Sci. 2019, 20, 3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchmayr, M.R.; Segura-García, L.E.; Lappe-Oliveras, P.; Moreno-Terrazas, R.; de la Rosa, M.; Gschaedler Mathis, A. Impact of environmental conditions and process modifications on microbial diversity, fermentation efficiency and chemical profile during the fermentation of Mezcal in Oaxaca. LWT-Food Sci. Technol. 2017, 79, 160–169. [Google Scholar] [CrossRef]
- Hu, L.; Liu, R.; Wang, X.; Zhang, X. The Sensory Quality Improvement of Citrus Wine through Co-Fermentations with Selected Non-Saccharomyces Yeast Strains and Saccharomyces cerevisiae. Microorganisms 2020, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Lu, Y.; Liu, S.Q. Effects of Different Yeasts on Physicochemical and Oenological Properties of Red Dragon Fruit Wine Fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans. Microorganisms 2020, 8, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardi, T. Microbial Resources as a Tool for Enhancing Sustainability in Winemaking. Microorganisms 2020, 8, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, P.; Englezos, V.; Capozzi, V.; Pollon, M.; Río Segade, S.; Rantsiou, K.; Spano, G.; Cocolin, L. Effect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation. Food Res. Int. 2020, 134, 109246. [Google Scholar] [CrossRef]
ID | Ethanol (%v/v) | Sugars (g/L) | Glucose (g/L) | Fructose (g/L) | TA 1 (g/L) | VA 2 (g/L) | Tartaric (g/L) | Glycerol (g/L) | Malic (g/L) |
---|---|---|---|---|---|---|---|---|---|
7NC1 | 9.75 ± 1.16 | 51.44 ± 2.16 | 49.64 ± 7.17 | 0 | 5.20 ± 1.34 | 0.45 ± 0.11 | 1.33 ± 0.45 | 9.20 ± 1.10 | 1.95 ± 0.37 |
3NC1 | 10.13 ± 1.00 | 46.43 ± 2.94 | 44.37 ± 6.70 | 0 | 5.27 ± 1.95 | 0.44 ± 0.15 | 1.27 ± 0.14 | 9.58 ± 1.76 | 1.83 ± 0.55 |
19NC1 | 9.64 ± 1.80 | 53.89 ± 2.12 | 52.04 ± 5.21 | 0 | 5.26 ± 1.77 | 0.59 ± 0.17 | 1.52 ± 0.16 | 9.21 ± 1.11 | 1.91 ± 0.87 |
18PR1 | 9.75 ± 1.90 | 51.70 ± 2.80 | 49.22 ± 7.10 | 0 | 5.42 ± 1.73 | 0.58 ± 0.14 | 1.36 ± 0.21 | 9.46 ± 1.15 | 2.03 ± 0.94 |
FG21 | 10.44 ± 1.26 | 39.62 ± 2.27 | 36.98 ± 4.56 | 0 | 5.40 ± 1.73 | 0.45 ± 0.14 | 1.22 ± 0.20 | 9.42 ± 1.77 | 1.97 ± 0.88 |
20NT1 | 9.98 ± 1.36 | 46.52 ± 1.70 | 43.85 ± 5.10 | 0 | 5.45 ± 1.55 | 0.41 ± 0.11 | 1.22 ± 0.24 | 9.97 ± 1.11 | 1.96 ± 0.76 |
19PR1 | 8.95 ± 1.77 | 63.45± 2.77 | 61.7 ± 7.28 | 0 | 5.66 ± 1.84 | 0.54 ± 0.13 | 1.65 ± 0.35 | 9.51 ± 1.78 | 2.13 ± 0.58 |
3KUT | 10.32 ± 1.95 | 39.32 ± 2.11 | 36.77 ± 4.37 | 0 | 5.28 ± 2.11 | 0.43 ± 0.17 | 1.23 ± 0.24 | 9.51 ± 1.61 | 1.80 ± 0.91 |
35NC1 | 10.31 ± 1.10 | 43.35 ± 2.73 | 40.84 ± 4.67 | 0 | 5.25 ± 1.95 | 0.35 ± 0.15 | 1.22 ± 0.35 | 9.90 ± 1.70 | 1.91 ± 0.75 |
31NC1 | 9.89 ± 1.65 | 48.96 ± 2.10 | 46.84 ± 6.20 | 0 | 5.52 ± 1.77 | 0.45 ± 0.18 | 1.31 ± 0.25 | 9.97 ± 1.16 | 1.95 ± 0.81 |
23PR2 | 9.62 ± 1.88 | 53.00 ± 3.00 | 50.82 ± 5.66 | 0 | 5.21 ± 1.94 | 0.54 ± 0.16 | 1.32 ± 0.45 | 9.42 ± 1.74 | 1.99 ± 0.92 |
FG27 | 8.24 ± 1.94 | 75.86 ± 2.26 | 74.28 ± 7.10 | 0 | 5.55 ± 1.76 | 0.52 ± 0.16 | 1.84 ± 0.61 | 9.59 ± 1.44 | 2.07 ± 0.95 |
FG6 | 10.36 ± 1.10 | 41.58 ± 2.75 | 40.60 ± 5.48 | 0 | 5.45 ± 1.63 | 0.43 ± 0.14 | 1.32 ± 0.21 | 8.80 ± 1.70 | 2.03 ± 0.33 |
5PR1 | 9.70 ± 1.74 | 52.21 ± 2.38 | 50.35 ± 4.90 | 0 | 5.34 ± 1.80 | 0.41 ± 0.16 | 1.25 ± 0.43 | 9.37 ± 1.16 | 2.09 ± 0.51 |
15PR1 | 8.81 ± 1.81 | 66.12 ± 2.77 | 64.02 ± 7.21 | 0 | 5.56 ± 1.93 | 0.47 ± 0.21 | 1.45 ± 0.24 | 9.98 ± 1.96 | 2.10 ± 0.43 |
3T16 | 10.10 ± 1.17 | 46.02 ± 1.96 | 44.19 ± 5.10 | 0 | 5.44 ± 2.10 | 0.41 ± 0.20 | 1.32 ± 0.25 | 9.25 ± 2.77 | 2.09 ± 0.46 |
Compounds | 7NC1 | 3NC1 | 35NC1 | 3KUT7 | 19PR1 | 31NC1 | FG21 | FG27 |
---|---|---|---|---|---|---|---|---|
Alcohols | ||||||||
2-Methyl-1-propanol | 6.55 ± 1.46 | 4.82 ± 0.84 | 15.83 ± 4.76 | 7.18 ± 1.87 | 6.73 ± 2.55 | 11.18 ± 5.85 | 7.82 ± 2.55 | 4.045 ± 0.94 |
3-Methyl-1-butanol | 35.59 ± 5.10 | 35.16 ± 5.27 | 65.83 ± 11.80 | 26.02 ± 4.52 | 34.35 ± 5.79 | 38 ± 7 | 30.46 ± 7.38 | 48.57 ± 7.90 |
1-Hexanol | 0.83 ± 0.11 | 0.73 ± 0.33 | 1.50 ± 0.44 | 0.56 ± 0.11 | 0.67 ± 0.26 | 0.87 ± 0.45 | 0.73 ± 0.22 | 1.8 ± 0.25 |
3-Hexen-1-ol (Z) | nd 1 | nd | 0.18 ± 0.04 | nd | nd | nd | nd | nd |
3-Hexen-1-ol (E) | 0.16 ± 0.05 | 0.11 ± 0.04 | 0.12 ± 0.05 | nd | nd | nd | nd | 0.43 ± 0.08 |
Methyonol | 0.18 ± 0.06 | 0.22 ± 0.12 | 0.6 ± 0.26 | nd | 0.22 ± 0.05 | 0.46 ± 0.07 | 0.2 ± 0.05 | 1.76 ± 0.11 |
Benzylic alcohol | 0.55 ± 0.14 | 0.06 ± 0.02 | 0.31 ± 0.06 | 0.47 ± 0.27 | 1.66 ± 0.47 | 0.32 ± 0.14 | 0.08 ± 0.02 | 0.60 ± 0.24 |
Phenylethanol | 11.97 ± 6.70 | 18.28 ± 6.77 | 46.69 ± 11.79 | 23.92 ± 6.05 | 19.65 ± 6.74 | 15.08 ± 5.65 | 26.25 ± 6.17 | 17.6 ± 4.5 |
55.83 ± 13.62 | 59.38 ± 13.39 | 131.06 ± 29.20 | 58.15 ± 12.82 | 63.28 ± 15.86 | 65.91 ± 19.16 | 65.54 ± 16.39 | 74.80 ± 14.02 | |
Esters | ||||||||
Ethyl lactate | nd | nd | 0.04 ± 0.02 | nd | nd | nd | nd | nd |
Ethyl octanoate | nd | nd | 0.03 ± 0.01 | 0.10 ± 0.02 | nd | 0.2 ± 0.04 | nd | nd |
Diethyl succinate | 0.060 ± 0.02 | 0.30 ± 0.05 | 0.44 ± 0.15 | 0.18 ± 0.05 | 1.48 ± 0.34 | 0.4 ± 0.06 | nd | nd |
Ethyl decanoate | 1.67 ± 0.33 | 3.86 ± 0.66 | 6.7 ± 1.65 | 4.05 ± 0.46 | 2.94 ± 0.44 | 3.5 ± 0.55 | 4.95 ± 0.94 | nd |
Phenyl acetate | 0.20 ± 0.05 | 0.16 ± 0.06 | 0.78 ± 0.33 | 0.20 ± 0.07 | 0.55 ± 0.11 | nd | 0.15 ± 0.06 | 0.34 ± 0.07 |
1.93 ± 0.40 | 4.32 ± 0.77 | 7.99 ± 2.16 | 4.53 ± 0.60 | 4.97 ± 0.89 | 4.1 ± 0.65 | 5.1 ± 1.00 | 0.34 ± 0.07 | |
Terpenes | ||||||||
Linalool | 0.10 ± 0.04 | 0.11 ± 0.03 | 0.3 ± 0.07 | 0.14 ± 0.05 | 0.15 ± 0.05 | 0.16 ± 0.05 | 0.12 ± 0.04 | 0.6 ± 0.17 |
α- Terpineol | nd | nd | 1.76 ± 0.65 | nd | nd | nd | 0.07 ± 0.03 | 0.83 ± 0.33 |
Geraniol | nd | nd | 1.18 ± 0.43 | nd | nd | nd | nd | nd |
Citronellol | nd | 0.15 ± 0.04 | 0.062 ± 0.02 | 0.07 ± 0.02 | nd | nd | nd | nd |
HO-Trienol | nd | 0.55 ± 0.08 | 0.61 ± 0.20 | nd | nd | nd | nd | nd |
trans Farnesol | nd | nd | 0.41 ± 0.11 | nd | nd | nd | nd | nd |
0.10 ± 0.04 | 24.81 ± 4.45 | 35.612 ± 6.66 | 0.21 ± 0.07 | 0.15 ± 0.05 | 0.16 ± 0.05 | 0.19 ± 0.07 | 1.43 ± 0.50 | |
Lactones | ||||||||
Butyrolactone | 0.11 ± 0.070 | 0.096 ± 0.011 | 0.15 ± 0.050 | nd | nd | nd | 0.11 ± 0.040 | 2.16 ± 0.11 |
Acids | ||||||||
2-Methylpropanoic acid | nd | 0.12 ± 0.04 | 0.32 ± 0.07 | 0.09 ± 0.03 | 0.087 ± 0.02 | 0.33 ± 0.070 | 0.13 ± 0.060 | 1.42 ± 0.17 |
Methylbutanoic acid | 0.087 ± 0.011 | nd | 0.22 ± 0.08 | 0.07 ± 0.04 | nd | 0.42 ± 0.060 | 0.32 ± 0.070 | nd |
0.087 ± 0.011 | 0.12 ± 0.040 | 0.54 ± 0.150 | 0.16 ± 0.070 | 0.087 ± 0.02 | 0.75 ± 0.130 | 0.45 ± 0.130 | 1.42 ± 0.170 | |
Norisoprenoids | ||||||||
β-Damascenone | nd | nd | 0.22 ± 0.05 | 0.09 ± 0.01 | nd | nd | 0.08 ± 0.02 | 0.45 ± 0.07 |
Furaneol | nd | 0.32 ± 0.06 | 0.45 ± 0.08 | 0.08 ± 0.02 | nd | nd | 0.34 ± 0.08 | 0.55 ± 0.05 |
0.32 ± 0.06 | 0.67 ± 0.13 | 0.17 ± 0.03 | 0.42 ± 0.10 | 1.00 ± 0.12 |
Compounds | FG6 | 5PR1 | 23PR2 | 19NC1 | 20NT1 | 15PR1 | 18PR1 | 3T16 |
---|---|---|---|---|---|---|---|---|
Alcohols | ||||||||
2-Methyl-1-propanol | 3.86 ± 0.77 | 5.8 ± 0.94 | 9.04 ± 2.75 | 1.34 ± 0.23 | 4.9 ± 0.95 | 5.44 ± 0.76 | 6.20 ± 1.67 | 7.12 ± 1.76 |
3-Methyl-1-butanol | 45.03 ± 6.75 | 45.44 ± 11.65 | 35.16 ± 6.74 | 33.91 ± 7.10 | 34.32 ± 7.25 | 44 ± 15 | 31.9 ± 5.07 | 24 ± 6 |
1-Hexanol | 1.67 ± 0.44 | 2.55 ± 0.88 | 0.85 ± 0.16 | 0.76 ± 0.44 | 0.63 ± 0.44 | 1.87 ± 0.45 | 0.71 ± 0.12 | 0.46 ± 0.12 |
3-Hexen-1-ol (Z) | nd 1 | nd | 5.9 ± 0.95 | 2.66 ± 0.45 | nd | nd | nd | nd |
3-Hexen-1-ol (E) | 0.30 ± 0.06 | nd | 0.44 ± 0.07 | nd | nd | 0.51 ± 0.07 | nd | 0.04 ± 0.02 |
Methyonol | 0.425 ± 0.17 | 0.66 ± 0.45 | 4.8 ± 0.94 | 5.25 ± 0.95 | 0.2 ± 0.06 | nd | nd | 0.212 ± 0.06 |
Benzylic alcohol | 0.45 ± 0.25 | 0.65 ± 0.15 | 0.4 ± 0.07 | 0.11 ± 0.04 | nd | 0.37 ± 0.05 | 0.26 ± 0.12 | 0.075 ± 0.03 |
Phenylethanol | 26.35 ± 5.38 | 21.51 ± 7.10 | 25.33 ± 5.17 | 33.44 ± 7.15 | 26.81 ± 5.11 | 30.22 ± 9.35 | 30.73 ± 6.77 | 28.09 ± 12.05 |
78.08 ± 13.82 | 76.61 ± 21.17 | 81.92 ± 15.84 | 77.47 ± 16.36 | 66.86 ± 13.81 | 82.41 ± 25.68 | 69.80 ± 13.75 | 59.99 ± 20.04 | |
Esters | ||||||||
Ethyl octanoate | 0.25 | nd | 0.24 ± 0.06 | nd | nd | nd | nd | nd |
Diethyl succinate | nd | 0.3 ± 0.05 | 0.45 ± 0.11 | nd | nd | nd | 0.06 ± 0.02 | 0.08 ± 0.02 |
Ethyl decanoate | nd | nd | nd | 3.55 ± 0.85 | 0.76 ± 0.24 | 2.06 ± 0.23 | 4.22 ± 0.37 | 3.11 ± 0.56 |
Phenyl acetate | 0.4 ± 0.05 | 0.37 ± 0.06 | nd | 0.2 ± 0.06 | 0.15 ± 0.06 | 0.50 ± 0.06 | 0.2 ± 0.06 | 0.13 ± 0.04 |
0.65 ± 0.05 | 0.67 ± 0.11 | 0.69 ± 0.17 | 3.75 ± 0.91 | 0.91 ± 0.30 | 2.56 ± 0.29 | 4.48 ± 0.45 | 3.32 ± 0.62 | |
Terpenes | ||||||||
Linalool | 0.3 ± 0.07 | 0.5 ± 0.22 | 0.16 ± 0.05 | 0.132 ± 0.070 | 0.13 ± 0.05 | 0.97 ± 0.52 | 0.20 ± 0.05 | 0.09 ± 0.03 |
α- Terpineol | 0.54 ± 0.11 | 0.48 ± 0.16 | 0.52 ± 0.11 | 0.55 ± 0.11 | 0.3 ± 0.05 | 0.11 ± 0.05 | 0.4 ± 0.06 | 0.33 ± 0.08 |
Geraniol | 0.33 ± 0.07 | nd | nd | nd | nd | nd | nd | |
trans Farnesol | nd | nd | 0.65 ± 0.23 | 0.42 ± 0.05 | 0.34 ± 0.08 | 1.11 ± 0.27 | 0.458 ± 0.14 | nd |
1.17 ± 0.25 | 0.98 ± 0.38 | 1.33 ± 0.39 | 1.11 ± 0.23 | 0.78 ± 0.18 | 2.19 ± 0.84 | 1.058 ± 0.25 | 0.42 ± 0.11 | |
Lactones | ||||||||
Butyrolactone | 0.20 ± 0.050 | 0.8 ± 0.140 | 0.55 ± 0.10 | 0.09 ± 0.02 | 0.12 ± 0.07 | 0.4 ± 0.06 | 0.15 ± 0.04 | nd |
Acids | ||||||||
2-Methylpropanoic acid | nd | nd | 0.76 ± 0.15 | 0.18 ± 0.05 | 0.11 ± 0.04 | 0.58 ± 0.21 | nd | 0.07 ± 0.02 |
Methylbutanoic acid | nd | nd | nd | 0.32 ± 0.08 | nd | 0.86 ± 0.11 | 0.24 ± 0.05 | nd |
0.000 | 0.000 | 0.76 ± 0.15 | 0.50 ± 0.13 | 0.11 ± 0.040 | 1.44 ± 0.32 | 0.24 ± 0.05 | 0.07 ± 0.02 | |
Norisoprenoids | ||||||||
β-Damascenone | nd | 0.22 ± 0.07 | nd | 0.75 ± 0.16 | nd | nd | nd | nd |
Furaneol | 0.4 ± 0.05 | 0.93 ± 0.35 | nd | nd | nd | nd | nd | nd |
0.40 ± 0.05 | 1.15 ± 0.42 | 0.75 ± 0.16 |
Compounds | CS mg/L | 7NC1 | 3 NC1 | 35NC1 | 3 KUT7 | 19PR1 | 31NC1 | FG21 | FG27 |
---|---|---|---|---|---|---|---|---|---|
3-Methyl-1-butanol | 30 | 1.19 | 1.17 | 2.19 | 0.87 | 1.15 | 1.27 | 1.02 | 1.62 |
1-Hexanol | 1.3 | 0.64 | 0.56 | 1.15 | 0.43 | 0.52 | 0.67 | 0.56 | 1.38 |
Methyonol | 1.5 | 0.12 | 0.15 | 0.40 | nd | 0.15 | 0.31 | 0.13 | 1.17 |
Phenylethanol | 10 | 1.20 | 1.83 | 4.67 | 2.39 | 1.97 | 1.51 | 2.63 | 1.76 |
Linalool | 0.05 | 2.00 | 2.20 | 6.00 | 2.80 | 3.00 | 3.20 | 2.40 | 12.00 |
Geraniol | 0.03 | nd 1 | nd | 39.33 | nd | nd | nd | nd | nd |
Citronellol | 0.018 | nd | 8.33 | 3.44 | 3.89 | nd | nd | nd | nd |
Ethyl octanoate | 0.005 | nd | nd | 6.00 | 20.00 | nd | 40.00 | nd | nd |
Ethyl decanoate | 0.2 | 8.35 | 19.30 | 33.50 | 20.25 | 14.70 | 17.50 | 24.75 | nd |
Phenyl acetate | 0.25 | 0.80 | 0.64 | 3.12 | 0.80 | 2.20 | nd | 0.60 | 1.36 |
Methylbutanoic acid | 0.25 | 0.35 | nd | 0.88 | 0.28 | nd | 1.68 | 1.28 | nd |
β-Damascenone | 0.00005 | nd | nd | 4400.00 | 1860.00 | nd | nd | 1600.00 | 9000.00 |
Compounds | CS mg/L | FG6 | 5PR1 | 23PR2 | 19NC1 | 20NT1 | 15PR1 | 18PR1 | 3T16 |
---|---|---|---|---|---|---|---|---|---|
3-Methyl-1-butanol | 30 | 1.50 | 1.51 | 1.17 | 1.13 | 1.14 | 1.47 | 1.06 | 0.80 |
1-Hexanol | 1.3 | 1.28 | 1.96 | 0.65 | 0.58 | 0.48 | 1.44 | 0.55 | 0.35 |
Methyonol | 1.5 | 0.28 | 0.44 | 3.20 | 3.50 | 0.14 | 0.00 | 0.00 | 0.14 |
Phenylethanol | 10 | 2.64 | 2.15 | 2.53 | 3.34 | 2.68 | 3.02 | 3.07 | 2.81 |
Linalool | 0.05 | 6.00 | 10.00 | 3.20 | 2.64 | 2.60 | 19.40 | 4.00 | 1.80 |
Geraniol | 0.03 | 11.00 | nd 1 | nd | nd | nd | nd | nd | nd |
Citronellol | 0.018 | nd | nd | nd | nd | nd | nd | nd | nd |
Ethyl octanoate | 0.005 | 49.28 | nd | 48.00 | nd | nd | nd | nd | nd |
Ethyl decanoate | 0.2 | nd | nd | nd | 17.75 | 3.80 | 10.30 | 21.10 | 15.55 |
Phenyl acetate | 0.25 | 1.60 | 1.48 | nd | 0.80 | 0.60 | 2.00 | 0.80 | 0.53 |
Methylbutanoic acid | 0.25 | nd | nd | nd | 1.28 | nd | 3.44 | nd | nd |
β-Damascenone | 0.00005 | nd | 4400.00 | nd | 15,000.00 | nd | nd | nd | nd |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, P.; Tufariello, M.; Renna, R.; Tristezza, M.; Taurino, M.; Palombi, L.; Capozzi, V.; Rizzello, C.G.; Grieco, F. New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms 2020, 8, 628. https://doi.org/10.3390/microorganisms8050628
Russo P, Tufariello M, Renna R, Tristezza M, Taurino M, Palombi L, Capozzi V, Rizzello CG, Grieco F. New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms. 2020; 8(5):628. https://doi.org/10.3390/microorganisms8050628
Chicago/Turabian StyleRusso, Pasquale, Maria Tufariello, Raffaela Renna, Mariana Tristezza, Marco Taurino, Lorenzo Palombi, Vittorio Capozzi, Carlo G. Rizzello, and Francesco Grieco. 2020. "New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines" Microorganisms 8, no. 5: 628. https://doi.org/10.3390/microorganisms8050628
APA StyleRusso, P., Tufariello, M., Renna, R., Tristezza, M., Taurino, M., Palombi, L., Capozzi, V., Rizzello, C. G., & Grieco, F. (2020). New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms, 8(5), 628. https://doi.org/10.3390/microorganisms8050628