Evaluation of Yeast Strains for Pomegranate Alcoholic Beverage Production: Effect on Physicochemical Characteristics, Antioxidant Activity, and Aroma Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomegranate Juice and Yeast Strains
2.2. Fermentation of Pomegranate Juice
2.3. Microbiological Analysis
2.4. Determination of Reducing Sugars
2.5. Determination of Ethanol and Glycerol Content
2.6. pH, Volatile Acidity, and Total Acidity
2.7. Determination of Total Flavonoid Content
2.8. Determination of Total Phenolic Content
2.9. Determination of Free Radical-Scavenging Activity
2.10. Determination of Total Monomeric Anthocyanin Content
2.11. Determination of Yeast Assimilable Nitrogen
2.12. HS-SPME GC/MS Analysis
2.13. Odor Activity Value (OAV)
2.14. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics
3.2. Antioxidant Activity and Phenolic Compounds
3.3. Volatile Composition
3.3.1. Esters
3.3.2. Organic Acids
3.3.3. Alcohols
3.3.4. Terpenes
3.3.5. Odor Activity Value of Aroma-Related Compounds
3.3.6. Chemometrics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kandylis, P.; Kokkinomagoulos, E. Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Melgarejo, P.; Calín-Sánchez, Á.; Vázquez-Araújo, L.; Hernández, F.; Martínez, J.J.; Legua, P.; Carbonell-Barrachina, Á.A. Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. J. Food Sci. 2011, 76, S114–S120. [Google Scholar] [CrossRef]
- Raisi, A.; Aroujalian, A.; Kaghazchi, T. Multicomponent pervaporation process for volatile aroma compounds recovery from pomegranate juice. J. Membr. Sci. 2008, 322, 339–348. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, J.; Wang, X.; Sun, X.; Hackman, R.M.; Li, Z.; Feng, X. Evaluation of antioxidant capacity and flavor profile change of pomegranate wine during fermentation and aging process. Food Chem. 2017, 232, 777–787. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, Y.; Liu, S.Q. Effects of different yeasts on physicochemical and oenological properties of red dragon fruit wine fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans. Microorganisms 2020, 8, 315. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.P.; Mendes-Ferreira, A.; Dias, L.G.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Volatile composition and sensory properties of mead. Microorganisms 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Urbina, K.; Villarreal, P.; Nespolo, R.F.; Salazar, R.; Santander, R.; Cubillos, F.A. Volatile compound screening using HS-SPME-GC/MS on Saccharomyces eubayanus strains under low-temperature pilsner wort fermentation. Microorganisms 2020, 8, 755. [Google Scholar] [CrossRef]
- Cousin, F.J.; Le Guellec, R.; Schlusselhuber, M.; Dalmasso, M.; Laplace, J.M.; Cretenet, M. Microorganisms in fermented apple beverages: Current knowledge and future directions. Microorganisms 2017, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Tufariello, M.; Renna, R.; Tristezza, M.; Taurino, M.; Palombi, L.; Capozzi, V.; Rizzello, C.G.; Grieco, F. New insights into the oenological significance of Candida zemplinina: Impact of selected autochthonous strains on the volatile profile of Apulian wines. Microorganisms 2020, 8, 628. [Google Scholar] [CrossRef]
- Gumienna, M.; Szwengiel, A.; Górna, B. Bioactive components of pomegranate fruit and their transformation by fermentation processes. Eur. Food Res. Technol. 2016, 242, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Andreu-Sevilla, A.J.; Mena, P.; Martí, N.; Viguera, C.G.; Carbonell-Barrachina, Á.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Lorenzini, M.; Simonato, B.; Slaghenaufi, D.; Ugliano, M.; Zapparoli, G. Assessment of yeasts for apple juice fermentation and production of cider volatile compounds. LWT 2019, 99, 224–230. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Nikolaou, A.; Galanis, A.; Kanellaki, M.; Tassou, C.; Akrida-Demertzi, K.; Kourkoutas, Y. Assessment of free and immobilized kefir culture in simultaneous alcoholic and malolactic cider fermentations. LWT-Food Sci. Technol. 2017, 76, 67–78. [Google Scholar] [CrossRef]
- OIV. International Organisation of Vine and Wine, Compendium of international methods for wine and must analysis (Vol. 1). OIV, Paris, France. 2019. Available online: http://www.oiv.int/public/medias/6619/compendium-2019-en-vol1.pdf (accessed on 21 August 2020).
- Papachristoforou, A.; Koutouvela, E.; Menexes, G.; Gardikis, K.; Mourtzinos, I. Photometric analysis of propolis from the island of Samothraki, Greece. The discovery of red propolis. Chem. Biodivers. 2019, 16, e1900146. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Comp. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Gump, B.H.; Zoecklein, B.W.; Fugelsang, K.C. Prediction of Prefermentation Nutritional Status of Grape Juice. In Food Microbiology Protocols. Methods in Biotechnology; Spencer, J.F.T., de Ragout Spencer, A.L., Eds.; Humana Press: Totowa, NJ, USA, 2001; Volume 14. [Google Scholar] [CrossRef]
- Nikolaou, A.; Tsakiris, A.; Kanellaki, M.; Bezirtzoglou, E.; Akrida-Demertzi, K.; Kourkoutas, Y. Wine production using free and immobilized kefir culture on natural supports. Food Chem. 2019, 272, 39–48. [Google Scholar] [CrossRef]
- Kandylis, P.; Drouza, C.; Bekatorou, A.; Koutinas, A.A. Scale-up of extremely low temperature fermentations of grape must by wheat supported yeast cells. Biores. Technol. 2010, 101, 7484–7491. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Koutinas, A.A. Winemaking by barley supported yeast cells. Food Chem. 2012, 130, 425–431. [Google Scholar] [CrossRef]
- Izquierdo-Cañas, P.M.; Vinas, G.; Mena-Morales, A.; Navarro, J.P.; García-Romero, E.; Marchante-Cuevas, L.; Sánchez-Palomo, E. Effect of fermentation temperature on volatile compounds of Petit Verdot red wines from the Spanish region of La Mancha (central-southeastern Spain). Europ. Food Res. Technol. 2020, 246, 1153–1165. [Google Scholar] [CrossRef]
- Bagheri, B.; Bauer, F.F.; Cardinali, G.; Setati, M.E. Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation. Sci. Rep. 2020, 10, 4911. [Google Scholar] [CrossRef] [Green Version]
- Fleet, G.H.; Heard, G.M. Yeast-Growth during Fermentation. In Wine, Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic: Lausanne, Switzerland, 1993. [Google Scholar]
- Berenguer, M.; Vegara, S.; Barrajón, E.; Saura, D.; Valero, M.; Martí, N. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains. Food Chem. 2016, 190, 848–855. [Google Scholar] [CrossRef]
- Tarantino, A.; Difonzo, G.; Lopriore, G.; Disciglio, G.; Paradiso, V.M.; Gambacorta, G.; Caponio, F. Bioactive compounds and quality evaluation of ‘Wonderful’ pomegranate fruit and juice as affected by deficit irrigation. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef]
- Rios-Corripio, G.; Guerrero-Beltrán, J.Á. Antioxidant and physicochemical characteristics of unfermented and fermented pomegranate (Punica granatum L.) beverages. J. Food Sci. Technol. 2019, 56, 132–139. [Google Scholar] [CrossRef]
- Mena, P.; Gironés-Vilaplana, A.; Martí, N.; García-Viguera, C. Pomegranate varietal wines: Phytochemical composition and quality parameters. Food Chem. 2012, 133, 108–115. [Google Scholar] [CrossRef]
- Akalın, A.C.; Bayram, M.; Anlı, R.E. Antioxidant phenolic compounds of pomegranate wines produced by different maceration methods. J. Inst. Brew. 2018, 124, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Official Government Gazette of the Hellenic Republic, vol. II; 2161 of 12 June 2018; pp. 23131-23152. “Production and distribution of fermented beverages: Code Σ.O. 22.06 . Available online: http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wG3UHk-ZeQumndtvSoClrL8z1uCRhYSV30tiDow6HlTE-JInJ48_97uHrMts-zFzeyCiBSQOpYnT00MHhcXFRTsJ8r-caBTDshCPvFCUlrHl3-FDnSvNDBKHaRJVdblqUA. (accessed on 21 August 2020). (In Greek).
- El Kar, C.; Ferchichi, A.; Attia, F.; Bouajila, J. Pomegranate (Punica granatum) juices: Chemical composition, micronutrient cations, and antioxidant capacity. J. Food Sci. 2011, 76, C795–C800. [Google Scholar] [CrossRef]
- Li, X.; Wasila, H.; Liu, L.; Yuan, T.; Gao, Z.; Zhao, B.; Ahmad, I. Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chem. 2015, 175, 575–584. [Google Scholar] [CrossRef]
- Czyzowska, A.; Pogorzelski, E. Changes to polyphenols in the process of production of must and wines from blackcurrants and cherries. Part, I. Total polyphenols and phenolic acids. Eur. Food Res. Technol. 2002, 214, 148–154. [Google Scholar] [CrossRef]
- Ginjom, I.; D’Arcy, B.; Caffin, N.; Gidley, M. Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem. 2011, 125, 823–834. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Canbas, A.; Cabaroglu, T. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchem. J. 2009, 91, 187–192. [Google Scholar] [CrossRef]
- Schmitzer, V.; Veberic, R.; Slatnar, A.; Stampar, F. Elderberry (Sambucus nigra L.) wine: A product rich in health promoting compounds. J. Agric. Food Chem. 2010, 58, 10143–10146. [Google Scholar] [CrossRef]
- Pérez-Gregorio, M.R.; Regueiro, J.; Alonso-González, E.; Pastrana-Castro, L.M.; Simal-Gándara, J. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). LWT – Food Sci. Technol. 2011, 44, 1793–1801. [Google Scholar] [CrossRef]
- Caridi, A.; Cufari, A.; Lovino, R.; Palumbo, R.; Tedesco, I. Influence of yeast on polyphenol composition of wine. Food Technol. Biotechnol. 2004, 42, 37–40. [Google Scholar]
- Brandolini, V.; Fiore, C.; Maietti, A.; Tedeschi, P.; Romano, P. Influence of Saccharomyces cerevisiae strains on wine total antioxidant capacity evaluated by photochemiluminescence. World J. Microbiol Biotechnol. 2007, 23, 581–586. [Google Scholar] [CrossRef]
- Carew, A.L.; Smith, P.; Close, D.C.; Curtin, C.; Dambergs, R.G. Yeast effects on Pinot noir wine phenolics, color, and tannin composition. J. Agric. Food Chem. 2013, 61, 9892–9898. [Google Scholar] [CrossRef]
- Caridi, A.; Sidari, R.; Giuffrè, A.M.; Pellicanò, T.M.; Sicari, V.; Zappia, C.; Poiana, M. Test of four generations of Saccharomyces cerevisiae concerning their effect on antioxidant phenolic compounds in wine. Eur. Food Res. Technol. 2017, 243, 1287–1294. [Google Scholar] [CrossRef]
- Ivanova, V.; Dörnyei, Á.; Márk, L.; Vojnoski, B.; Stafilov, T.; Stefova, M.; Kilár, F. Polyphenolic content of Vranec wines produced by different vinification conditions. Food Chem. 2011, 124, 316–325. [Google Scholar] [CrossRef]
- Ivanova, V.; Vojnoski, B.; Stefova, M. Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. J. Food Sci. Technol. 2012, 49, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Alighourchi, H.; Barzegar, M. Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage. J. Food Eng. 2009, 90, 179–185. [Google Scholar] [CrossRef]
- Mateus, N.; de Freitas, V. Evolution and stability of anthocyanin-derived pigments during port wine aging. J. Agric. Food Chem. 2001, 49, 5217–5222. [Google Scholar] [CrossRef]
- Czyżowska, A.; Pogorzelski, E. Changes to polyphenols in the process of production of must and wines from blackcurrants and cherries. Part II. Anthocyanins and flavanols. Eur. Food Res. Technol. 2004, 218, 355–359. [Google Scholar] [CrossRef]
- Jung, J.S. Analysis of volatile compounds in the root peel, stem peel, and fruit peel of pomegranate (Punica granatum) by TD GC/MS. Int. J. Biosci. Biotechnol. 2014, 6, 169–181. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Stein-Chisholm, R.E. HS-GC–MS volatile compounds recovered in freshly pressed ‘Wonderful’ cultivar and commercial pomegranate juices. Food Chem. 2016, 190, 643–656. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Obando-Ulloa, J.M. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles. Food Chem. 2017, 229, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145. [Google Scholar] [CrossRef]
- Vázquez-Araújo, L.; Chambers IV, E.; Adhikari, K.; Carbonell-Barrachina, Á.A. Sensory and physicochemical characterization of juices made with pomegranate and blueberries, blackberries, or raspberries. J. Food Sci. 2010, 75, S398–S404. [Google Scholar] [CrossRef]
- Allam, H. Impact of processing on flavor volatiles and physicochemical properties of pomegranate juice. Suez Canal Univ. J. Food Sci. 2016, 3, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Mayuoni-Kirshinbaum, L.; Porat, R. The flavor of pomegranate fruit: A review. J. Sci. Food Agric. 2014, 94, 21–27. [Google Scholar] [CrossRef]
- Beaulieu, J.; Grimm, C.; Lloyd, S.; Stein, R. Characterizing endogenous and oxidative low molecular weight flavor/aroma compounds in fresh squeezed/blended pomegranate juice. In Proceedings of the Annual Meeting Horticultural Society, 31 July–5 August 2010; Palm Desert, CA, USA. [Google Scholar]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs. ‘Acco’ and ‘Herskawitz’). Postharvest Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Gomez, J.; Lasanta, C.; Castro, R.; Sainz, F.; Hamdi, M. Benchmarking laboratory-scale pomegranate vinegar against commercial wine vinegars: Antioxidant activity and chemical composition. J. Sci. Food Agric. 2018, 98, 4749–4758. [Google Scholar] [CrossRef]
- Rodríguez-Lerma, G.K.; Gutiérrez-Moreno, K.; Cárdenas-Manríquez, M.; Botello-Álvarez, E.; Jiménez-Islas, H.; Rico-Martínez, R.; Navarrete-Bolaños, J.L. Microbial ecology studies of spontaneous fermentation: Starter culture selection for prickly pear wine production. J. Food Sci. 2011, 76, M346–M352. [Google Scholar] [CrossRef]
- Whiting, G.C. Organic acid metabolism of yeasts during fermentation of alcoholic beverages—A review. J. Inst. Brew. 1976, 82, 84–92. [Google Scholar] [CrossRef]
- Etievant, X.P. Wine. In Volatile compounds in foods and beverages, 1st ed.; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–533. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications, 1st ed.; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Kandylis, P.; Mantzari, A.; Koutinas, A.A.; Kookos, I.K. Modelling of low temperature wine-making, using immobilized cells. Food Chem. 2012, 133, 1341–1348. [Google Scholar] [CrossRef]
- Melgarejo, P.; Salazar, D.M.; Amoros, A.; Artes, F. Total lipids content and fatty acid composition of seed oils from six pomegranate cultivars. J. Sci. Food Agric. 1995, 69, 253–256. [Google Scholar] [CrossRef]
- Zhukov, A.V. Palmitic acid and its role in the structure and functions of plant cell membranes. Russ. J. Plant. Physiol. 2015, 62, 706–713. [Google Scholar] [CrossRef]
- Tsakiris, A.; Bekatorou, A.; Psarianos, C.; Koutinas, A.A.; Marchant, R.; Banat, I.M. Immobilization of yeast on dried raisin berries for use in dry white wine-making. Food Chem. 2004, 87, 11–15. [Google Scholar] [CrossRef]
- Kandylis, P.; Koutinas, A.A. Extremely low temperature fermentations of grape must by potato-supported yeast, strain AXAZ−1. A contribution is performed for catalysis of alcoholic fermentation. J. Agric. Food Chem. 2008, 56, 3317–3327. [Google Scholar] [CrossRef]
- Mallouchos, A.; Komaitis, M.; Koutinas, A.; Kanellaki, M. Investigation of volatiles evolution during the alcoholic fermentation of grape must using free and immobilized cells with the help of solid phase microextraction (SPME) headspace sampling. J. Agric. Food Chem. 2002, 50, 3840–3848. [Google Scholar] [CrossRef]
- Tripathi, J.; Chatterjee, S.; Gamre, S.; Chattopadhyay, S.; Variyar, P.S.; Sharma, A. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT-Food Sci. Technol. 2014, 59, 461–466. [Google Scholar] [CrossRef]
- Dushing, P.M. Production of wine from mahua flower (Madhuca Indica L.) extract and pomegranate (Punica granatum L.) fruit juice. Master’s Thesis, Vasantrao Naik Marathwada Krishi Vidyapeeth University, Parbhani, Maharashtra, India, 2019. [Google Scholar]
- Güler, Z.; Gül, E. Volatile organic compounds in the aril juices and seeds from selected five pomegranate (Punica granatum L.) cultivars. Int. J. Food Prop. 2017, 20, 281–293. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Calín-Sánchez, Á.; Vázquez-Araújo, L.; Pérez-López, A.J.; Frutos-Fernández, M.J.; Carbonell-Barrachina, Á.A. Processing pomegranates for juice and impact on bioactive components. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 629–636. [Google Scholar]
- Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the probiotic Lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Ribérau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. The chemistry of wine stabilization and treatments. In Handbook of enology; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 41–54. [Google Scholar]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT-Food Sci. Technol. 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
Analyses | Yeast Strain | Fermentation Temperature | Significance of Effect | |||
---|---|---|---|---|---|---|
15 °C | 25 °C | Temp. | Yeast | Comb. | ||
Reducing sugars (g D-glucose L−1) | PJ | 128.4 ± 0.1 | *** | *** | *** | |
M02 | 5.1 ± 0.3b,A | 4.0 ± 0.1b,B | ||||
SN9 | 4.4 ± 0.2c,A | 4.0 ± 0.2b,B | ||||
WB06 | 10.5 ± 0.2a,A | 4.7 ± 0.1a,B | ||||
Ethanol (% v/v) | PJ | - | ns | * | * | |
M02 | 6.9 ± 0.1a,A | 6.5 ± 0.2a,A | ||||
SN9 | 6.8 ± 0.1a,A | 7.0 ± 0.1a,A | ||||
WB06 | 5.6 ± 0.2b,A | 6.6 ± 0.1a,B | ||||
Glycerol (g L−1) | PJ | - | ** | ** | ** | |
M02 | 5.75 ± 0.07a,A | 5.65 ± 0.64a,A | ||||
SN9 | 5.05 ± 0.07b,A | 6.05 ± 0.50a,B | ||||
WB06 | 2.65 ± 0.07c,B | 5.80 ± 0.57a,A | ||||
pH | PJ | 3.12 ± 0.01a,A | *** | ns | ns | |
M02 | 3.11 ± 0.01a,A | 3.07 ± 0.01b,B | ||||
SN9 | 3.12 ± 0.01a,A | 3.06 ± 0.01b,B | ||||
WB06 | 3.10 ± 0.01a,A | 3.05 ± 0.01b,B | ||||
Volatile acidity (g acetic acid L−1) | PJ | 0.11 ± 0.01a,A | * | *** | ns | |
M02 | 0.76 ± 0.05c,B | 0.69 ± 0.04b,B | ||||
SN9 | 0.85 ± 0.05c,B | 0.84 ± 0.02c,B | ||||
WB06 | 0.33 ± 0.01b,B | 0.21 ± 0.01a,A | ||||
Titratable acidity (g citric acid L−1) | PJ | 16.0 ± 0.1a,A | ns | ns | ns | |
M02 | 16.4 ± 0.6a,A | 17.0 ± 0.2a,A | ||||
SN9 | 16.6 ± 0.4a,A | 16.5 ± 0.6a,A | ||||
WB06 | 16.2 ± 0.3a,A | 16.8 ± 0.5a,A |
Analyses | Yeast Strain | Fermentation Temperature | Significance of Effect | |||
---|---|---|---|---|---|---|
15 °C | 25 °C | Temp. | Yeast | Comb. | ||
Total flavonoid content (mg QE L−1) | PJ | 320.2 ± 4.5a,A | *** | *** | ns | |
M02 | 106.7 ± 26.4b,C | 174.5 ± 19.4b,B | ||||
SN9 | 78.0 ± 34.3b,C | 148.0 ± 16.4c,B | ||||
WB06 | 96.2 ± 27.8b,C | 173.0 ± 11.7b,B | ||||
Total phenolic content (mg GAE L−1) | PJ | 2470.1 ± 14.8a,A | ns | ns | ** | |
M02 | 926.9 ± 357.8b,B | 817.5 ± 98.4c,B | ||||
SN9 | 807.2 ± 385.1b,B | 834.2 ± 86.8c,B | ||||
WB06 | 703.8 ± 69.2b,C | 1027.3 ± 197.8b,B | ||||
DPPH● (mM TRE) | PJ | 17.6 ± 0.1a,A | ** | ns | ns | |
M02 | 15.5 ± 1.4b,A | 15.6 ± 1.5b,A | ||||
SN9 | 14.4 ± 1.1b,C | 15.7 ± 1.0b,B | ||||
WB06 | 15.3 ± 0.9b,C | 16.1 ± 0.5b,B | ||||
Total monomeric anthocyanin content (mg Cy3GE L−1) | PJ | 105.2 ± 0.1a,A | *** | *** | *** | |
M02 | 75.0 ± 3.4b,C | 78.2 ± 2.1b,B | ||||
SN9 | 70.4 ± 1.1c,C | 78.7 ± 2.0b,B | ||||
WB06 | 74.1 ± 0.7b,B | 69.6 ± 2.6c,C |
Compound | Yeast Strain | |||||
---|---|---|---|---|---|---|
M02 | SN9 | WB06 | ||||
15 °C | 25 °C | 15 °C | 25 °C | 15 °C | 25 °C | |
Esters | ||||||
ethyl acetate | 3.14 ± 0.23 | 3.10 ± 0.99 | 5.90 ± 2.12 | 3.63 ± 1.10 | 3.40 ± 0.15 | 3.16 ± 0.91 |
ethyl propanoate | 0.03 ± 0.04 | 0.15 ± 0.07 | 0.05 ± 0.07 | 0.20 ± 0.00 | 0.20 ± 0.00 | Nd |
ethyl butanoate | 0.47 ± 0.07 | 0.30 ± 0.00 | 0.65 ± 0.49 | 0.25 ± 0.07 | 0.46 ± 0.08 | 0.45 ± 0.07 |
3-methylbutyl acetate | 1.06 ± 0.02 | 2.00 ± 0.85 | 1.17 ± 0.18 | 1.63 ± 0.32 | 1.60 ± 0.56 | 2.23 ± 0.04 |
2-methylbutyl acetate | 0.17 ± 0.01 | 0.23 ± 0.07 | 0.08 ± 0.11 | 0.22 ± 0.02 | 0.11 ± 0.11 | 0.13 ± 0.04 |
ethyl hexanoate | 2.42 ± 0.05 | 2.06 ± 1.05 | 3.45 ± 0.92 | 3.00 ± 0.42 | 4.20 ± 0.57 | 7.99 ± 6.38 |
hexyl acetate | Nd | 0.07 ± 0.03 | Nd | 0.40 ± 0.40 | Nd | Nd |
ethyl octanoate | 3.90 ± 0.00ab | 3.15 ± 1.48a | 6.15 ± 0.78ab | 4.58 ± 1.39ab | 13.45 ± 2.19b | 8.75 ± 4.03ab |
ethyl phenylacetate | 0.08 ± 0.04 | 0.11 ± 0.06 | 0.10 ± 0.00 | 0.09 ± 0.03 | Nd | 0.27 ± 0.19 |
2-phenylethyl acetate | 0.23 ± 0.25 | 0.70 ± 0.44 | 0.54 ± 0.08 | 0.53 ± 0.32 | 1.14 ± 0.40 | 3.14 ± 1.89 |
ethyl 9-decanoate | 0.25 ± 0.01 | Nd | 0.30 ± 0.28 | Nd | 0.20 ± 0.14 | Nd |
ethyl decanoate | 1.10 ± 0.03 | 1.90 ± 1.13 | 2.06 ± 0.08 | 0.55 ± 0.07 | 6.15 ± 3.04 | 3.30 ± 1.27 |
ethyl dodecanoate | 1.18 ± 0.54 | 1.62 ± 1.30 | 0.70 ± 0.00 | 0.18 ± 0.03 | 3.10 ± 1.13 | 2.74 ± 1.36 |
ethyl tetradecanoate | 0.24 ± 0.20 | 0.50 ± 0.42 | 0.10 ± 0.00 | 0.08 ± 0.04 | 0.25 ± 0.07 | 0.15 ± 0.07 |
ethyl hexadecanoate | 0.32 ± 0.31 | 1.09 ± 1.15 | 0.35 ± 0.07 | 0.29 ± 0.16 | 0.35 ± 0.21 | 0.70 ± 0.42 |
Total esters | 14.58 ± 1.46 | 16.98 ± 8.90 | 21.60 ± 4.97 | 15.61 ± 8.90 | 34.59 ± 5.99 | 33.00 ± 14.79 |
Organic acids | ||||||
octanoic acid | 3.89 ± 1.15 | 3.55 ± 2.47 | 5.75 ± 0.92 | 1.97 ± 0.23 | 7.75 ± 3.18 | 3.70 ± 0.28 |
decanoic acid | 2.05 ± 1.06 | 2.10 ± 1.70 | 2.60 ± 0.57 | 0.55 ± 0.55 | 5.85 ± 4.17 | 5.35 ± 2.76 |
dodecanoic acid | 0.52 ± 0.52 | 0.39 ± 0.39 | Nd | Nd | 0.59 ± 0.23 | 0.28 ± 0.28 |
hexadecanoic acid | 0.06 ± 0.06 | 8.23 ± 8.23 | Nd | 0.03 ± 0.03 | Nd | Nd |
Total organic acids | 6.51 ± 2.84 | 14.26 ± 14.26 | 8.35 ± 1.48 | 2.54 ± 0.91 | 14.19 ± 7.59 | 9.33 ± 2.08 |
Alcohols | ||||||
methyl-1-propanol | 0.17 ± 0.23 | 0.50 ± 0.28 | 0.17 ± 0.17 | 0.28 ± 0.11 | 0.19 ± 0.19 | 0.44 ± 0.06 |
3-methyl-1-butanol | 10.87 ± 0.57 | 15.83 ± 5.62 | 15.63 ± 5.05 | 14.17 ± 1.74 | 17.10 ± 2.03 | 62.08 ± 30.30 |
2-methyl-1-butanol | 4.20 ± 0.28 | 7.74 ± 2.60 | 3.96 ± 0.93 | 3.70 ± 0.71 | 5.18 ± 0.69 | 8.49 ± 1.71 |
2,3-butanediol | Nd | 0.85 ± 0.85 | 0.70 ± 0.70 | 0.20 ± 0.20 | 0.03 ± 0.03 | Nd |
(Z)-3-hexen-1-ol | 0.17 ± 0.01 | 0.16 ± 0.08 | 0.15 ± 0.07 | 0.18 ± 0.05 | 0.10 ± 0.10 | 0.12 ± 0.03 |
1-hexanol | 0.13 ± 0.01 | 0.18 ± 0.03 | Nd | 0.12 ± 0.06 | 0.05 ± 0.05 | 3.73 ± 3.73 |
2-ethyl-1-hexanol | 0.12 ± 0.03 | 0.15 ± 0.07 | Nd | 0.05 ± 0.05 | Nd | Nd |
2-phenylethanol | 2.25 ± 0.91 | 7.00 ± 3.54 | 3.50 ± 1.98 | 4.20 ± 0.14 | 9.40 ± 4.67 | 32.15 ± 26.23 |
Total alcohols | 17.89 ± 0.99 | 32.40 ± 5.09 | 24.11 ± 6.78 | 22.90 ± 0.60 | 32.03 ± 2.81 | 107.01 ± 63.46 |
Terpenes | ||||||
eucalyptol | 0.13 ± 0.00 | 0.12 ± 0.07 | 0.20 ± 0.00 | 0.11 ± 0.11 | Nd | Nd |
α-terpineol | Nd | Nd | Nd | 0.10 ± 0.10 | Nd | Nd |
trans-nerolidol | Nd | 0.15 ± 0.07a | Nd | 0.14 ± 0.02a | Nd | 0.62 ± 0.31b |
Total terpenes | 0.13 ± 0.01 | 0.27 ± 0.14 | 0.20 ± 0.00 | 0.35 ± 0.28 | Nd | 0.62 ± 0.31 |
Compound | Threshold(mg L−1) | Odor Descriptiona | Yeast Strain | |||||
---|---|---|---|---|---|---|---|---|
M02 | SN9 | WB06 | ||||||
15 oC | 25 oC | 15 oC | 25 oC | 15 oC | 25 oC | |||
ethyl butanoate | 0.4a | Strawberry, apple, banana | 1.2 ± 0.2 | <1.0 | 1.6 ± 1.2 | <1.0 | 1.1 ± 0.2 | 1.1 ± 0.2 |
3-methylbutyl acetate | 0.16a | Banana, fruity, sweet | 6.6 ± 0.1 | 12.5 ± 5.3 | 7.3 ± 1.1 | 10.2 ± 2.0 | 10.0 ± 3.5 | 13.9 ± 0.3 |
ethyl hexanoate | 0.08a | Fruity, green apple, banana, brandy, wine-like | 30.2 ± 0.6 | 25.8 ± 13.1 | 43.1 ± 11.5 | 37.5 ± 5.3 | 52.5 ± 7.1 | 99.9 ± 79.7 |
ethyl octanoate | 0.58a | Sweet, floral, fruity, banana, pear, brandy | 6.7 ± 0.0 | 5.4 ± 2.6 | 10.6 ± 1.3 | 7.9 ± 2.4 | 23.2 ± 3.8 | 15.1 ± 6.9 |
2-phenylethyl acetate | 1.8a | Flowery | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.7 ± 1.0 |
ethyl 9-decanoate | 0.1b | - | 2.5 ± 0.1 | Nd | 3.0 ± 2.8 | Nd | 2.0 ± 1.4 | Nd |
ethyl decanoate | 0.5a | Brandy, fruity, grape | 2.2 ± 0.1 | 3.8 ± 2.3 | 4.1 ± 0.2 | 1.1 ± 0.1 | 12.3 ± 6.1 | 6.6 ± 2.5 |
ethyl dodecanoate | 1.5b | - | <1.0 | 1.1 ± 0.9 | <1.0 | <1.0 | 2.1 ± 0.8 | 1.8 ± 0.9 |
3-methyl−1-butanol | 60a | Solvent | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 ± 0.5 |
1-hexanol | 1.1a | Herbaceous, grass, woody | <1.0 | <1.0 | Nd | <1.0 | <1.0 | 3.4 ± 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinomagoulos, E.; Nikolaou, A.; Kourkoutas, Y.; Kandylis, P. Evaluation of Yeast Strains for Pomegranate Alcoholic Beverage Production: Effect on Physicochemical Characteristics, Antioxidant Activity, and Aroma Compounds. Microorganisms 2020, 8, 1583. https://doi.org/10.3390/microorganisms8101583
Kokkinomagoulos E, Nikolaou A, Kourkoutas Y, Kandylis P. Evaluation of Yeast Strains for Pomegranate Alcoholic Beverage Production: Effect on Physicochemical Characteristics, Antioxidant Activity, and Aroma Compounds. Microorganisms. 2020; 8(10):1583. https://doi.org/10.3390/microorganisms8101583
Chicago/Turabian StyleKokkinomagoulos, Evangelos, Anastasios Nikolaou, Yiannis Kourkoutas, and Panagiotis Kandylis. 2020. "Evaluation of Yeast Strains for Pomegranate Alcoholic Beverage Production: Effect on Physicochemical Characteristics, Antioxidant Activity, and Aroma Compounds" Microorganisms 8, no. 10: 1583. https://doi.org/10.3390/microorganisms8101583