Association of Virulence and Antibiotic Resistance in Salmonella—Statistical and Computational Insights into a Selected Set of Clinical Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples (Salmonella Clinical Isolates)
2.2. Genomic DNA Extraction
2.3. Determination of Antibiotic Resistance
2.4. Virulotyping by Polymerase Chain Reaction (PCR)
2.5. Statistical and Computational Analysis
3. Results
3.1. Profiling of Phenotypical Antibiotic Resistance and Virulotypes
3.2. Statistical Association of Phenotypical Antibiotic Resistance Status with Virulence Genes
3.3. Network Analysis of Phenotypical Drug Resistance and Virulence Genes
3.4. Predictive Analysis of Drug Resistance as Indicated by Virulence Genes by Random Forest
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7. [Google Scholar] [CrossRef]
- Crump, J.A.; Medalla, F.M.; Joyce, K.W.; Krueger, A.L.; Hoekstra, R.M.; Whichard, J.M.; Barzilay, E.J.; Emerging Infections Program NARMS Working Group. Antimicrobial resistance among invasive nontyphoidal Salmonella enterica in the United States, national antimicrobial resistance monitoring system, 1996–2007. Antimicrob. Agents Chemother. 2011, 55, 1148–1154. [Google Scholar] [CrossRef] [Green Version]
- CDC Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 2 May 2020).
- CDC Antibiotic/Antimicrobial Resistance (AR/AMR). Available online: https://www.cdc.gov/drugresistance/about.html (accessed on 2 May 2020).
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Davison, J. Genetic exchange between bacteria in the environment. Plasmid 1999, 42, 73–91. [Google Scholar] [CrossRef]
- The National Antimicrobial Resistance Monitoring System (NARMS): 2015 NARMS Integrated Report. 2015; U.S. Food and Drug Administration. Available online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/2015-narms-integrated-report (accessed on 2 May 2020).
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.L.; Baquero, F. Interactions among strategies associated with bacterial infection: Pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 2002, 15, 647–679. [Google Scholar] [CrossRef] [Green Version]
- Helms, M.; Simonsen, J.; Mølbak, K. Quinolone resistance is associated with increased risk of invasive illness or death during infection with Salmonella serotype Typhimurium. J. Infect. Dis. 2004, 190, 1652–1654. [Google Scholar] [CrossRef] [Green Version]
- Angulo, F.J.; Mølbak, K. Human health consequences of antimicrobial drug—Resistant Salmonella and other foodborne pathogens. Clin. Infect. Dis. 2005, 41, 1613–1620. [Google Scholar] [CrossRef]
- Roux, D.; Danilchanka, O.; Guillard, T.; Cattoir, V.; Aschard, H.; Fu, Y.; Angoulvant, F.; Messika, J.; Ricard, J.-D.; Mekalanos, J.J. Fitness cost of antibiotic susceptibility during bacterial infection. Sci. Transl. Med. 2015, 7, 297ra114. [Google Scholar] [CrossRef] [Green Version]
- Wesche, A.M.; Gurtler, J.B.; Marks, B.P.; Ryser, E.T. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J. Food Prot. 2009, 72, 1121–1138. [Google Scholar] [CrossRef]
- Guerin, É.; Cambray, G.; Sanchez-Alberola, N.; Campoy, S.; Erill, I.; Da Re, S.; Gonzalez-Zorn, B.; Barbé, J.; Ploy, M.-C.; Mazel, D. The SOS response controls integron recombination. Science 2009, 324, 1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morosini, M.; Ayala, J.; Baquero, F.; Martinez, J.; Blazquez, J. Biological Cost of AmpC Production for Salmonella enterica Serotype Typhimurium. Antimicrob. Agents Chemother. 2000, 44, 3137–3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, J.S.; Ryan, S.S.; Van Velkinburgh, J.C.; Ernst, R.K.; Miller, S.I. Genetic and Functional Analysis of a PmrA-PmrB-Regulated Locus Necessary for Lipopolysaccharide Modification, Antimicrobial Peptide Resistance, and Oral Virulence of Salmonella enterica Serovar Typhimurium. Infect. Immun. 2000, 68, 6139–6146. [Google Scholar] [CrossRef] [PubMed]
- Groisman, E.A. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 2001, 183, 1835–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’regan, E.; Quinn, T.; Frye, J.G.; Pagès, J.-M.; Porwollik, S.; Fedorka-Cray, P.J.; McClelland, M.; Fanning, S. Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype enteritidis: Reduced infectivity associated with decreased expression of Salmonella pathogenicity island 1 genes. Antimicrob. Agents Chemother. 2010, 54, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Paulander, W.; Pennhag, A.; Andersson, D.I.; Maisnier-Patin, S. Caenorhabditis elegans as a model to determine fitness of antibiotic-resistant Salmonella enterica serovar typhimurium. Antimicrob. Agents Chemother. 2007, 51, 766–769. [Google Scholar] [CrossRef] [Green Version]
- Tamayo, R.; Ryan, S.S.; McCoy, A.J.; Gunn, J.S. Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar Typhimurium. Infect. Immun. 2002, 70, 6770–6778. [Google Scholar] [CrossRef] [Green Version]
- Eswarappa, S.M.; Panguluri, K.K.; Hensel, M.; Chakravortty, D. The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology 2008, 154, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Björkman, J.; Samuelsson, P.; Andersson, D.I.; Hughes, D. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol. Microbiol. 1999, 31, 53–58. [Google Scholar] [CrossRef]
- Nilsson, A.I.; Zorzet, A.; Kanth, A.; Dahlström, S.; Berg, O.G.; Andersson, D.I. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc. Natl. Acad. Sci. USA 2006, 103, 6976–6981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björkman, J.; Hughes, D.; Andersson, D.I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 1998, 95, 3949–3953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Gavan, T.; Jones, R.; Barry, A. Evaluation of the Sensititre system for quantitative antimicrobial drug susceptibility testing: A collaborative study. Antimicrob. Agents Chemother. 1980, 17, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huehn, S.; La Ragione, R.M.; Anjum, M.; Saunders, M.; Woodward, M.J.; Bunge, C.; Helmuth, R.; Hauser, E.; Guerra, B.; Beutlich, J. Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 2010, 7, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Cortez, A.; Carvalho, A.; Ikuno, A.; Bürger, K.; Vidal-Martins, A. Identification of Salmonella spp. isolates from chicken abattoirs by multiplex-PCR. Res. Vet. Sci. 2006, 81, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.; Taylor, M.; Handley, H.; Foster, S.; Gillings, M.; Asher, A. Chemical, biological, and DNA markers for tracing slaughterhouse effluent. Environ. Res. 2017, 156, 534–541. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015, 16, 964. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Lunetta, K.L.; Hayward, L.B.; Segal, J.; Van Eerdewegh, P. Screening large-scale association study data: Exploiting interactions using random forests. BMC Genet. 2004, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R (Version 3.5.3); R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 2 May 2020).
- Alonso, A.; Morales, G.; Escalante, R.; Campanario, E.; Sastre, L.; Martinez, J.L. Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J. Antimicrob. Chemother. 2004, 53, 432–434. [Google Scholar] [CrossRef] [Green Version]
- Kugelberg, E.; Lofmark, S.; Wretlind, B.; Andersson, D.I. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2005, 55, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skurnik, D.; Roux, D.; Cattoir, V.; Danilchanka, O.; Lu, X.; Yoder-Himes, D.R.; Han, K.; Guillard, T.; Jiang, D.; Gaultier, C.; et al. Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 20747–20752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, D.I. The biological cost of mutational antibiotic resistance: Any practical conclusions? Curr. Opin. Microbiol. 2006, 9, 461–465. [Google Scholar] [CrossRef]
- Fashae, K.; Ogunsola, F.; Aarestrup, F.M.; Hendriksen, R.S. Antimicrobial susceptibility and serovars of Salmonella from chickens and humans in Ibadan, Nigeria. J. Infect. Dev. Ctries. 2010, 4, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Adesiji, Y.O.; Deekshit, V.K.; Karunasagar, I. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci. Nutr. 2014, 2, 436–442. [Google Scholar] [CrossRef]
- Sırıken, B. Salmonella pathogenicity islands. Mikrobiyoloji Bul. 2013, 47, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Hensel, M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 2004, 17, 14–56. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.D.D.; Rodenbusch, C.R.; Michael, G.B.; Cardoso, M.I.; Canal, C.W.; Brandelli, A. Detection of virulence genes in Salmonella Enteritidis isolated from different sources. Braz. J. Microbiol. 2003, 34, 123–124. [Google Scholar] [CrossRef] [Green Version]
- Amini, K.; Salehi, T.Z.; Nikbakht, G.; Ranjbar, R.; Amini, J.; Ashrafganjooei, S.B. Molecular detection of invA and spv virulence genes in Salmonella enteritidis isolated from human and animals in Iran. Afr. J. Microbiol. Res. 2010, 4, 2202–2210. [Google Scholar]
- Swamy, S.C.; Barnhart, H.M.; Lee, M.D.; Dreesen, D.W. Virulence determinants invA and spvC in salmonellae isolated from poultry products, wastewater, and human sources. Appl. Environ. Microbiol. 1996, 62, 3768–3771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malorny, B.; Hoorfar, J.; Bunge, C.; Helmuth, R. Multicenter validation of the analytical accuracy of Salmonella PCR: Towards an international standard. Appl. Environ. Microbiol. 2003, 69, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galan, J.E.; Curtiss, R., III. Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: InvA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect. Immun. 1991, 59, 2901–2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Huang, J.; Wu, Q.; Zhang, J.; Liu, S.; Guo, W.; Cai, S.; Yu, S. Prevalence, antimicrobial resistance and genetic diversity of Salmonella isolated from retail ready-to-eat foods in China. Food Control 2016, 60, 50–56. [Google Scholar] [CrossRef]
- Karmi, M. Detection of virulence gene (invA) in Salmonella isolated from meat and poultry products. Int. J. Genet 2013, 3, 7–12. [Google Scholar]
- Kuang, D.; Xu, X.; Meng, J.; Yang, X.; Jin, H.; Shi, W.; Pan, H.; Liao, M.; Su, X.; Shi, X. Antimicrobial susceptibility, virulence gene profiles and molecular subtypes of Salmonella Newport isolated from humans and other sources. Infect. Genet. Evol. 2015, 36, 294–299. [Google Scholar] [CrossRef]
- Ye, Z.; Petrof, E.O.; Boone, D.; Claud, E.C.; Sun, J. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am. J. Pathol. 2007, 171, 882–892. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Jones, R.M.; Neish, A.S. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo. Cell. Microbiol. 2012, 14, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Alix, E.; Blanc-Potard, A.-B. MgtC: A key player in intramacrophage survival. Trends Microbiol. 2007, 15, 252–256. [Google Scholar] [CrossRef]
- Srikanth, C.; Mercado-Lubo, R.; Hallstrom, K.; McCormick, B.A. Salmonella effector proteins and host-cell responses. Cell. Mol. Life Sci. 2011, 68, 3687. [Google Scholar] [CrossRef] [PubMed]
- Craig, M.; Slauch, J.M. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS ONE 2009, 4, e4975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, R.B.; Abbassi, M.S.; García, V.; García-Fierro, R.; Fernández, J.; Kilani, H.; Jaouani, I.; Khayeche, M.; Messadi, L.; Rodicio, M.R. Antimicrobial drug resistance and genetic properties of Salmonella enterica serotype Enteritidis circulating in chicken farms in Tunisia. J. Infect. Public Health 2017, 10, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Osman, K.; Marouf, S.; Mehana, O.; AlAtfeehy, N. Salmonella enterica serotypes isolated from squabs reveal multidrug resistance and a distinct pathogenicity gene repertoire. Rev. Sci. Tech. Off. Int. Epiz. 2014, 33, 1–19. [Google Scholar] [CrossRef]
- Stanley, T.L.; Ellermeier, C.D.; Slauch, J.M. Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar Typhimurium survival in Peyer’s patches. J. Bacteriol. 2000, 182, 4406–4413. [Google Scholar] [CrossRef] [Green Version]
- Rowe-Magnus, D.A.; Mazel, D. The role of integrons in antibiotic resistance gene capture. Int. J. Med. Microbiol. 2002, 292, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Skurnik, D.; Le Menac’h, A.; Zurakowski, D.; Mazel, D.; Courvalin, P.; Denamur, E.; Andremont, A.; Ruimy, R. Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. Antimicrob. Agents Chemother. 2005, 49, 3062–3065. [Google Scholar] [CrossRef] [Green Version]
- Fluit, A.; Schmitz, F. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 761–770. [Google Scholar] [CrossRef]
- Tennstedt, T.; Szczepanowski, R.; Braun, S.; Pühler, A.; Schlüter, A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol. Ecol. 2003, 45, 239–252. [Google Scholar] [CrossRef]
- Woodford, N.; Sundsfjord, A. Molecular detection of antibiotic resistance: When and where? J. Antimicrob. Chemother. 2005, 56, 259–261. [Google Scholar] [CrossRef]
- Hai, D.; Yin, X.P.; Lu, Z.X.; Lv, F.X.; Zhao, H.Z.; Bie, X.M. Occurrence, drug resistance, and virulence genes of Salmonella isolated from chicken and eggs. Food Control 2020, 113, 107109. [Google Scholar] [CrossRef]
- Zhang, S.; den Bakker, H.C.; Li, S.; Chen, J.; Dinsmore, B.A.; Lane, C.; Lauer, A.C.; Fields, P.I.; Deng, X. SeqSero2: Rapid and Improved Salmonella Serotype Determination Using Whole-Genome Sequencing Data. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, A.F.A.; Marinovic, A.A.B.; Wijnands, L.M.; Delfgou-van Asch, E.H.M.; van Hoek, A.; Franz, E.; Pielaat, A. Phenotypic Prediction: Linking in vitro Virulence to the Genomics of 59 Salmonella enterica Strains. Front. Microbiol. 2019, 9, 3182. [Google Scholar] [CrossRef]
- von Hertwig, A.M.; Neto, D.P.A.; de Almeida, E.A.; Casas, M.R.T.; do Nascimento, M.D. Genetic diversity, antimicrobial resistance and virulence profile of Salmonella isolated from the peanut supply chain. Int. J. Food Microbiol. 2019, 294, 50–54. [Google Scholar] [CrossRef] [PubMed]
Virulence Gene | Absence/Presence | Antibiotic Susceptible n (%) | Antibiotic Resistance n (%) | Chi-sq/Fischer Value | p Value |
---|---|---|---|---|---|
arvA | 0 | 16 (47%) | 18 (53%) | 0.103 | 0.748 |
1 | 78 (44%) | 99 (56%) | |||
bcfC | 0 | 0 (0%) | 2 (100%) | 1.622 | 0.306 |
1 | 94 (45%) | 115 (55%) | |||
gipA | 0 | 63 (45%) | 76 (55%) | 0.099 | 0.753 |
1 | 31 (43%) | 41 (57%) | |||
mgtC | 0 | 4 (36%) | 7 (64%) | 0.315 | 0.575 |
1 | 90 (45%) | 110 (55%) | |||
sefA | 0 | 79 (45%) | 97 (55%) | 0.049 | 0.825 |
1 | 15 (43%) | 20 (57%) | |||
siiD | 0 | 5 (42%) | 7 (58%) | 0.043 | 0.230 |
1 | 89 (45%) | 110 (55%) | |||
sodC1 | 0 | 46 (51%) | 45 (49%) | 2.33 | 0.127 |
1 | 48 (40%) | 72 (60%) | |||
sopB | 0 | 2 (25%) | 6 (75%) | 1.29 | 0.161 |
1 | 92 (45%) | 111 (55%) | |||
sopE1 | 0 | 57 (48%) | 62 (52%) | 1.24 | 0.266 |
1 | 37 (40%) | 55(60%) | |||
spvC | 0 | 62 (48%) | 68 (52%) | 1.35 | 0.245 |
1 | 32 (40%) | 49 (60%) | |||
ssaQ | 0 | 0 (0%) | 3 (100%) | 2.45 | 0.169 |
1 | 94 (45%) | 114 (55%) | |||
pefA | 0 | 43 (39%) | 68 (61%) | 3.20 | 0.074 |
1 | 51 (51%) | 49 (49%) | |||
invA | 0 | 3 (75%) | 1 (25%) | 1.53 | 0.195 |
1 | 91 (44%) | 116 (56%) | |||
Class 1 integron | 0 | 17 (34%) | 33 (66%) | 2.95 | 0.086 |
1 | 77 (48%) | 84 (52%) |
Virulence Gene | Absence/Presence | Antibiotic Susceptible n (%) | Single Drug Resistance n (%) | 2–5 Drug Resistance n (%) | >5 Drug Resistance n (%) | Chi-sq/Fischer Value | p Value |
---|---|---|---|---|---|---|---|
arvA | 0 | 16 (47%) | 6 (18%) | 8 (23%) | 4 (12%) | 0.981 | 0.005 |
1 | 78 (44%) | 24 (14%) | 44 (25%) | 31 (17) | |||
bcfC | 0 | 0 (0%) | 0 (0%) | 1 (50%) | 1 (50%) | 3.07 | 0.082 |
1 | 94 (45%) | 30 (14%) | 51 (24%) | 34 (16%) | |||
gipA | 0 | 63 (45%) | 20 (15%) | 32 (23%) | 24 (17%) | 0.612 | 0.893 |
1 | 31 (43%) | 10 (14%) | 20 (28%) | 11 (15%) | |||
mgtC | 0 | 4 (36%) | 0 (0%) | 4 (36%) | 3 (28%) | 3.27 | 0.008 |
1 | 90 (45%) | 30 (15%) | 48 (25%) | 32 (16%) | |||
sefA | 0 | 79 (45%) | 26 (15%) | 48 (27%) | 23 (13%) | 11.15 | < 0.0001 |
1 | 15 (43%) | 4 (11%) | 4 (11%) | 12 (35%) | |||
siiD | 0 | 5 (42%) | 0 (0%) | 4 (33%) | 3 (25%) | 2.77 | 0.008 |
1 | 89 (45%) | 30 (15%) | 48 (24%) | 32 (16%) | |||
sodC1 | 0 | 46 (51%) | 17 (19%) | 22 (24%) | 6 (6%) | 13.18 | 0.004 |
1 | 48 (40%) | 13 (11%) | 30 (25%) | 29 (24%) | |||
sopB | 0 | 2 (25%) | 0 (0%) | 4 (50%) | 2 (25%) | 4.42 | 0.008 |
1 | 92 (45%) | 30 (15%) | 48 (24%) | 33 (16%) | |||
sopE1 | 0 | 57 (48%) | 15(13%) | 33 (27%) | 14 (12%) | 6.07 | 0.108 |
1 | 37 (40%) | 15 (16%) | 19 (21%) | 21 (23%) | |||
spvC | 0 | 62 (48%) | 21 (16%) | 33 (25%) | 14 (11%) | 8.63 | 0.035 |
1 | 32 (40%) | 9 (11%) | 19 (23%) | 21 (26%) | |||
ssaQ | 0 | 0 (0%) | 0 (0%) | 2 (67%) | 1 (33%) | 4.48 | 0.030 |
1 | 94 (45%) | 30 (15%) | 50 (24%) | 34 (16%) | |||
pefA | 0 | 43 (39%) | 17 (15%) | 26 (23%) | 25 (23%) | 7.089 | 0.069 |
1 | 51 (51%) | 13 (13%) | 26 (26%) | 10 (10%) | |||
invA | 0 | 3 (75%) | 0 (0%) | 1 (25%) | 0 (0%) | 2.10 | 0.087 |
1 | 91 (44%) | 30 (14%) | 51 (25%) | 35 (17%) | |||
Class 1 integron | 0 | 17 (34%) | 4 (8%) | 13 (26%) | 16 (32%) | 12.85 | < 0.0001 |
1 | 77 (48%) | 26 (16%) | 39 (24%) | 19 (12%) |
Virulence Gene | Absence/Presence | Antibiotic Susceptible n (%) | >5 Drug Resistance n (%) | Chi-sq/Fischer Value | p Value |
---|---|---|---|---|---|
arvA | 0 | 16 (47%) | 4 (12%) | 0.609 | 0.170 |
1 | 78 (44%) | 31 (17) | |||
bcfC | 0 | 0 (0%) | 1 (50%) | 2.71 | 0.271 |
1 | 94 (45%) | 34 (16%) | |||
gipA | 0 | 63 (45%) | 24 (17%) | 0.028 | 0.867 |
1 | 31 (43%) | 11 (15%) | |||
mgtC | 0 | 4 (36%) | 3 (28%) | 0.926 | 0.200 |
1 | 90 (45%) | 32 (16%) | |||
sefA | 0 | 79 (45%) | 23 (13%) | 5.18 | 0.023 |
1 | 15 (43%) | 12 (35%) | |||
siiD | 0 | 5 (42%) | 3 (25%) | 0.464 | 0.236 |
1 | 89 (45%) | 32 (16%) | |||
sodC1 | 0 | 46 (51%) | 6 (6%) | 10.71 | 0.001 |
1 | 48 (40%) | 29 (24%) | |||
sopB | 0 | 2 (25%) | 2 (25%) | 1.09 | 0.236 |
1 | 92 (45%) | 33 (16%) | |||
sopE1 | 0 | 57 (48%) | 14 (12%) | 4.39 | 0.036 |
1 | 37 (40%) | 21 (23%) | |||
spvC | 0 | 62 (48%) | 14 (11%) | 7.10 | 0.008 |
1 | 32 (40%) | 21 (26%) | |||
ssaQ | 0 | 0 (0%) | 1 (33%) | 2.71 | 0.271 |
1 | 94 (45%) | 34 (16%) | |||
pefA | 0 | 43 (39%) | 25 (23%) | 6.75 | 0.010 |
1 | 51 (51%) | 10 (10%) | |||
invA | 0 | 3 (75%) | 0 (0%) | 1.14 | 0.384 |
1 | 91 (44%) | 35 (17%) | |||
Class 1 integron | 0 | 17 (34%) | 16 (32%) | 10.23 | 0.001 |
1 | 77 (48%) | 19 (12%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higgins, D.; Mukherjee, N.; Pal, C.; Sulaiman, I.M.; Jiang, Y.; Hanna, S.; Dunn, J.R.; Karmaus, W.; Banerjee, P. Association of Virulence and Antibiotic Resistance in Salmonella—Statistical and Computational Insights into a Selected Set of Clinical Isolates. Microorganisms 2020, 8, 1465. https://doi.org/10.3390/microorganisms8101465
Higgins D, Mukherjee N, Pal C, Sulaiman IM, Jiang Y, Hanna S, Dunn JR, Karmaus W, Banerjee P. Association of Virulence and Antibiotic Resistance in Salmonella—Statistical and Computational Insights into a Selected Set of Clinical Isolates. Microorganisms. 2020; 8(10):1465. https://doi.org/10.3390/microorganisms8101465
Chicago/Turabian StyleHiggins, Daleniece, Nabanita Mukherjee, Chandan Pal, Irshad M. Sulaiman, Yu Jiang, Samir Hanna, John R. Dunn, Wilfried Karmaus, and Pratik Banerjee. 2020. "Association of Virulence and Antibiotic Resistance in Salmonella—Statistical and Computational Insights into a Selected Set of Clinical Isolates" Microorganisms 8, no. 10: 1465. https://doi.org/10.3390/microorganisms8101465