Next Article in Journal
Role of Oral Microbiota in Cancer Development
Next Article in Special Issue
Identification, Characterization, and Formulation of a Novel Carbapenemase Intended to Prevent Antibiotic-Mediated Gut Dysbiosis
Previous Article in Journal
Failure of Staphylococcus aureus to Acquire Direct and Cross Tolerance after Habituation to Cinnamon Essential Oil
Previous Article in Special Issue
What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessReview
Microorganisms 2019, 7(1), 19; https://doi.org/10.3390/microorganisms7010019

Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction

Department of Agriculture, Food & Nutritional Science, University of Alberta, Ag/For Centre, Edmonton Alberta, T6G 2P5, Canada
*
Author to whom correspondence should be addressed.
Received: 20 December 2018 / Revised: 8 January 2019 / Accepted: 9 January 2019 / Published: 13 January 2019
(This article belongs to the Special Issue Gastrointestinal Microbiota Impacts Human Health and Disease)
Full-Text   |   PDF [1667 KB, uploaded 13 January 2019]   |  

Abstract

Protein fermentation by gut microbiota contributes significantly to the metabolite pool in the large intestine and may contribute to host amino acid balance. However, we have a limited understanding of the role that proteolytic metabolites have, both in the gut and in systemic circulation. A review of recent studies paired with findings from previous culture-based experiments suggests an important role for microbial protein fermentation in altering the gut microbiota and generating a diverse range of bioactive molecules which exert wide-ranging host effects. These metabolic products have been shown to increase inflammatory response, tissue permeability, and colitis severity in the gut. They are also implicated in the development of metabolic disease, including obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Specific products of proteolytic fermentation such as hydrogen sulfide, ammonia, and p-Cresol may also contribute to the development of colorectal cancer. These findings are in conflict with other studies showing that tryptophan metabolites may improve gut barrier function and attenuate severity in a multiple sclerosis model. Further research examining proteolytic fermentation in the gut may be key to our understanding of how microbial and host metabolism interact affecting health. View Full-Text
Keywords: gut microbiota; protein fermentation; amino acids; host-microbial interaction gut microbiota; protein fermentation; amino acids; host-microbial interaction
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction. Microorganisms 2019, 7, 19.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Microorganisms EISSN 2076-2607 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top