Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. PCR Detection of intl1 Gene
2.3. Arrangement of Resistance Gene Cassettes in Class 1 Integrons
2.4. Antimicrobial Susceptibility Testing
2.5. Antimicrobial Resistance Genes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Paton, A.W.; Paton, J.C. Detection and characterization of shiga toxigenic escherichia coli by using multiplex PCR assays for stx1, stx2, eaea, enterohemorrhagic E. Coli hlya, rfb O111, and rfb O157. J. Clin. Microbiol. 1998, 36, 598–602. [Google Scholar] [PubMed]
- Beutin, L.; Miko, A.; Krause, G.; Pries, K.; Haby, S.; Steege, K.; Albrecht, N. Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes. Appl. Environ. Microbiol. 2007, 73, 4769–4775. [Google Scholar] [CrossRef] [PubMed]
- Herold, S.; Paton, J.C.; Paton, A.W. Sab, a novel autotransporter of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli O113:H21, contributes to adherence and biofilm formation. Infect. Immun. 2009, 77, 3234–3243. [Google Scholar] [CrossRef] [PubMed]
- Tarr, P.I.; Bilge, S.S.; Vary, J.C.; Jelacic, S.; Habeeb, R.L.; Ward, T.R.; Baylor, M.R.; Besser, T.E. Iha: A novel Escherichia coli O157: H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect. Immun. 2000, 68, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.C.; Reddy, S. Prevalences of Shiga toxin subtypes and selected other virulence factors among Shiga-toxigenic Escherichia coli strains isolated from fresh produce. Appl. Environ. Microbiol. 2013, 79, 6917–6923. [Google Scholar] [CrossRef] [PubMed]
- Etcheverría, A.I.; Padola, N.L. Shiga toxin-producing Escherichia coli: Factors involved in virulence and cattle colonization. Virulence 2013, 4, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyles, C. Shiga toxin-producing an overview. J. Anim. Sci. 2007, 85, E45–E62. [Google Scholar] [CrossRef] [PubMed]
- Paton, A.W.; Srimanote, P.; Woodrow, M.C.; Paton, J.C. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains. Infect. Immun. 2001, 69, 6999–7009. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.A.; Velasco, J.; Del Canto, F.; Puente, J.L.; Padola, N.L.; Rasko, D.A.; Farfán, M.; Salazar, J.C.; Vidal, R. Locus of adhesion and autoaggregation (LAA), a pathogenicity island present in emerging Shiga toxin–producing Escherichia coli strains. Sci. Rep. 2017, 7, 7011. [Google Scholar] [CrossRef] [PubMed]
- Van Meervenne, E.; Boon, N.; Verstraete, K.; Devlieghere, F.; De Reu, K.; Herman, L.; Buvens, G.; Piérard, D.; Van Coillie, E. Integron characterization and typing of Shiga toxin-producing Escherichia coli isolates in Belgium. J. Med. Microbiol. 2013, 62, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.; Rodriguez, E.; Arroyo, G.H.; Padola, N.L.; Parma, A.E. Seasonal variation of Shiga toxin-encoding genes (stx) and detection of E. Coli O157 in dairy cattle from Argentina. J. Appl. Microbiol. 2009, 106, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Amézquita-López, B.A.; Quiñones, B.; Lee, B.G.; Chaidez, C. Virulence profiling of Shiga toxin-producing Escherichia coli recovered from domestic farm animals in Northwestern Mexico. Front. Cell. Infect. Microbiol. 2014, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Cergole-Novella, M.C.; Pignatari, A.C.C.; Castanheira, M.; Guth, B.E.C. Molecular typing of antimicrobial-resistant Shiga-toxin-producing Escherichia coli strains (STEC) in Brazil. Res. Microbiol. 2011, 162, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Bennett, P. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 2008, 153, S347–S357. [Google Scholar] [CrossRef] [PubMed]
- Domingues, S.; da Silva, G.J.; Nielsen, K.M. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob. Genet. Elem. 2012, 2, 211–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Conza, J.; Gutkind, G. Integrones: Los coleccionistas de genes. Rev. Argent. Microbiol. 2010, 42, 63–78. [Google Scholar] [PubMed]
- Cambray, G.; Guerout, A.-M.; Mazel, D. Integrons. Annu. Rev. Genet. 2010, 44, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; White, D.G.; Ge, B.; Ayers, S.; Friedman, S.; English, L.; Wagner, D.; Gaines, S.; Meng, J. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl. Environ. Microbiol. 2001, 67, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Parma, A.; Sanz, M.; Blanco, J.; Blanco, J.; Viñas, M.; Blanco, M.; Padola, N.; Etcheverría, A. Virulence genotypes and serotypes of verotoxigenic Escherichia coli isolated from cattle and foods in Argentina. Eur. J. Epidemiol. 2000, 16, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Padola, N.L.; Sanz, M.E.; Blanco, J.E.; Blanco, M.; Blanco, J.; Etcheverria, A.a.I.; Arroyo, G.H.; Usera, M.A.; Parma, A.E. Serotypes and virulence genes of bovine shigatoxigenic Escherichia coli (STEC) isolated from a feedlot in Argentina. Vet. Microbiol. 2004, 100, 3–9. [Google Scholar] [CrossRef]
- Alonso, M.Z.; Lucchesi, P.M.A.; Rodríguez, E.M.; Parma, A.E.; Padola, N.L. Enteropathogenic (EPEC) and shigatoxigenic Escherichia coli (STEC) in broiler chickens and derived products at different retail stores. Food Control 2012, 23, 351–355. [Google Scholar] [CrossRef]
- Colello, R.; Cáceres, M.E.; Ruiz, M.J.; Sanz, M.; Etcheverría, A.I.; Padola, N.L. From farm to table: Follow-up of Shiga toxin-producing Escherichia coli throughout the pork production chain in Argentina. Front. Microbiol. 2016, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Orman, B.E.; Pineiro, S.A.; Arduino, S.; Galas, M.; Melano, R.; Caffer, M.I.; Sordelli, D.O.; Centrón, D. Evolution of multiresistance in nontyphoid Salmonella serovars from 1984 to 1998 in Argentina. Antimicrob. Agents Chemother. 2002, 46, 3963–3970. [Google Scholar] [CrossRef] [PubMed]
- Parma, A.; Viñas, M.; Sanz, M. Improvement of the polymerase chain reaction to detect Escherichia coli Shiga-like toxin II gene from clinical isolates. J.Microbiol. Methods 1996, 26, 81–85. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; M100-S24; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Famiglietti, A.; Quinteros, M.; Vázquez, M.; Marín, M.; Nicola, F.; Radice, M.; Galas, M.; Pasterán, F.; Bantar, C.; Casellas, J. Consenso sobre las pruebas de sensibilidad a los antimicrobianos en Enterobacteriaceae. Rev. Argent. Microbiol. 2005, 37, 57–66. [Google Scholar] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Geue, L.; Schares, S.; Mintel, B.; Conraths, F.J.; Müller, E.; Ehricht, R. Rapid microarray-based genotyping of enterohemorrhagic Escherichia coli serotype O156:H25/H−/Hnt isolates from cattle and clonal relationship analysis. Appl. Environ. Microbiol. 2010, 76, 5510–5519. [Google Scholar] [CrossRef] [PubMed]
- Karmali, M.A.; Mascarenhas, M.; Shen, S.; Ziebell, K.; Johnson, S.; Reid-Smith, R.; Isaac-Renton, J.; Clark, C.; Rahn, K.; Kaper, J.B. Association of genomic O island 122 of Escherichia coli Edl 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J. Clin. Microbiol. 2003, 41, 4930–4940. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Schroeder, C.M.; Meng, J.; White, D.G.; McDermott, P.F.; Wagner, D.D.; Yang, H.; Simjee, S.; DebRoy, C.; Walker, R.D. Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals. J. Antimicrob. Chemother. 2005, 56, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Vali, L.; Hamouda, A.; Hoyle, D.V.; Pearce, M.C.; Whitaker, L.H.; Jenkins, C.; Knight, H.I.; Smith, A.W.; Amyes, S.G. Antibiotic resistance and molecular epidemiology of Escherichia coli O26, O103 and O145 shed by two cohorts of scottish beef cattle. J. Antimicrob. Chemother. 2007, 59, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zheng, W.; Yu, Y.; Huang, W.; Zheng, S.; Zhang, Y.; Guan, X.; Zhuang, Y.; Chen, N.; Topp, E. Class 1 integrons, selected virulence genes, and antibiotic resistance in escherichia coli isolates from the Minjiang river, Fujian province, China. Appl. Environ. Microbiol. 2011, 77, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-C.; Wang, F.; Li, F. Identification and molecular characterization of antimicrobial-resistant Shiga toxin–producing Escherichia coli isolated from retail meat products. Foodborne Pathog. Dis. 2011, 8, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Lariviere, S.; Harel, J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lai, J.; Wang, Y.; Liu, S.; Li, Y.; Liu, K.; Shen, J.; Wu, C. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan province, China. Int. J. Food Microbiol. 2013, 163, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Grisaru, S. Management of hemolytic-uremic syndrome in children. Int. J. Nephrol. Renovas. Dis. 2014, 7, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begum, J.; Mir, N.A.; Dev, K.; Khan, I.A. Dynamics of antibiotic resistance with special reference to Shiga toxin-producing Escherichia coli infections. J. Appl. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.; Godfrey, H.P. Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environ. Microbiol. 2016, 18, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Arvand, M.; Bettge-Weller, G.; Fruth, A.; Uphoff, H.; Pfeifer, Y. Extended-spectrum beta-lactamase-producing Shiga toxin gene (stx1)-positive Escherichia coli O91:H14 carrying blaCTX-M-15 on an inci1-ST31 plasmid isolated from a human patient in Germany. Int. J. Med. Microbiol. 2015, 305, 404–407. [Google Scholar] [CrossRef] [PubMed]
- White, D.G.; Zhao, S.; Simjee, S.; Wagner, D.D.; McDermott, P.F. Antimicrobial resistance of foodborne pathogens. Microbes Infect. 2002, 4, 405–412. [Google Scholar] [CrossRef]
- Srinivasan, V.; Gillespie, B.E.; Nguyen, L.T.; Headrick, S.I.; Murinda, S.E.; Oliver, S.P. Characterization of antimicrobial resistance patterns and class 1 integrons in Escherichia coli O26 isolated from humans and animals. Int. J. Antimicrob. Agents 2007, 29, 254–262. [Google Scholar] [PubMed]
Pathotype | Year of Isolation | Origin | Serogroup/Serotype | Virulence Marker | Resistance Phenotype | Antibiotic Resistance Genes by Microarray | Class 1 Integron | |
---|---|---|---|---|---|---|---|---|
Amplicon size | Antibiotic Resistance Gene Cassettes | |||||||
STEC | 2012 | chicken burger | O130:H11 | stx1, stx2, ehxA, saa | TMS-NAL-TET-SOX-amp-cip-gen * | sul1, tetA | 0.75 kb | dfrA16 |
STEC | 2009 | farm environment | ONT:H18 | stx1, ehxA, eae | AMP-CMP-TMS-TET-NAL-S-sox * | sul2, tetB, strA/B, aadA1, blaTEM, floR, dfrA1 | 1.5 kb | dfrA1-aadA1 |
STEC | 2009 | Bovine | O103:H18 | stx1, eae, ehxA | AMP-CMP-TMS-S-sox * | sul1/2, strA/B, aadA1, blaTEM, floR, dfrA1 | 1.5 kb | dfrA1-aadA1 |
STEC | 2009 | Bovine | O103:H2 | stx1, eae, ehxA | AMP-CMP-TMS-TET-SOX-S | sul1/2, strA/B, aadA1, blaTEM, floR, dfrA1, ‡ | 1.5 kb | dfrA1-aadA1 |
STEC | 2009 | Bovine | O26:H11 | stx2, eae, ehxA | AMP-CMP-TMS-TET-SOX-S | sul1/2, tetA, strA/B, aadA1, blaTEM, floR, dfrA1 | 1.5 kb | dfrA1-aadA1 |
STEC | 2016 | Pig | O2:H32 | stx2 | CMP-NAL-TET-SOX-S | sul1, tetB, aadA1, catA1 | 1 kb | aadA23 |
STEC | 2016 | Pig | ONT:H32 | stx2 | AMP-CMP-NAL-TET-SOX-S-kan * | sul1, tetB, aadA1, blaTEM, catA1 | 1 kb | aadA23 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colello, R.; Krüger, A.; Conza, J.D.; Rossen, J.W.A.; Friedrich, A.W.; Gutkind, G.; Etcheverría, A.I.; Padola, N.L. Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment. Microorganisms 2018, 6, 99. https://doi.org/10.3390/microorganisms6040099
Colello R, Krüger A, Conza JD, Rossen JWA, Friedrich AW, Gutkind G, Etcheverría AI, Padola NL. Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment. Microorganisms. 2018; 6(4):99. https://doi.org/10.3390/microorganisms6040099
Chicago/Turabian StyleColello, Rocío, Alejandra Krüger, José Di Conza, John W. A. Rossen, Alexander W. Friedrich, Gabriel Gutkind, Analía I. Etcheverría, and Nora L. Padola. 2018. "Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment" Microorganisms 6, no. 4: 99. https://doi.org/10.3390/microorganisms6040099