Pyruvate: A key Nutrient in Hypersaline Environments?
Abstract
:1. Introduction
2. Pyruvate As a Key Compound for the Nutrition of Selected Halophilic Microorganisms
3. Modified R2A Agar for the Recovery of Colonies of Halophiles
4. Pyruvate Transport in Halophilic and in Non-Halophilic Prokaryotes
5. Excretion of Pyruvate by Halophilic and Non-Halophilic Prokaryotes
6. Excretion of Dihydroxyacetone by Halophilic and Non-Halophilic Prokaryotes
7. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
References
- Burns, D.G.; Camakaris, H.M.; Janssen, P.H.; Dyall-Smith, M.L. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl. Environ. Microbiol. 2004, 70, 5258–5265. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.G.; Camakaris, H.M.; Janssen, P.H.; Dyall-Smith, M.L. Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol. Lett. 2004, 238, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Bolhuis, H.; Poele, E.M.; Rodriguez-Valera, F. Isolation and cultivation of Walsby’s square archaeon. Environ. Microbiol. 2004, 6, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.G.; Janssen, P.H.; Itoh, T.; Kamekura, M.; Li, Z.; Jensen, G.; Rodríguez-Valera, F.; Bolhuis, H.; Dyall-Smith, M.L. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int. J. Syst. Evol. Microbiol. 2007, 57, 387–392. [Google Scholar] [CrossRef] [PubMed]
- León, M.J.; Fernández, A.B.; Ghai, R.; Sánchez-Porro, C.; Rodriguez-Valera, F.; Ventosa, A. From metagenomics to pure culture: Isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl. Environ. Microbiol. 2014, 80, 3850–3857. [Google Scholar] [CrossRef] [PubMed]
- López-Pérez, M.; Ghai, R.; Leon, M.J.; Rodríguez-Olmos, A.; Copa-Patiño, J.L.; Soliveri, J.; Sánchez-Porro, C.; Ventosa, A.; Rodriguez-Valera, F. Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. BMC Genomics 2013, 14. [Google Scholar] [CrossRef] [PubMed]
- Vreeland, R.H.; Straight, S.; Krammes, J.; Dougherty, K.; Rosenzweig, W.D.; Kamekura, M. Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 2002, 6, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Ventosa, A.; Grant, W.D. Proposed minimal standards of new taxa in the order Halobacteriales. Int. J. Syst. Bacteriol. 1997, 47, 233–238. [Google Scholar] [CrossRef]
- Song, H.S.; Cha, I.-T.; Yim, K.J.; Lee, H.-W.; Hyun, D.-W.; Lee, S.-J.; Rhee, S.-K.; Kim, K.-N.; Kim, D.; Choi, J.-S.; et al. Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie van Leeuwenhoek 2014, 105, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, H.; Yamauchi, Y.; Echigo, A.; Shimane, Y.; Kamekura, M.; Itoh, T.; Ohkuma, M.; Usami, R. Halarchaeum nitratireducens sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int. J. Syst. Evol. Microbiol. 2013, 63, 4202–4206. [Google Scholar] [CrossRef] [PubMed]
- Andrei, A.-S.; Banciu, H.L.; Oren, A. Living with salt: Metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 2012, 330, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Cui, H.-L. Halosimplex pelagicum sp. nov., and Halosimplex rubrum sp. nov., isolated from salted brown alga Laminaria, and emended description of the genus Halosimplex. Int. J. Syst. Evol. Microbiol. 2014, 64, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Gurevich, P. Production of d-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol. Ecol. 1994, 14, 147–156. [Google Scholar]
- Reasoner, D.J.; Geldreich, E.E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7. [Google Scholar] [PubMed]
- Litchfield, C.D.; Gillevet, P.M. Microbial diversity and complexity in hypersaline environments: A preliminary assessment. J. Ind. Microbiol. Biotechnol. 2002, 28, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Litchfield, C.D.; Sikaroodi, M.; Gillevet, P.M. The microbial diversity of a solar saltern on San Francisco Bay. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 61–69. [Google Scholar]
- Litchfield, C.D.; Oren, A.; Irby, A.; Sikaroodi, M.; Gillevet, P.M. Temporal and salinity impacts on the microbial diversity at the Eilat, Israel solar salt plant. Global NEST J. 2009, 11, 86–90. [Google Scholar]
- Boujelben, I.; Martínez-García, M.; van Pelt, J.; Maalej, S. Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie van Leeuwenhoek 2014, 106, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Falb, M.; Müller, K.; Königsmaier, L.; Oberwinkler, T.; Horn, P.; von Gronau, S.; Gonzalez, O.; Pfeiffer, F.; Bornberg-Bauer, E.; Oesterhelt, D. Metabolism of halophilic archaea. Extremophiles 2008, 12, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, S.R.; Sonawat, H.W. Pyruvate metabolism in Halobacterium salinarium studied by intracellular 13C nuclear magnetic resonance spectroscopy. J. Bacteriol. 1994, 176, 2172–2176. [Google Scholar] [PubMed]
- Bolhuis, H.; Palm, P.; Wende, A.; Falb, M.; Rampp, M.; Rodriguez-Valera, F.; Pfeiffer, F.; Oesterhelt, D. The genome of the square archaeon Haloquadratum walsbyi: Life at the limits of water activity. BMC Genomics 2006, 7, 169. [Google Scholar] [CrossRef] [PubMed]
- Matin, A.; Konings, W.N. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a Pseudomonas species. Eur. J. Biochem. 1973, 34, 58–76. [Google Scholar] [CrossRef] [PubMed]
- Kreth, J.; Lengeler, J.W.; Jahreis, K. Characterization of pyruvate uptake in Escherichia coli K-12. PLoS ONE 2013, 8, e67125. [Google Scholar] [CrossRef] [PubMed]
- Jolkver, E.; Emer, D.; Ballan, S.; Krämer, R.; Eikmanns, B.J.; Marin, K. Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J. Bacteriol. 2009, 191, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Hosie, A.H.F.; Allaway, D.; Poole, P.S. A monocarboxylate permease of Rhizobium leguminosarum is the first member of a new subfamily of transporters. J. Bacteriol. 2002, 184, 5436–5448. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, G.A.; Hochstein, L.I. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 1976, 22, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, G.A.; Hochstein, L.I. Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Can. J. Microbiol. 1972, 18, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Friedemann, T.E. Determination of α-keto acids. In Methods in Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academic Press: New York, NY, USA, 1957; Volume III, pp. 414–418. [Google Scholar]
- Kodaki, T.; Murakami, H.; Taguchi, M.; Izui, K.; Katsuki, H. Stringent control of intermediary metabolism in Escherichia coli: Pyruvate excretion by cells grown on succinate. J. Biochem. 1981, 90, 1437–1444. [Google Scholar] [PubMed]
- Ruby, E.G.; Nealson, K.H. Pyruvate production and excretion by the luminous marine bacteria. Appl. Environ. Microbiol. 1977, 34, 164–169. [Google Scholar] [PubMed]
- Andreeva, R.I.; Vysotskii, E.S.; Rodicheva, E.K.; Shchbakova, G.Y. Production of pyruvic acid by the luminescent bacterium Photobacterium mandapamensis. Microbiology 1981, 50, 435–445. [Google Scholar]
- Steinbüchel, A.; Schlegel, H.G. Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly (β-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB. Appl. Microbiol. Biotechnol. 1989, 31, 168–175. [Google Scholar] [CrossRef]
- Lee, I.Y.; Kim, M.K.; Chang, H.N.; Park, Y.H. Effects of propionate on accumulation of poly (β-hydroxybutyrate-co-β-hydroxyvalerate) and excretion of pyruvate in Alcaligenes eutrophus. Biotechnol. Lett. 1994, 16, 611–616. [Google Scholar] [CrossRef]
- Payne, W.J.; Eagon, R.G.; Williams, A.K. Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie van Leeuwenhoek 1960, 27, 121–128. [Google Scholar] [CrossRef]
- Nakata, H.M. Effect of pH on intermediates produced during growth and sporulation of Bacillus cereus. J. Bacteriol. 1963, 86, 577–581. [Google Scholar] [PubMed]
- Bormann, E.-J.; Herrmann, R. Zur Pyruvat- und α-Ketoglutaratausscheidung durch Streptomyces rimosus. Arch. Mikrobiol. 1986, 63, 41–52. [Google Scholar] [CrossRef]
- Surowitz, K.G.; Pfister, R.M. Glucose metabolism and pyruvate excretion by Streptomyces alboniger. Can. J. Microbiol. 1985, 31, 702–706. [Google Scholar] [CrossRef]
- Sher, J.; Elevi, R.; Mana, L.; Oren, A. Glycerol metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol. Lett. 2004, 232, 211–215. [Google Scholar] [CrossRef]
- Elevi Bardavid, R.; Oren, A. Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Extremophiles 2008, 12, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, D.; Bauer, R.; Fricke, J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess. Biosyst. Engin. 2003, 26, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Green, S.R.; Whalen, E.A.; Molokoe, E. Dihydroxyacetone: Production and uses. J. Biochem. Microbiol. Technol. Eng. 2004, 3, 351–355. [Google Scholar] [CrossRef]
- Elevi Bardavid, R.; Khristo, P.; Oren, A. Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 2008, 12, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Life at high salt and low oxygen: How do the Halobacteriaceae cope with low oxygen concentrations in their environment? In Polyextremophiles. Life Under Multiple Forms of Stress; Seckbach, J., Oren, A., Stan-Lotter, H., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 533–548. [Google Scholar]
- Oren, A. Availability, uptake, and turnover of glycerol in hypersaline environments. FEMS Microbiol. Ecol. 1993, 12, 15–23. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oren, A. Pyruvate: A key Nutrient in Hypersaline Environments? Microorganisms 2015, 3, 407-416. https://doi.org/10.3390/microorganisms3030407
Oren A. Pyruvate: A key Nutrient in Hypersaline Environments? Microorganisms. 2015; 3(3):407-416. https://doi.org/10.3390/microorganisms3030407
Chicago/Turabian StyleOren, Aharon. 2015. "Pyruvate: A key Nutrient in Hypersaline Environments?" Microorganisms 3, no. 3: 407-416. https://doi.org/10.3390/microorganisms3030407
APA StyleOren, A. (2015). Pyruvate: A key Nutrient in Hypersaline Environments? Microorganisms, 3(3), 407-416. https://doi.org/10.3390/microorganisms3030407