Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡ †
Abstract
:1. Introduction
2. Immunity and Health
3. Performance and Metabolism
4. Conclusions
Conflicts of Interest
References
- Broadway, P.; Carroll, J.; Callaway, T. Alternative antimicrobial supplements that positively impact animal health and food safety. Agric. Food Anal. Bacteriol. 2014, 4, 109–121. [Google Scholar]
- Eicher, S.; McKee, C.; Carroll, J.; Pajor, E. Supplemental vitamin C and yeast cell wall β-glucan as growth enhancers in newborn pigs and as immunomodulators after an endotoxin challenge after weaning. J. Anim. Sci. 2006, 84, 2352–2360. [Google Scholar] [CrossRef] [PubMed]
- Collier, C.; Carroll, J.; Starkey, J.; Sparks, J. Oral administration of saccharomyces cerevisiae boulardii reduces escherichia coli endotoxin associated mortality in weaned pigs. In Proceedings of the American Society of Animal Science Southern Section Meeting, Orlando, FL, USA, 6–9 February 2010; p. 59.
- Thrune, M.; Bach, A.; Ruiz-Moreno, M.; Stern, M.; Linn, J. Effects of saccharomyces cerevisiae on ruminal PH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livest. Sci. 2009, 124, 261–265. [Google Scholar] [CrossRef]
- Burdick Sanchez, N.C.; Young, T.R.; Carroll, J.A.; Corley, J.R.; Rathmann, R.J.; Johnson, B.J. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate Immun. 2014, 20, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Braude, R.; Kon, S.K.; White, E. Yeast as a protein supplement for pigs; further observations on its rachitogenic effect. J. Comp. Pathol. Ther. 1944, 54, 88–96. [Google Scholar] [CrossRef]
- Van der Peet-Schwering, C.; Jansman, A.; Smidt, H.; Yoon, I. Effects of yeast culture on performance, gut integrity, and blood cell composition of weanling pigs. J. Anim. Sci. 2007, 85, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Karim, S. Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb. Livest. Sci. 2011, 135, 17–25. [Google Scholar] [CrossRef]
- Dawson, K. The application of yeast and yeast derivatives in the poultry industry. Proc. Aust. Poult. Sci. Symp. 2001, 13, 100–105. [Google Scholar]
- Beauchemin, K.; Kreuzer, M.; O’mara, F.; McAllister, T. Nutritional management for enteric methane abatement: A review. Anim. Prod. Sci. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Kogan, G.; Kocher, A. Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livest. Sci. 2007, 109, 161–165. [Google Scholar] [CrossRef]
- Ruiz-Herrera, J. Fungal Cell Wall: Structure, Synthesis and Assembly; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Kogan, G.; Masler, L.; Šandula, J.; Navarová, J.; Trnovec, T. Recent results on the structure and immunomodulating activities of yeast glucan. In Biomedical and Biotechnological Advances in Industrial Polysaccharides; Gordon and Breach Science Publishers: New York, NY, USA, 1989. [Google Scholar]
- Babincová, M.; Machová, E.; Kogan, G. Carboxymethylated glucan inhibits lipid peroxidation in liposomes. Z. Naturforschung C 1999, 54, 1084–1088. [Google Scholar]
- Kogan, G.; Staško, A.; Bauerová, K.; Polovka, M.; Šoltés, L.; Brezová, V.; Navarová, J.; Mihalová, D. Antioxidant properties of yeast (1→3)-β-d-glucan studied by electron paramagnetic resonance spectroscopy and its activity in the adjuvant arthritis. Carbohydr. Polym. 2005, 61, 18–28. [Google Scholar] [CrossRef]
- Khalikova, T.A.; Zhanaeva, S.Y.; Korolenko, T.A.; Kaledin, V.I.; Kogan, G. Regulation of activity of cathepsins B, L, and D in murine lymphosarcoma model at a combined treatment with cyclophosphamide and yeast polysaccharide. Cancer Lett. 2005, 223, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Majtán, J.; Kogan, G.; Kovácová, E.; Bíliková, K.; Simuth, J. Stimulation of TNF-alpha release by fungal cell wall polysaccharides. Z. Naturforschung C 2005, 60, 921–926. [Google Scholar]
- Medzhitov, R.; Janeway, C. Innate immunity. N. Engl. J. Med. 2000, 343, 338–344. [Google Scholar] [CrossRef]
- Wohlt, J.; Corcione, T.; Zajac, P. Effect of yeast on feed intake and performance of cows fed diets based on corn silage during early lactation. J. Dairy Sci. 1998, 81, 1345–1352. [Google Scholar] [CrossRef]
- Finck, D.; Ribeiro, F.; Burdick, N.; Parr, S.; Carroll, J.; Young, T.; Bernhard, B.; Corley, J.; Estefan, A.; Rathmann, R. Yeast supplementation alters the performance and health status of receiving cattle. Prof. Anim. Sci. 2014, 30, 333–341. [Google Scholar]
- Callaway, E.; Martin, S. Effects of a saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. J. Dairy Sci. 1997, 80, 2035–2044. [Google Scholar] [CrossRef]
- Brown, G.D. Dectin-1: A signalling non-tlr pattern-recognition receptor. Nat. Rev. Immunol. 2006, 6, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Gantner, B.N.; Simmons, R.M.; Canavera, S.J.; Akira, S.; Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J. Exp. Med. 2003, 197, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Bohn, J.A.; BeMiller, J.N. (1→3)-β-d-glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Polym. 1995, 28, 3–14. [Google Scholar] [CrossRef]
- Williams, D.L.; Mueller, A.; Browder, W. Glucan-based macrophage stimulators. Clin. Immunother. 1996, 5, 392–399. [Google Scholar] [CrossRef]
- Xiao, Z.; Trincado, C.A.; Murtaugh, M.P. β-glucan enhancement of t cell ifnγ response in swine. Vet. Immunol. Immunopathol. 2004, 102, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Burdick Sanchez, N.C.; Young, T.R.; Carroll, J.A.; Corley, J.R.; Rathmann, R.J.; Johnson, B.J. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate Immun. 2013, 19, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Burdick, N.C.; Randel, R.D.; Carroll, J.A.; Welsh, T.H., Jr. Interactions between temperament, stress, and immune function in cattle. Int. J. Zool. 2011, 2011. [Google Scholar] [CrossRef]
- Burdick Sanchez, N.C.; Carroll, J.A.; Broadway, P.R.; McBride, M.L.; Ortiz, X.A.; Collier, J.L.; Champman, J.D.; McLean, D.; Collier, R.J. Omnigen-af alters rectal temperature (RT) and leukocyte profiles in dairy cows exposed to heat stress (HS) following acute activation of the stress axis. In Proceeding of the Joint Annual Meeting of the American Society of Animal Science, Orlando, FL, USA; 2015. [Google Scholar]
- Duff, G.C.; Galyean, M.L. Board-invited review: Recent advances in management of highly stressed, newly received feedlot cattle. J. Anim. Sci. 2007, 85, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, D.; Jafari, A.; Beauchemin, K.; Leedle, J.; Ametaj, B. Feeding live cultures of enterococcus faecium and saccharomyces cerevisiae induces an inflammatory response in feedlot steers. J. Anim. Sci. 2007, 85, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Galvão, K.N.; Santos, J.E.; Coscioni, A.; Villaseñor, M.; Sischo, W.M.; Berge, A.C.B. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal escherichia coli. Reprod. Nutr. Dev. 2005, 45, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, V.; Susca, F.; Lima, F.; Branco, A.; Yoon, I.; Santos, J. Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. J. Dairy Sci. 2008, 91, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.T.; Newman, M.C.; Newman, K.E.; Meek, K.I. Immune parameters of dry cows fed mannan oligosaccharide and subsequent transfer of immunity to calves. J. Dairy Sci. 2005, 88, 766–775. [Google Scholar] [CrossRef]
- White, L.; Newman, M.; Cromwell, G.; Lindemann, M. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J. Anim. Sci. 2002, 80, 2619–2628. [Google Scholar] [PubMed]
- Shen, Y.; Carroll, J.; Yoon, I.; Mateo, R.; Kim, S. Effects of supplementing fermentation product in sow diets on performance of sows and nursing piglets. J. Anim. Sci. 2011, 89, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Nochta, I.; Tuboly, T.; Halas, V.; Babinszky, L. Effect of different levels of mannan-oligosaccharide supplementation on some immunological variables in weaned piglets. J. Anim. Physiol. Anim. Nutr. 2009, 93, 496–504. [Google Scholar] [CrossRef] [PubMed]
- AlZahal, O.; Dionissopoulos, L.; Laarman, A.; Walker, N.; McBride, B. Active dry saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 2014, 97, 7751–7763. [Google Scholar] [CrossRef] [PubMed]
- Mullins, C.; Mamedova, L.; Carpenter, A.; Ying, Y.; Allen, M.; Yoon, I.; Bradford, B. Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and saccharomyces cerevisiae fermentation product. J. Dairy Sci. 2013, 96, 5872–5881. [Google Scholar] [CrossRef] [PubMed]
- Van Gylswyk, N.O. Enumeration and Presumptive Identification of Some Functional Groups of Bacteria in the Rumen of Dairy Cows Fed Grass Silage-Based Diets. FEMS Microbiol. Lett. 1990, 73, 243–253. [Google Scholar] [CrossRef]
- Czarnecki-Maulden, G. Effect of dietary modulation of intestinal microbiota on reproduction and early growth. Theriogenology 2008, 70, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Ballongue, J. Bifidobacteria and probiotic action. In Lactic acid Bacteria, Microbiological and Functional Aspects; Salimen, S.V.W., Ouwehand, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 103–111. [Google Scholar]
- Bauer, E.; Williams, B.A.; Smidt, H.; Verstegen, M.W.; Mosenthin, R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr. Issues Intest. Microbiol. 2006, 7, 35–52. [Google Scholar] [PubMed]
- Chaucheyras-Durand, F.; Fonty, G. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive saccharomyces cerevisiae CNCM I-1077. Reprod. Nutr. Dev. 2001, 41, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Bäumler, A.; Tsolis, R.; Heffron, F. Fimbrial adhesins of salmonella typhimurium. In Mechanisms in the Pathogenesis of Enteric Diseases; Springer: Berlin, Germany, 1997; pp. 149–158. [Google Scholar]
- Posadas, G.; Carroll, J.A.; Corley, J.R.; Lawrence, A.; Donaldson, J.R. Yeast probiotics vary in their potential to bind to gram positive or gram negative bacteria. In Proceedings of the 2014 ADSA-ASAS-CSAS Joint Annual Meeting, Kansas City, MO, USA; 2014. [Google Scholar]
- Goldman, R.; Jaffe, C.L. Administration of β-glucan following leishmania major infection suppresses disease progression in mice. Parasite Immunol. 1991, 13, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Rouhier, P.; Kopp, M.; Begot, V.; Bruneteau, M.; Fritig, B. Structural features of fungal β-d-glucans for the efficient inhibition of the initiation of virus infection on nicotiana tabacum. Phytochemistry 1995, 39, 57–62. [Google Scholar] [CrossRef]
- Adachi, Y.; Okazaki, M.; Ohno, N.; Yadomae, T. Enhancement of cytokine production by macrophages stimulated with (1→3)-beta-d-glucan, grifolan (GRN), isolated from grifola frondosa. Biol. Pharm. Bull. 1994, 17, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Abel, G.; Czop, J.K. Stimulation of human monocyte β-glucan receptors by glucan particles induces production of TNF-α and IL-1β. Int. J. Immunopharmacol. 1992, 14, 1363–1373. [Google Scholar] [CrossRef]
- Mucksova, J.; Babíček, K.; Pospíšil, M. Particulate 1, 3-β-d-glucan, carboxymethylglucan and sulfoethylglucan—Influence of their oral or intraperitoneal administration on immunological respondence of mice. Folia Microbiol. 2001, 46, 559–563. [Google Scholar] [CrossRef]
- LeBlanc, B.W.; Albina, J.E.; Reichner, J.S. The effect of PGG-β-glucan on neutrophil chemotaxis in vivo. J. Leukoc. Biol. 2006, 79, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hyun, Y.; Sohn, K.; Kim, T.; Woo, H.; Han, I. Effects of mannanoligosaccharide and protein levels on growth performance and immune status in pigs weaned at 21 days of age. Korean J. Anim. Sci. 2000, 42, 489–498. [Google Scholar]
- Davis, M.; Maxwell, C.; Brown, D.; de Rodas, B.; Johnson, Z.; Kegley, E.; Hellwig, D.; Dvorak, R. Effect of dietary mannan oligosaccharides and (or) pharmacological additions of copper sulfate on growth performance and immunocompetence of weanling and growing/finishing pigs. J. Anim. Sci. 2002, 80, 2887–2894. [Google Scholar] [PubMed]
- Rozeboom, D.; Shaw, D.; Tempelman, R.; Miguel, J.; Pettigrew, J.; Connolly, A. Effects of mannan oligosaccharide and an antimicrobial product in nursery diets on performance of pigs reared on three different farms. J. Anim. Sci. 2005, 83, 2637–2644. [Google Scholar] [PubMed]
- Dann, H.; Drackley, J.; McCoy, G.; Hutjens, M.; Garrett, J. Effects of yeast culture (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of jersey cows. J. Dairy Sci. 2000, 83, 123–127. [Google Scholar] [CrossRef]
- Gomez-Alarcon, R.; Dudas, C.; Huber, J. Effect of aspergillus oryzae (Amaferm) and yeast on feed utilization by holstein cows. J. Dairy Sci. 1987, 70, 218. [Google Scholar]
- Harris, B., Jr.; Webb, D. The effect of feeding a concentrated yeast culture product to lactating dairy cows. J. Dairy Sci. 1990, 73. [Google Scholar]
- Kumar, U.; Sareen, V.K.; Singh, S. Effect of yeast culture supplement on ruminal microbial populations and metabolism in buffalo calves fed a high roughage diet. J. Sci. Food Agric. 1997, 73, 231–236. [Google Scholar] [CrossRef]
- Hadjipanayiotou, M.; Antoniou, I.; Photiou, A. Effects of the inclusion of yeast culture on the performance of dairy ewes and goats and the degradation of feedstuffs. Livest. Prod. Sci. 1997, 48, 129–134. [Google Scholar] [CrossRef]
- Phillips, W.A.; von Tungeln, D.L. The effect of yeast culture on the poststress performance of feeder calves. Nutr. Rep. Int. (USA) 1985, 32, 287. [Google Scholar]
- Bertin, G.; Brault, M.; Baud, M.; Mercier, M.; Tournut, J. Saccharomyces cerevisiae I-1079, microbial feed additive: Zootechnical effects on piglets. Dig. Physiol. Pigs: Proc. VIIth Int. Symp. Dig. Physiol. Pigs 1997, 88, 446–449. [Google Scholar]
- Maloney, C.; Nemechek, C.; Hancock, J.; Park, J.; Cao, H.; Hines, R. Effect of a yeast product in pelleted diets for weanling pigs. J. Anim. Sci. 1998, 76, 47. [Google Scholar]
- Baum, B.; Liebler-Tenorio, E.; Enss, M.; Pohlenz, J.; Breves, G. Saccharomyces boulardii and Bacillus cereus var. Toyoi influence the morphology and the mucins of the intestine of pigs. Z. Gastroenterol. 2002, 40, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Piao, X.; Kim, S.; Wang, L.; Liu, P.; Yoon, I.; Zhen, Y. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J. Anim. Sci. 2009, 87, 2614–2624. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.; Maxwell, C.; Kegley, B.; de Rodas, B.; Friesen, K.; Hellwig, D.; Johnson, Z.; Kellogg, D. Efficacy of mannan oligosaccharide (Bio-Mos®) addition at two levels of supplemental copper on performance and immunocompetence of early weaned pigs. Res. Ser. Ark. Agric. Exp. Station. 2000. Available online: http://www.cabdirect.org/abstracts/20001417110.html;jsessionid=638FD6D04C56FB3CBE9890A967A0D0BC (accessed on 1 May 2015).
- Sauerwein, H.; Schmitz, S.; Hiss, S. Effects of a dietary application of a yeast cell wall extract on innate and acquired immunity, on oxidative status and growth performance in weanling piglets and on the ileal epithelium in fattened pigs. J. Anim. Physiol. Anim. Nutr. 2007, 91, 369–380. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broadway, P.R.; Carroll, J.A.; Sanchez, N.C.B. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡. Microorganisms 2015, 3, 417-427. https://doi.org/10.3390/microorganisms3030417
Broadway PR, Carroll JA, Sanchez NCB. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡. Microorganisms. 2015; 3(3):417-427. https://doi.org/10.3390/microorganisms3030417
Chicago/Turabian StyleBroadway, Paul R., Jeffery A. Carroll, and Nicole C. Burdick Sanchez. 2015. "Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡" Microorganisms 3, no. 3: 417-427. https://doi.org/10.3390/microorganisms3030417