Changes in the Rhizospheric Microbiota of Pepitilla Maize in Response to Drought: Functional and Taxonomic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Native Soil Sampling
2.2. Experiment Setup and Soil Analysis
2.3. Morphological and Physiological Responses of Plants to Drought Conditions
2.4. Measurement of Biochemical Responses in Plants to Drought Conditions
2.5. Rhizospheric Soil Sampling and DNA Extraction
2.6. 16S rRNA Library Preparation and Sequencing
2.7. Data Analysis
3. Results
3.1. Soil Analysis
3.2. Vegetative Response Variables to Drought
3.3. Rhizospheric Microbiota
3.4. Functional Prediction of Bacterial Communities
4. Discussion
4.1. Soil Analysis and Vegetative Responses to Drought
4.2. Rhizosphere Microbiota
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, J.; Guo, S.; Yang, Y.; Chen, J.; Gu, L.; Wang, J.; He, S.; Wu, B.; Xiong, J. Drought projection and socioeconomic exposures based on terrestrial water storage anomalies in China. China Sci. Earth Sci. 2022, 65, 1772–1787. [Google Scholar] [CrossRef]
- International Maize and Wheat Improvement Center (CIMMYT) 2017. Available online: https://www.cimmyt.org/news/qa-a-decade-of-improved-and-climate-smart-maize-through-collaborative-research-and-innovation/ (accessed on 15 January 2026).
- Chartzoulakis, K.; Bertaki, M. Sustainable water management in agriculture under climate change. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- Santos-Ramos, M.D.L.; Romero-Rosales, T.; Bobadilla-Soto, E.E. Dynamics of maize and bean production in Mexico from 1980 to 2014. Agron. Mesoam. 2017, 28, 439–453. [Google Scholar]
- Trigo, Y.M.; Montenegro, J.L. Maize in Mexico: Biodiversity and changes in consumption. Econ. Anal. 2002, 17, 281–303. [Google Scholar]
- FAOSTAT. 2025. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 20 September 2025).
- Balconi, C.; Galaretto, A.; Malvar, R.A.; Nicolas, S.D.; Redaelli, R.; Andjelkovic, V.; Revilla, P.; Bauland, C.; Gouesnard, B.; Butron, A.; et al. Genetic and phenotypic evaluation of European maize landraces as a tool for conservation and valorization of agrobiodiversity. Biology 2024, 13, 454. [Google Scholar] [CrossRef] [PubMed]
- Cassani, E.; Puglisi, D.; Cantaluppi, E.; Landoni, M.; Giupponi, L.; Giorgi, A.; Pilu, R. Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: The “Nero Spinoso” from the Camonica Valley. Gen. Res. Crop Evol. 2016, 64, 761–773. [Google Scholar] [CrossRef]
- Landoni, M.; Puglisi, D.; Cassani, E.; Borlini, G.; Brunoldi, G.; Comaschi, C.; Pilu, R. Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins. Sci. Rep. 2020, 10, 1417. [Google Scholar] [CrossRef]
- García-Díaz, C.; Siles, J.A.; Moreno, J.L.; García, C.; Ruiz-Navarro, A.; Bastida, F. Phenological stages of wheat modulate effects of phosphorus fertilization in plant-soil microbial interactions. Plant Soil 2025, 509, 523–542. [Google Scholar] [CrossRef]
- BBCH Working Group. Growth Stages of Mono-and Dicotyledonous Plants, 2nd ed.; Meier, U., Ed.; Julius Kühn-Institut (JKI) Bundesforschungsinstitut für Kulturpflanzen: Quedlinburg, Germany, 2018. [Google Scholar]
- Oburger, E.; Schmidt, H. New Methods to Unravel Rhizosphere Processes. Trends Plant Sci. 2016, 21, 243–255. [Google Scholar] [CrossRef]
- Brisson, V.L.; Schmidt, J.E.; Northen, T.R.; Vogel, J.P.; Gaudin, A.C.M. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient-depleted agricultural soil. Sci. Rep. 2019, 9, 5611. [Google Scholar] [CrossRef]
- Wagner, M.R.; Tang, C.; Salvato, F.; Clouse, K.M.; Bartlett, A.; Vintila, S.; Phillips, L.; Sermons, S.; Hoffmann, M.; Balint-Kurti, P.J.; et al. Microbe-dependent heterosis in maize. Proc. Natl. Acad. Sci. USA 2021, 118, e20211965118. [Google Scholar] [CrossRef]
- Dou, P.T.; Cheng, Q.; Liang, N.; Bao, C.Y.; Zhang, Z.M.; Chen, L.N.; Yang, H.Q. Rhizosphere microbe affects soil available nitrogen and its implication for the ecological adaptability and rapid growth of Dendrocalamus sinicus, the strongest bamboo in the world. Int. J. Mol. Sci. 2023, 24, 14665. [Google Scholar] [CrossRef]
- Li, Y.; Hong, Y.; Chen, Y.; Zhu, N.; Jiang, S.; Yao, Z.; Zhu, M.; Ding, J.; Li, C.; Xu, W.; et al. Rhizosheath formation and its role in plant adaptation to abiotic stress. Agronomy 2024, 14, 2368. [Google Scholar] [CrossRef]
- Meena, V.S.; Meena, S.K.; Verma, J.P.; Kumar, A.; Aeron, A.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A.; Naveed, M.; Dotaniya, M.L. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrient use efficiency: A review. Ecol. Eng. 2017, 107, 8–32. [Google Scholar] [CrossRef]
- Arslan Aydoğdu, E.Ö.; Ahamada Rachid, N.; Doğruöz Güngör, N. Rhizospheric Microbiome: Biodiversity, Significance, and Prospects for Biotechnological Advancements. In Plant Microbiome and Biological Control. Sustainability in Plant and Crop Protection; Mathur, P., Roy, S., Eds.; Springer: Cham, Switzerland, 2024; Volume 20. [Google Scholar] [CrossRef]
- Jalisco Institute of Statistical and Geographic Information [IIEG]. (2023). Yahualica de González Gallo. Municipal Diagnosis. August 2023. Government of Jalisco. Available online: https://iieg.gob.mx/ns/wp-content/uploads/2023/08/Yahualica-de-Gonz%C3%A1lez-Gallo.pdf (accessed on 15 January 2026).
- Ullah, A.; Akbar, A.; Luo, Q.; Khan, A.H.; Manghwar, H.; Shaban, M.; Yang, X. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microb. Ecol. 2019, 77, 429–439. [Google Scholar] [CrossRef]
- Cortés-Patiño, S.; Vargas, C.D.; Alvarez-Flórez, F.; Estrada-Bonilla, G. Co-inoculation of plant-growth-promoting bacteria modulates physiological and biochemical responses of perennial ryegrass to water deficit. Plants 2022, 11, 2543. [Google Scholar] [CrossRef]
- Fertilab®. Results Report: Soil Fertility Diagnosis; Celaya: Guanajuato, Mexico, 2025. [Google Scholar]
- Félix-Lizárraga, J.U.; Ruiz-Torres, N.A.; Rincón-Sánchez, F.; Sánchez-Ramírez, F.J.; Borrego-Escalante, F.; Benavides Mendoza, A. Selection of corn populations based on early biomass production under saline stress conditions. Mex. J. Agric. Sci. 2023, 14, 449–458. [Google Scholar]
- Villalobos-González, A.; López-Castañeda, C.; Miranda-Colín, S.; Aguilar-Rincón, V.H.; López-Hernández, M.B. Water relations in corn’s high valleys of Central Mexico in drought conditions and nitrogen fertilization. Mex. J. Agric. Sci. 2016, 7, 1651–1665. [Google Scholar]
- Bates, L.S.; Waldren, R.P.A.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 2001, 56, 2–4. [Google Scholar] [CrossRef]
- Ewels, P.A.; Peltzer, A.; Fillinger, S.; Patel, H.; Alneberg, J.; Wilm, A.; Garcia, M.U.; Di Tommaso, P.; Nahnsen, S. The Nf-Core Framework for Community-Curated Bioinformatics Pipelines. Nat. Biotechnol. 2020, 38, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Straub, D.; Blackwell, N.; Langarica-Fuentes, A.; Peltzer, A.; Nahnsen, S.; Kleindienst, S. Interpretations of Environmental Microbial Community Studies Are Biased by the Selected 16S RRNA (Gene) Amplicon Sequencing Pipeline. Front. Microbiol. 2020, 11, 550420. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc Database of Metabolic Pathways and Enzymes—A 2019 Update. Nucleic Acids Res. 2020, 48, D445–D453. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, M.; Wani, S.P. Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol. 2016, 66, 35–42. [Google Scholar] [CrossRef]
- Outtar, S.R.; Jones, J.; Crookston, R.K.; Kajeiou, M. Effect of drought on water relations of developing maize kernels. Crop Sci. 1987, 27, 730–735. [Google Scholar] [CrossRef]
- NeSmith, D.S.; Ritchie, J.T. Maize (Zea mays L.) response to a severe soil water-deficit during grain filling. Field Crops Res. 1992, 29, 23–35. [Google Scholar] [CrossRef]
- Khayatnezhad, M.; Gholamin, R.; Jamaati-e-Somarin, S.H.; ZabihieMahmoodabad, R. The leaf chlorophyll content and stress resistance relationship considered in Corn cultivars (Zea mays). Adv. Environ. Biol. 2011, 5, 118–122. [Google Scholar]
- Gholamin, R.; Khayatnezhad, M. Assessment of the correlation between chlorophyll content and drought resistance in corn cultivars (Zea mays). Helix-Sci. Explor.|Peer Rev. Bimon. Int. J. 2020, 10, 93–97. [Google Scholar] [CrossRef]
- Ahmad, N.; Malagoli, M.; Wirtz, M.; Hell, R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol. 2016, 16, 247. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Coleman-Derr, D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 2019, 49, 1–6. [Google Scholar] [CrossRef]
- Hünninghaus, M.; Dibbern, D.; Kramer, S.; Koller, R.; Pausch, J.; Schloter-Hai, B.; Urich, T.; Kandeler, E.; Bonkowski, M.; Lueders, T. Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biol. Biochem. 2019, 134, 122–130. [Google Scholar] [CrossRef]
- Khan, P.; Abdelbacki, A.M.; Albaqami, M.; Jan, R.; Kim, K.M. Proline promotes drought tolerance in maize. Biology 2025, 14, 41. [Google Scholar] [CrossRef]
- Tiwari, Y.K. Proline as a key player in heat stress tolerance: Insights from maize. Discov. Agric. 2024, 2, 121. [Google Scholar] [CrossRef]
- Herrera Flores, T.S.; Ortíz Cereceres, J.; Delgado Alvarado, A.; Acosta Galleros, J.A. Growth, proline and carbohydrate content of bean seedlings subjected to drought stress. Mex. J. Agric. Sci. 2012, 3, 713–725. [Google Scholar]
- Pelleschi, S.; Rocher, J.P.; Prioul, J.L. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ. 1997, 20, 493–503. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Khan, M.A.R. Understanding the roles of osmolytes for acclimatizing plants to changing environment: A review of potential mechanisms. Plant Signal. Behav. 2021, 16, 1913306. [Google Scholar] [CrossRef]
- DaCosta, M.; Huang, B. Osmotic adjustment associated with variation in bentgrass tolerance to drought stress. J. Am. Soc. Hortic. Sci. 2006, 131, 338–344. [Google Scholar] [CrossRef]
- Pamungkas, S.S.T.; Farid, N. Drought stress: Responses and mechanisms in plants. Rev. Agric. Sci. 2022, 10, 168–185. [Google Scholar] [CrossRef] [PubMed]
- Caisabanda Tyshkovskyi, A. Determination of the Bacterial Composition of Soil and Its Relationship with Induced Drought in the Páramo of Antisana Volcano, Ecuador; Central University of Ecuador: Quito, Ecuador, 2023; 60p. [Google Scholar]
- Peiffer, J.A.; Ley, R.E. Exploring the maize rhizosphere microbiome in the field: A glimpse into a highly complex system. Commun. Integr. Biol. 2013, 6, e25177. [Google Scholar] [CrossRef]
- Cheng, Z.; Lei, S.; Li, Y.; Huang, W.; Ma, R.; Xiong, J.; Zhang, T.; Jin, L.; Ul Haq, H.; Xu, X.; et al. Revealing the variation and stability of bacterial communities in tomato rhizosphere microbiota. Microorganisms 2020, 8, 170. [Google Scholar] [CrossRef]
- Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; González-Peña, A.; Peiffer, J.; Koren, O.; Shi, Q.; et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 2018, 115, 7368–7373. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Hernandez, E.; Arellano-Wattenbarger, G.L.; Coronado, Y.I.; de la Torre, M.; Rocha, J.; Aguirre-von-Wobeser, E. Drought induces substitution of bacteria within taxonomic groups in the rhizosphere of native maize from arid and tropical regions. Rhizosphere 2024, 29, 100835. [Google Scholar] [CrossRef]
- Aguirre-von-Wobeser, E.; Rocha-Estrada, J.; Shapiro, L.R.; De La Torre, M. Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS ONE 2018, 13, e0208852. [Google Scholar] [CrossRef]
- Vásquez-Arroyo, J.; López-Astudillo, M.; Delgado-Castro, Y.; Morales-Martínez, E.M.; Blanco-Contreras, E.; Zapata-Sifuentes, G.; Cabrera-Rodríguez, A.; Guillén-Enríquez, R.R.; Moreno-Reséndez, A.; García-de la Peña, C. Rhizospheric Bacterial Microbiome in Native Grain Maize: Impact on Yield Under Agroecological Transition. Terra Latinoam. 2023, 41, 1–13. [Google Scholar]
- López Astudillo, M. Bacterial rhizosphere microbiome of three native maize (Zea mays L.) races and its impact on yield in the El Retiro experimental field in Coahuila de Zaragoza, Mexico. Undergraduate Thesis, Antonio Narro Autonomous Agrarian University, Saltillo, Mexico, 2003. [Google Scholar]
- Zhao, S.; Liu, J.J.; Banerjee, S.; Zhou, N.; Zhao, Z.Y.; Zhang, K.; Hu, M.F.; Tian, C.Y. Biogeographical distribution of bacterial communities in saline agricultural soil. Geoderma 2020, 361, 114095. [Google Scholar] [CrossRef]
- Ren, C.; Chen, J.; Lu, X.; Doughty, R.; Zhao, F.; Zhong, Z.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biol. Biochem. 2018, 116, 4–10. [Google Scholar] [CrossRef]
- Khan, A.L.; Halo, B.A.; Elyassi, A.; Ali, S.; Al-Hosni, K.; Hussain, J.; Al-Harrasi, A.; Lee, I.J. Indole acetic acid and ACC deaminase from endophytic bacteria improve the growth of Solanum lycopersicum. Electron. J. Biotechnol. 2016, 21, 58–64. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Liu, Y.; Tang, X.; Li, Y.; Sun, T.; Yan, G.; Yin, C. Drought stress increases the complexity of the bacterial network in the rhizosphere and endosphere of rice (Oryza sativa L.). Agronomy 2024, 14, 1662. [Google Scholar] [CrossRef]
- Persson, T.; Huss-Danell, K. Physiology of actinorhizal nodules. In Prokaryotic Symbionts in Plants. Microbiology Monographs; Pawlowski, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 8, pp. 155–187. [Google Scholar] [CrossRef]
- Weilharter, A.; Mitter, B.; Shin, M.V.; Chain, P.S.; Nowak, J.; Sessitsch, A. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J. Bacteriol. 2011, 193, 3383–3384. [Google Scholar] [CrossRef]
- Ikeda, S.; Okazaki, K.; Takahashi, H.; Tsurumaru, H.; Minamisawa, K. Seasonal shifts in bacterial community structures in the lateral root of sugar beet grown in an andosol field in Japan. Microbes Environ. 2023, 38, ME22071. [Google Scholar] [CrossRef]
- Berry, A.M.; Barabote, R.D.; Normand, P. The family Acidothermaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–19. [Google Scholar]
- García-Fraile, P.; Benada, O.; Cajthaml, T.; Baldrian, P.; Lladó, S. Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl. Environ. Microbiol. 2016, 82, 560–569. [Google Scholar] [CrossRef]
- Dethier, L.; Jespersen, J.R.P.; Lloyd, J.; Pupi, E.; Li, R.; Zhou, W.; Liu, F.; Bai, Y.; Halkier, B.A.; Xu, D. Isolation of a Novel Plant Growth-Promoting Dyella sp. From a Danish Natural Soil. Environ. Microbiol. Rep. 2025, 17, e70186. [Google Scholar] [CrossRef]
- Muñoz Espinoza, V.A. Water Stress Signaling in Roots of Tomato Mutants Deficient in JA and ABA. Doctoral Dissertation, Universitat Jaume I, Castellón de la Plana, Spain, 2014. [Google Scholar]
- Daszkowska-Golec, A. The role of abscisic acid in drought stress: How ABA helps plants cope with drought stress. In Drought Stress Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives; Springer International Publishing: Cham, Switzerland, 2016; pp. 123–151. [Google Scholar]





| Treatments | Condition | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BD | DD | AD | ||||||||||||||||
| RB | LA | CP | RWC | PR | SS | RB | LA | CP | RWC | PR | SS | RB | LA | CP | RWC | PR | SS | |
| Irrigated control | 1.43 a | 391.24 a | 31.93 a | 56.23 a | 0.048 a | 9.5 a | 2.1 a | 406.11 a | 29.32 a | 67.46 a | 0.141 b | 9.62 b | 3.79 a | 403.11 a | 31 a | 53.43 a | 0.055 b | 12.37 a |
| Drought for 3 days | 2.4 a | 387.78 a | 32.06 a | 57.60 a | 0.044 a | 9.12 a | 2.72 a | 365.8 a | 30.67 a | 67.18 a | 0.167 b | 10 b | 3.75 a | 393.21 a | 27.67 a | 54.31 a | 0.045 b | 10.87 b |
| Drought for 5 days | 2.7 a | 384.32 a | 32.66 a | 57.50 a | 0.041 a | 9.12 a | 3.54 a | 353.91 ab | 24.26 ab | 55.88 b | 0.233 b | 10.87 b | 2.75 a | 308.37 b | 15.48 b | 51.04 a | 0.217 a | 11.12 b |
| Drought for 8 days | 2.97 a | 386.16 a | 32 a | 56.08 a | 0.045 a | 9.87 a | 1.95 a | 265.31 c | 20 b | 41.40 c | 0.469 a | 12.5 a | 4.83 a | 252.39 c | 11.22 b | 53.45 a | 0.183 a | 10.62 b |
| p < 0.05 | 0.33 | 0.77 | 0.79 | 0.92 | 0.88 | 0.40 | 0.26 | 0.001 | 0.003 | 0.001 | 0.001 | 0.006 | 0.37 | 0.001 | 0.001 | 0.68 | 0.001 | 0.007 |
| PHYLUM | BEFORE DROUGHT | DURING DROUGHT | AFTER DROUGHT | ALL CONDITIONS | BEF vs. DUR | BEF vs. AFT | DUR vs. AFT |
| Relative abundance (%) | p value (p ≤ 0.05) | ||||||
| Gemmatimonadota | 0.2 | 0.2 | 0.7 | 0.072 | 1.000 | 0.083 | 0.046 |
| Pseudomonadota | 16.1 | 14.1 | 28.8 | 0.068 | 0.374 | 0.083 | 0.050 |
| FAMILY | BEFORE DROUGHT | DURING DROUGHT | AFTER DROUGHT | ALL CONDITIONS | BEF vs. DUR | BEF vs. AFT | DUR vs. AFT |
| Relative abundance (%) | p value (p ≤ 0.05) | ||||||
| Chitinophagaceae | 0.1 | 0 | 0.1 | 0.192 | 0.046 | 0.543 | 0.317 |
| Gemmatimonadaceae | 0.2 | 0.2 | 0.7 | 0.072 | 0.543 | 0.083 | 0.050 |
| Unclassified_Frankiales | 0.4 | 0.3 | 0 | 0.069 | 0.767 | 0.053 | 0.037 |
| Burkholderiaceae | 1.4 | 0.5 | 2.4 | 0.060 | 0.076 | 0.248 | 0.046 |
| Rhodanobacteraceae | 2.8 | 0.6 | 6.3 | 0.077 | 0.083 | 0.564 | 0.050 |
| Acidothermaceae | 3.1 | 5 | 1.7 | 0.062 | 0.083 | 0.248 | 0.050 |
| GENUS | BEFORE DROUGHT | DURING DROUGHT | AFTER DROUGHT | ALL CONDITIONS | BEF vs. DUR | BEF vs. AFT | DUR vs. AFT |
| Relative abundance (%) | p value (p ≤ 0.05) | ||||||
| Acidothermus | 3.1 | 5 | 1.7 | 0.062 | 0.083 | 0.248 | 0.050 |
| Burkholderia_Caballeronia_Paraburkholderia | 0.9 | 0.2 | 1.4 | 0.041 | 0.076 | 0.076 | 0.043 |
| Crossiella | 0.1 | 0.2 | 0 | 0.065 | 0.197 | 0.128 | 0.043 |
| Dyella | 0.9 | 0.1 | 2.8 | 0.066 | 0.076 | 0.374 | 0.046 |
| Granulicella | 0.2 | 0 | 0.2 | 0.066 | 0.053 | 0.761 | 0.034 |
| Streptacidiphilus | 0.9 | 0 | 0 | 0.032 | 0.053 | 0.053 | 1.000 |
| Terracidiphilus | 0 | 0.1 | 0.6 | 0.070 | 0.543 | 0.076 | 0.046 |
| Unclassified_Chitinophagaceae | 0.1 | 0 | 0.1 | 0.192 | 0.046 | 0.543 | 0.317 |
| Unclassified_Frankiales | 0.4 | 0.3 | 0 | 0.069 | 0.767 | 0.053 | 0.037 |
| Unclassified_Gemmatimonadaceae | 0.1 | 0.2 | 0.6 | 0.078 | 0.767 | 0.083 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zacamo-Velázquez, R.; Gómez-Godínez, L.J.; Ramírez-Vega, H.; Gómez-Rodríguez, V.M.; Cruz-Cárdenas, C.I.; Ruvalcaba-Gómez, J.M.; Valdez-Alarcón, J.J.; Arteaga-Garibay, R.I. Changes in the Rhizospheric Microbiota of Pepitilla Maize in Response to Drought: Functional and Taxonomic Analysis. Microorganisms 2026, 14, 291. https://doi.org/10.3390/microorganisms14020291
Zacamo-Velázquez R, Gómez-Godínez LJ, Ramírez-Vega H, Gómez-Rodríguez VM, Cruz-Cárdenas CI, Ruvalcaba-Gómez JM, Valdez-Alarcón JJ, Arteaga-Garibay RI. Changes in the Rhizospheric Microbiota of Pepitilla Maize in Response to Drought: Functional and Taxonomic Analysis. Microorganisms. 2026; 14(2):291. https://doi.org/10.3390/microorganisms14020291
Chicago/Turabian StyleZacamo-Velázquez, Ricardo, Lorena Jacqueline Gómez-Godínez, Humberto Ramírez-Vega, Víctor Manuel Gómez-Rodríguez, Carlos Iván Cruz-Cárdenas, José Martin Ruvalcaba-Gómez, Juan José Valdez-Alarcón, and Ramón Ignacio Arteaga-Garibay. 2026. "Changes in the Rhizospheric Microbiota of Pepitilla Maize in Response to Drought: Functional and Taxonomic Analysis" Microorganisms 14, no. 2: 291. https://doi.org/10.3390/microorganisms14020291
APA StyleZacamo-Velázquez, R., Gómez-Godínez, L. J., Ramírez-Vega, H., Gómez-Rodríguez, V. M., Cruz-Cárdenas, C. I., Ruvalcaba-Gómez, J. M., Valdez-Alarcón, J. J., & Arteaga-Garibay, R. I. (2026). Changes in the Rhizospheric Microbiota of Pepitilla Maize in Response to Drought: Functional and Taxonomic Analysis. Microorganisms, 14(2), 291. https://doi.org/10.3390/microorganisms14020291

