A One-Year Wastewater-Based Surveillance Study of the Main Human Respiratory Viruses in a Middle-Size Spanish City During the COVID-19 Pandemic Period
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Collection and Sampling Areas
2.2. Viral Concentration Method and Nucleic Acid Extraction
2.3. Respiratory Virus Quantification by RT-qPCR
2.4. Data Validation, Normalization, and Statistical Analysis
3. Results
3.1. One-Year Evolution of SARS-CoV-2 and Comparative Analysis of N1 and N2 Gene Targets
3.2. One-Year Evolution of SARS-CoV-2 by Area
3.3. Clinical Cases and SARS-CoV-2 Correlation
3.4. Evolution of Other Respiratory Viruses Studied
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, A. 11 Global Health Issues to Watch in 2023, According to IHME Experts. IHME. Available online: https://www.healthdata.org/news-events/insights-blog/acting-data/11-global-health-issues-watch-2023-according-ihme-experts (accessed on 1 June 2025).
- Kyu, H.H.; Vongpradith, A.; Sirota, S.B.; Novotney, A.; Troeger, C.E.; Doxey, M.C.; Bender, R.G.; Ledesma, J.R.; Biehl, M.H.; Albertson, S.B.; et al. Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: Results from the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2022, 22, 1626–1647. [Google Scholar] [CrossRef] [PubMed]
- Bender, R.G.; Sirota, S.B.; Swetschinski, L.R.; Dominguez, R.-M.V.; Novotney, A.; Wool, E.E.; Ikuta, K.S.; Vongpradith, A.; Rogowski, E.L.B.; Doxey, M.; et al. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect. Dis. 2024, 24, 974–1002. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Mahmoodpoor, A.; Kolahi, A.-A.; Nejadghaderi, S.A.; Sullman, M.J.M.; Mansournia, M.A.; Ansarin, K.; Collins, G.S.; Kaufman, J.S.; Abdollahi, M. Global burden of lower respiratory infections during the last three decades. Front. Public Health 2023, 10, 1028525. [Google Scholar] [CrossRef]
- Paul, J.R.; Trask, J.D.; Culotta, C.S. Poliomyelitic Virus in Sewage. Science 1939, 90, 258–259. [Google Scholar] [CrossRef]
- Ali, W.; Zhang, H.; Wang, Z.; Chang, C.; Javed, A.; Ali, K.; Du, W.; Niazi, N.K.; Mao, K.; Yang, Z. Occurrence of various viruses and recent evidence of SARS-CoV-2 in wastewater systems. J. Hazard. Mater. 2021, 414, 125439. [Google Scholar] [CrossRef]
- Cuevas-Ferrando, E.; Pérez-Cataluña, A.; Falcó, I.; Randazzo, W.; Sánchez, G. Monitoring Human Viral Pathogens Reveals Potential Hazard for Treated Wastewater Discharge or Reuse. Front. Microbiol. 2022, 13, 836193. [Google Scholar] [CrossRef]
- Kilaru, P.; Hill, D.; Anderson, K.; Collins, M.B.; Green, H.; Kmush, B.L.; Larsen, D.A. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am. J. Epidemiol. 2023, 192, 305–322. [Google Scholar] [CrossRef]
- Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-based epidemiology for COVID-19—Approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404. [Google Scholar] [CrossRef]
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833.e3. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020, 739, 139076. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef] [PubMed]
- Staadegaard, L.; Caini, S.; Wangchuk, S.; Thapa, B.; De Almeida, W.A.F.; De Carvalho, F.C.; Njouom, R.; Fasce, R.A.; Bustos, P.; Kyncl, J.; et al. The Global Epidemiology of RSV in Community and Hospitalized Care: Findings From 15 Countries. Open Forum Infect. Dis. 2021, 8, ofab159. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.; Duong, D.; White, B.J.; Wigginton, K.R.; Chan, E.M.G.; Wolfe, M.K.; Boehm, A.B. Respiratory Syncytial Virus (RSV) RNA in Wastewater Settled Solids Reflects RSV Clinical Positivity Rates. Environ. Sci. Technol. Lett. 2022, 9, 173–178. [Google Scholar] [CrossRef]
- Mercier, E.; D’Aoust, P.M.; Thakali, O.; Hegazy, N.; Jia, J.-J.; Zhang, Z.; Eid, W.; Plaza-Diaz, J.; Kabir, M.P.; Fang, W.; et al. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci. Rep. 2022, 12, 15777. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Duong, D.; Bakker, K.M.; Ammerman, M.; Mortenson, L.; Hughes, B.; Arts, P.; Lauring, A.S.; Fitzsimmons, W.J.; Bendall, E.; et al. Wastewater-Based Detection of Two Influenza Outbreaks. Environ. Sci. Technol. Lett. 2022, 9, 687–692. [Google Scholar] [CrossRef]
- Girón-Guzmán, I.; Cuevas-Ferrando, E.; Barranquero, R.; Díaz-Reolid, A.; Puchades-Colera, P.; Falcó, I.; Pérez-Cataluña, A.; Sánchez, G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. Water Res. 2024, 255, 121463. [Google Scholar] [CrossRef]
- Brañas, P.; Muñoz-Gallego, I.; Espartosa, E.; Moral, N.; Abellán, G.; Folgueira, L. Dynamics of respiratory viruses other than SARS-CoV-2 during the COVID-19 pandemic in Madrid, Spain. Influenza Resp. Viruses 2023, 17, e13199. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- CDC. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://www.fda.gov/media/134922/download (accessed on 10 January 2025).
- Sanghavi, S.K.; Bullotta, A.; Husain, S.; Rinaldo, C.R. Clinical evaluation of multiplex real-time PCR panels for rapid detection of respiratory viral infections. J. Med. Virol. 2012, 84, 162–169. [Google Scholar] [CrossRef]
- de-Paris, F.; Beck, C.; Machado, A.B.M.P.; Paiva, R.M.; Da Silva Menezes, D.; De Souza Nunes, L.; Kuchenbecker, R.; Barth, A.L. Optimization of one-step duplex real-time RT-PCR for detection of influenza and respiratory syncytial virus in nasopharyngeal aspirates. J. Virol. Methods 2012, 186, 189–192. [Google Scholar] [CrossRef]
- Gunson, R.; Collins, T.; Carman, W. Practical experience of high throughput real time PCR in the routine diagnostic virology setting. J. Clin. Virol. 2006, 35, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Foladori, P.; Cutrupi, F.; Cadonna, M.; Postinghel, M. Normalization of viral loads in Wastewater-Based Epidemiology using routine parameters: One year monitoring of SARS-CoV-2 in urban and tourist sewersheds. J. Hazard. Mater. 2024, 478, 135352. [Google Scholar] [CrossRef]
- Daughton, C.G. Real-time estimation of small-area populations with human biomarkers in sewage. Sci. Total Environ. 2012, 414, 6–21. [Google Scholar] [CrossRef] [PubMed]
- CDC. Wastewater Surveillance Testing Methods. Available online: https://archive.cdc.gov/www_cdc_gov/nwss/testing.html (accessed on 10 November 2023).
- Junta de Castilla y León. Coronavirus (COVID-19) Epidemiological Situation in Castilla y León. 2023. Available online: https://analisis.datosabiertos.jcyl.es/explore/dataset/situacion-epidemiologica-coronavirus-en-castilla-y-leon/export/?disjunctive.provincia&sort=fecha&refine.provincia=Valladolid (accessed on 28 December 2023).
- Trigo-Tasende, N.; Vallejo, J.A.; Rumbo-Feal, S.; Conde-Pérez, K.; Vaamonde, M.; López-Oriona, Á.; Barbeito, I.; Nasser-Ali, M.; Reif, R.; Rodiño-Janeiro, B.K.; et al. Wastewater early warning system for SARS-CoV-2 outbreaks and variants in a Coruña, Spain. Environ. Sci. Pollut. Res. 2023, 30, 79315–79334. [Google Scholar] [CrossRef]
- Casado-Martín, L.; Hernández, M.; Yeramian, N.; Pérez, D.; Eiros, J.M.; Valero, A.; Rodríguez-Lázaro, D. The Impact of the Variability of RT-qPCR Standard Curves on Reliable Viral Detection in Wastewater Surveillance. Microorganisms 2025, 13, 776. [Google Scholar] [CrossRef]
- Mattei, M.; Pintó, R.M.; Guix, S.; Bosch, A.; Arenas, A. Analysis of SARS-CoV-2 in wastewater for prevalence estimation and investigating clinical diagnostic test biases. Water Res. 2023, 242, 120223. [Google Scholar] [CrossRef]
- López-Peñalver, R.S.; Cañas-Cañas, R.; Casaña-Mohedo, J.; Benavent-Cervera, J.V.; Fernández-Garrido, J.; Juárez-Vela, R.; Pellín-Carcelén, A.; Gea-Caballero, V.; Andreu-Fernández, V. Predictive potential of SARS-CoV-2 RNA concentration in wastewater to assess the dynamics of COVID-19 clinical outcomes and infections. Sci. Total Environ. 2023, 886, 163935, Erratum in Sci. Total Environ. 2024, 951, 175405. [Google Scholar] [CrossRef]
- O’Keeffe, J. Wastewater-based epidemiology: Current uses and future opportunities as a public health surveillance tool. Environ. Health Rev. 2021, 64, 44–52. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef] [PubMed]
- D’Aoust, P.M.; Graber, T.E.; Mercier, E.; Montpetit, D.; Alexandrov, I.; Neault, N.; Baig, A.T.; Mayne, J.; Zhang, X.; Alain, T.; et al. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Sci. Total Environ. 2021, 770, 145319. [Google Scholar] [CrossRef] [PubMed]
- Carlos III Health Institute; National Center of Epidemiology (CIBERESP). Acute Respiratory Infection Surveillance Report in Spain. Season 20_21; 2021. Available online: https://www.isciii.es/w/la-vigilancia-integral-de-gripe-vrs-y-covid-19-revela-el-comportamiento-de-las-infecciones-respiratorias-agudas-en-la-temporada-2021-2022-1 (accessed on 7 June 2022).
- Carlos III Health Institute. Circulation of Respiratory Syncytial Virus in Spain in the 2020–21 Season Report. 2021. Available online: https://cne.isciii.es/documents/d/cne/informe-20de-20situaci-c3-b3n-20sobre-20la-20circulaci-c3-b3n-20de-20vrs_20enero2021-pdf (accessed on 10 January 2025).
- Feng, L.; Zhang, T.; Wang, Q.; Xie, Y.; Peng, Z.; Zheng, J.; Qin, Y.; Zhang, M.; Lai, S.; Wang, D.; et al. Impact of COVID-19 outbreaks and interventions on influenza in China and the United States. Nat. Commun. 2021, 12, 3249. [Google Scholar] [CrossRef]
- Ando, H.; Ahmed, W.; Iwamoto, R.; Ando, Y.; Okabe, S.; Kitajima, M. Impact of the COVID-19 pandemic on the prevalence of influenza A and respiratory syncytial viruses elucidated by wastewater-based epidemiology. Sci. Total Environ. 2023, 880, 162694. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Jarvis, H.; Fraser, C.; Openshaw, P.J. Respiratory Syncytial Virus. In SARS, MERS and Other Viral Lung Infections; Hui, D.S., Rossi, G.A., Johnston, S.L., Eds.; Wellcome Trust–Funded Monographs and Book Chapters; European Respiratory Society: Sheffield, UK, 2016; ISBN 978-1-84984-070-5. Available online: http://www.ncbi.nlm.nih.gov/books/NBK442240/ (accessed on 23 January 2025).
- Billard, M.; Van De Ven, P.M.; Baraldi, B.; Kragten-Tabatabaie, L.; Bont, L.J.; Wildenbeest, J.G. International changes in respiratory syncytial virus (RSV) epidemiology during the COVID-19 pandemic: Association with school closures. Influenza Resp. Viruses 2022, 16, 926–936. [Google Scholar] [CrossRef]
- Bardsley, M.; Morbey, R.A.; Hughes, H.E.; Beck, C.R.; Watson, C.H.; Zhao, H.; Ellis, J.; Smith, G.E.; Elliot, A.J. Epidemiology of respiratory syncytial virus in children younger than 5 years in England during the COVID-19 pandemic, measured by laboratory, clinical, and syndromic surveillance: A retrospective observational study. Lancet Infect. Dis. 2023, 23, 56–66. [Google Scholar] [CrossRef]
- Constantopoulos, A.; Kafetzis, D.; Syrogiannopoulos, G.; Roilides, E.; Malaka-Zafiriu, E.; Sbyrakis, S.; Marcopoulos, M. Burden of Respiratory Syncytial Viral Infections on Paediatric Hospitals: A Two-Year Prospective Epidemiological Study. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 102–107. [Google Scholar] [CrossRef]
- Burn, C.C.; Dennison, T.L.; Whay, H.R. Environmental and demographic risk factors for poor welfare in working horses, donkeys and mules in developing countries. Vet. J. 2010, 186, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, M.; Frati, E.R.; Zappa, A.; Ebranati, E.; Bianchi, S.; Pariani, E.; Amendola, A.; Zehender, G.; Tanzi, E. Phylogeny and population dynamics of respiratory syncytial virus (Rsv) A and B. Virus Res. 2014, 189, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.J.; Winn, A.K.; Budd, A.P.; Prill, M.M.; Steel, J.; Midgley, C.M.; Kniss, K.; Burns, E.; Rowe, T.; Foust, A.; et al. Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic—United States, 2020–2021. MMWR Morb Mortal Wkly Rep. 2021, 70, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Maintaining Surveillance of Influenza and Monitoring SARS-CoV-2—Adapting Global Influenza Surveillance and Response System (GISRS) and Sentinel Systems During the COVID-19 Pandemic. WHO/2019-nCoV/Adapting_GISRS/2020.1, Nov. 2020. Available online: https://www.who.int/publications/i/item/maintaining-surveillance-of-influenza-and-monitoring-sars-cov-2-adapting-global-influenza-surveillance-and-response-system-(gisrs)-and-sentinel-systems-during-the-covid-19-pandemic (accessed on 10 January 2025).





| Area | Inhabitants |
|---|---|
| Valladolid | 350,000 |
| Zaratan | 6400 |
| Simancas | 5500 |
| Argales | 40,000 |
| Laguna | 22,700 |
| Pisuerga | 80,000 |
| N1 | N2 | |
|---|---|---|
| Mean | 4.79 | 4.64 |
| St. Error | 0.07 | 0.07 |
| Min | 3.14 | 2.98 |
| Max | 6.80 | 7.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Casado-Martín, L.; Hernández, M.; González-Peña, M.J.; Alves-Elois, M.; Yeramian, N.; Fongaro, G.; Eiros, J.M.; Rodríguez-Lázaro, D. A One-Year Wastewater-Based Surveillance Study of the Main Human Respiratory Viruses in a Middle-Size Spanish City During the COVID-19 Pandemic Period. Microorganisms 2026, 14, 151. https://doi.org/10.3390/microorganisms14010151
Casado-Martín L, Hernández M, González-Peña MJ, Alves-Elois M, Yeramian N, Fongaro G, Eiros JM, Rodríguez-Lázaro D. A One-Year Wastewater-Based Surveillance Study of the Main Human Respiratory Viruses in a Middle-Size Spanish City During the COVID-19 Pandemic Period. Microorganisms. 2026; 14(1):151. https://doi.org/10.3390/microorganisms14010151
Chicago/Turabian StyleCasado-Martín, Lorena, Marta Hernández, María José González-Peña, Mariana Alves-Elois, Nadine Yeramian, Gislaine Fongaro, José María Eiros, and David Rodríguez-Lázaro. 2026. "A One-Year Wastewater-Based Surveillance Study of the Main Human Respiratory Viruses in a Middle-Size Spanish City During the COVID-19 Pandemic Period" Microorganisms 14, no. 1: 151. https://doi.org/10.3390/microorganisms14010151
APA StyleCasado-Martín, L., Hernández, M., González-Peña, M. J., Alves-Elois, M., Yeramian, N., Fongaro, G., Eiros, J. M., & Rodríguez-Lázaro, D. (2026). A One-Year Wastewater-Based Surveillance Study of the Main Human Respiratory Viruses in a Middle-Size Spanish City During the COVID-19 Pandemic Period. Microorganisms, 14(1), 151. https://doi.org/10.3390/microorganisms14010151

