Virulence Regulation in Borrelia burgdorferi
Abstract
1. Introduction
2. Borrelia burgdorferi: The Causative Agent of Lyme Disease
2.1. The Enzootic Lifecycle
2.2. Genome Organization
3. Environmental Sensing by Two-Component Systems
3.1. HK1-Rrp1
3.2. HK2-Rrp2
4. Regulators of Gene Expression
4.1. RpoS, the Central Alternative Sigma Factor
4.1.1. Activation of rpoS Expression
4.1.2. Repression of rpoS Expression
4.2. SpoVG
4.3. BpuR, BpaB, and EbfC
4.4. The Stringent Response
4.5. Small Regulatory RNAs
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burgdorfer, W.; Barbour, A.G.; Hayes, S.F.; Benach, J.L.; Grunwaldt, E.; Davis, J.P. Lyme disease—A tick-borne spirochetosis? Science 1982, 216, 1317–1319. [Google Scholar] [CrossRef]
- Fraser, C.M.; Casjens, S.; Huang, W.M.; Sutton, G.G.; Clayton, R.; Lathigra, R.; White, O.; Ketchum, K.A.; Dodson, R.; Hickey, E.K. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997, 390, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Anguita, J.; Hedrick, M.N.; Fikrig, E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol. Rev. 2003, 27, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, C.; Lynn, G.E.; Pedra, J.H.; Pal, U.; Narasimhan, S.; Fikrig, E. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 2020, 18, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Helble, J.D.; McCarthy, J.E.; Hu, L.T. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol. 2021, 43, e12816. [Google Scholar] [CrossRef]
- Samuels, D.S. Gene regulation in Borrelia burgdorferi. Annu. Rev. Microbiol. 2011, 65, 479–499. [Google Scholar] [CrossRef]
- Nowak, T.A.; Burke, R.L.; Diuk-Wasser, M.A.; Lin, Y.P. Lizards and the enzootic cycle of Borrelia burgdorferi sensu lato. Mol. Microbiol. 2024, 121, 1262–1272. [Google Scholar] [CrossRef]
- Swanson, K.I.; Norris, D.E. Detection of Borrelia burgdorferi DNA in lizards from southern Maryland. Vector-Borne Zoonotic Dis. 2007, 7, 42–49. [Google Scholar] [CrossRef]
- Anderson, J.F.; Johnson, R.; Magnarelli, L.; Hyde, F. Involvement of birds in the epidemiology of the Lyme disease agent Borrelia burgdorferi. Infect. Immun. 1986, 51, 394–396. [Google Scholar] [CrossRef]
- Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef]
- Cumbie, A.N.; Heller, E.L.; Bement, Z.J.; Phan, A.; Walters, E.L.; Hynes, W.L.; Gaff, H.D. Passerine birds as hosts for Ixodes ticks infected with Borrelia burgdorferi sensu stricto in southeastern Virginia. Ticks Tick-Borne Dis. 2021, 12, 101650. [Google Scholar] [CrossRef]
- Halsey, S.J.; Allan, B.F.; Miller, J.R. The role of Ixodes scapularis, Borrelia burgdorferi and wildlife hosts in Lyme disease prevalence: A quantitative review. Ticks Tick-Borne Dis. 2018, 9, 1103–1114. [Google Scholar] [CrossRef]
- des Vignes, F.; Piesman, J.; Heffernan, R.; Schulze, T.L.; Stafford III, K.C.; Fish, D. Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. J. Infect. Dis. 2001, 183, 773–778. [Google Scholar] [CrossRef]
- Hojgaard, A.; Eisen, R.J.; Piesman, J. Transmission dynamics of Borrelia burgdorferi ss during the key third day of feeding by nymphal Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2008, 45, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Akins, D.R.; Bourell, K.W.; Caimano, M.J.; Norgard, M.V.; Radolf, J.D. A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J. Clin. Investig. 1998, 101, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Samuels, D.S.; Lybecker, M.C.; Yang, X.F.; Ouyang, Z.; Bourret, T.J.; Boyle, W.K.; Stevenson, B.; Drecktrah, D.; Caimano, M.J. Gene Regulation and Transcriptomics. Curr. Issues Mol. Biol. 2021, 42, 223–266. [Google Scholar] [CrossRef]
- Stevenson, B.; Seshu, J. Regulation of gene and protein expression in the Lyme disease spirochete. Spirochete Biol. Post Genom. Era 2017, 415, 83–112. [Google Scholar]
- Tilly, K.; Casjens, S.; Stevenson, B.; Bono, J.L.; Samuels, D.S.; Hogan, D.; Rosa, P. The Borrelia burgdorferi circular plasmid cp26: Conservation of plasmid structure and targeted inactivation of the ospC gene. Mol. Microbiol. 1997, 25, 361–373. [Google Scholar] [CrossRef]
- Terekhova, D.; Iyer, R.; Wormser, G.P.; Schwartz, I. Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J. Bacteriol. 2006, 188, 6124–6134. [Google Scholar] [CrossRef] [PubMed]
- Casjens, S.R.; Gilcrease, E.B.; Vujadinovic, M.; Mongodin, E.F.; Luft, B.J.; Schutzer, S.E.; Fraser, C.M.; Qiu, W.-G. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genom. 2017, 18, 165. [Google Scholar] [CrossRef]
- Casjens, S.R.; Mongodin, E.F.; Qiu, W.-G.; Luft, B.J.; Schutzer, S.E.; Gilcrease, E.B.; Huang, W.M.; Vujadinovic, M.; Aron, J.K.; Vargas, L.C. Genome stability of Lyme disease spirochetes: Comparative genomics of Borrelia burgdorferi plasmids. PLoS ONE 2012, 7, e33280. [Google Scholar] [CrossRef] [PubMed]
- Jewett, M.W.; Byram, R.; Bestor, A.; Tilly, K.; Lawrence, K.; Burtnick, M.N.; Gherardini, F.; Rosa, P.A. Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi. Mol. Microbiol. 2007, 66, 975–990. [Google Scholar] [CrossRef]
- Byram, R.; Stewart, P.E.; Rosa, P. The essential nature of the ubiquitous 26-kilobase circular replicon of Borrelia burgdorferi. J. Bacteriol. 2004, 186, 3561–3569. [Google Scholar] [CrossRef]
- Hayes, B.M.; Dulebohn, D.P.; Sarkar, A.; Tilly, K.; Bestor, A.; Ambroggio, X.; Rosa, P.A. Regulatory protein BBD18 of the lyme disease spirochete: Essential role during tick acquisition? mBio 2014, 5, e01017-14, Erratum in: MBio 2014, 5. https://doi.org/10.1128/mBio.01608-14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dulebohn, D.P.; Hayes, B.M.; Rosa, P.A. Global repression of host-associated genes of the Lyme disease spirochete through post-transcriptional modulation of the alternative sigma factor RpoS. PLoS ONE 2014, 9, e93141. [Google Scholar] [CrossRef]
- Casselli, T.; Tourand, Y.; Bankhead, T. Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Infect. Immun. 2012, 80, 1773–1782. [Google Scholar] [CrossRef]
- Crowley, M.A.; Bankhead, T. Potential regulatory role in mammalian host adaptation for a small intergenic region of lp17 in the Lyme disease spirochete. Front. Cell. Infect. Microbiol. 2022, 12, 892220. [Google Scholar] [CrossRef]
- Casselli, T.; Crowley, M.A.; Highland, M.A.; Tourand, Y.; Bankhead, T. A small intergenic region of lp17 is required for evasion of adaptive immunity and induction of pathology by the Lyme disease spirochete. Cell. Microbiol. 2019, 21, e13029. [Google Scholar] [CrossRef] [PubMed]
- Crowley, M.A.; Bankhead, T. An lp17-encoded small non-coding RNA with a potential regulatory role in mammalian host adaptation by the Lyme disease spirochete. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wong, J.K.; Crowley, M.A.; Bankhead, T. Deletion of a genetic region of lp17 affects plasmid copy number in Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 2022, 12, 884171. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.F.; Pal, U.; Alani, S.M.; Fikrig, E.; Norgard, M.V. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J. Exp. Med. 2004, 199, 641–648. [Google Scholar] [CrossRef]
- Pal, U.; de Silva, A.M.; Montgomery, R.R.; Fish, D.; Anguita, J.; Anderson, J.F.; Lobet, Y.; Fikrig, E. Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. J. Clin. Investig. 2000, 106, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Blevins, J.S.; Hagman, K.E.; Norgard, M.V. Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol. 2008, 8, 82. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, Q.; McShan, K.; Liang, F.T. Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect. Immun. 2008, 76, 1239–1246. [Google Scholar] [CrossRef]
- Labandeira-Rey, M.; Skare, J.T. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect. Immun. 2001, 69, 446–455. [Google Scholar] [CrossRef]
- Grimm, D.; Eggers, C.H.; Caimano, M.J.; Tilly, K.; Stewart, P.E.; Elias, A.F.; Radolf, J.D.; Rosa, P.A. Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect. Immun. 2004, 72, 5938–5946. [Google Scholar] [CrossRef]
- Jewett, M.W.; Lawrence, K.; Bestor, A.C.; Tilly, K.; Grimm, D.; Shaw, P.; VanRaden, M.; Gherardini, F.; Rosa, P.A. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol. Microbiol. 2007, 64, 1358–1374. [Google Scholar] [CrossRef]
- Strother, K.O.; de Silva, A. Role of Borrelia burgdorferi linear plasmid 25 in infection of Ixodes scapularis ticks. J. Bacteriol. 2005, 187, 5776–5781. [Google Scholar] [CrossRef]
- Casselli, T.; Tourand, Y.; Gura, K.; Stevenson, B.; Zückert, W.R.; Brissette, C.A. Endogenous Linear Plasmids lp28-4 and lp25 Are Required for Infectivity and Restriction Protection in the Lyme Disease Spirochete Borrelia mayonii. Infect. Immun. 2023, 91, e0006123. [Google Scholar] [CrossRef] [PubMed]
- Purser, J.E.; Norris, S.J. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 2000, 97, 13865–13870. [Google Scholar] [CrossRef] [PubMed]
- Strother, K.O.; Broadwater, A.; De Silva, A. Plasmid requirements for infection of ticks by Borrelia burgdorferi. Vector-Borne Zoonotic Dis. 2005, 5, 237–245. [Google Scholar] [CrossRef]
- Schwan, T.G.; Piesman, J.; Golde, W.T.; Dolan, M.C.; Rosa, P.A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc. Natl. Acad. Sci. USA 1995, 92, 2909–2913. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.A.; Garon, C.F.; Schwan, T.G. Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect. Immun. 1999, 67, 3181–3187. [Google Scholar] [CrossRef] [PubMed]
- Bontemps-Gallo, S.; Lawrence, K.; Gherardini, F.C. Two different virulence-related regulatory pathways in Borrelia burgdorferi are directly affected by osmotic fluxes in the blood meal of feeding Ixodes ticks. PLoS Pathog. 2016, 12, e1005791. [Google Scholar] [CrossRef]
- Seshu, J.; Boylan, J.A.; Gherardini, F.C.; Skare, J.T. Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi. Infect. Immun. 2004, 72, 1580–1586. [Google Scholar] [CrossRef]
- Boylan, J.A.; Posey, J.E.; Gherardini, F.C. Borrelia oxidative stress response regulator, BosR: A distinctive Zn-dependent transcriptional activator. Proc. Natl. Acad. Sci. USA 2003, 100, 11684–11689. [Google Scholar] [CrossRef]
- Corona, A.; Schwartz, I. Borrelia burgdorferi: Carbon metabolism and the tick-mammal enzootic cycle. Microbiol. Spectr. 2015, 3, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Jamal, S.B.; Hassan, S.S.; Carvalho, P.V.; Almeida, S.; Barh, D.; Ghosh, P.; Silva, A.; Castro, T.L.; Azevedo, V. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: An overview. Front. Microbiol. 2017, 8, 1878. [Google Scholar] [CrossRef]
- Gotoh, Y.; Eguchi, Y.; Watanabe, T.; Okamoto, S.; Doi, A.; Utsumi, R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr. Opin. Microbiol. 2010, 13, 232–239. [Google Scholar] [CrossRef]
- Beier, D.; Gross, R. Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol. 2006, 9, 143–152. [Google Scholar] [CrossRef]
- Gao, R.; Stock, A.M. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 2009, 63, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Zschiedrich, C.P.; Keidel, V.; Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 2016, 428, 3752–3775. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hirao, K.; Oshima, T.; Aiba, H.; Utsumi, R.; Ishihama, A. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem. 2005, 280, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ogura, M.; Yamaguchi, H.; Yoshida, K.-I.; Ogasawara, N.; Tanaka, T.; Fujita, Y. Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J. Bacteriol. 2001, 183, 7145–7153. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, H.; Sivaneson, M.; Filloux, A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 2011, 13, 1666–1681. [Google Scholar] [CrossRef]
- Caimano, M.J.; Kenedy, M.R.; Kairu, T.; Desrosiers, D.C.; Harman, M.; Dunham-Ems, S.; Akins, D.R.; Pal, U.; Radolf, J.D. The hybrid histidine kinase Hk1 is part of a two-component system that is essential for survival of Borrelia burgdorferi in feeding Ixodes scapularis ticks. Infect. Immun. 2011, 79, 3117–3130. [Google Scholar] [CrossRef]
- Kostick, J.L.; Szkotnicki, L.T.; Rogers, E.A.; Bocci, P.; Raffaelli, N.; Marconi, R.T. The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes. Mol. Microbiol. 2011, 81, 219–231. [Google Scholar] [CrossRef]
- He, M.; Ouyang, Z.; Troxell, B.; Xu, H.; Moh, A.; Piesman, J.; Norgard, M.V.; Gomelsky, M.; Yang, X.F. Cyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticks. PLoS Pathog. 2011, 7, e1002133. [Google Scholar] [CrossRef]
- Ryjenkov, D.A.; Tarutina, M.; Moskvin, O.V.; Gomelsky, M. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 2005, 187, 1792–1798. [Google Scholar] [CrossRef]
- Rogers, E.A.; Terekhova, D.; Zhang, H.M.; Hovis, K.M.; Schwartz, I.; Marconi, R.T. Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol. Microbiol. 2009, 71, 1551–1573. [Google Scholar] [CrossRef]
- Jusufovic, N.; Krusenstjerna, A.C.; Savage, C.R.; Saylor, T.C.; Brissette, C.A.; Zückert, W.R.; Schlax, P.J.; Motaleb, M.A.; Stevenson, B. Borrelia burgdorferi PlzA is a cyclic-di-GMP dependent DNA and RNA binding protein. Mol. Microbiol. 2024, 121, 1039–1062. [Google Scholar] [CrossRef]
- Freedman, J.C.; Rogers, E.A.; Kostick, J.L.; Zhang, H.; Iyer, R.; Schwartz, I.; Marconi, R.T. Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): Additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. FEMS Immunol. Med. Microbiol. 2010, 58, 285–294. [Google Scholar] [CrossRef]
- Pitzer, J.E.; Sultan, S.Z.; Hayakawa, Y.; Hobbs, G.; Miller, M.R.; Motaleb, M.A. Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect. Immun. 2011, 79, 1815–1825. [Google Scholar] [CrossRef]
- Novak, E.A.; Sultan, S.Z.; Motaleb, M.A. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 2014, 4, 56. [Google Scholar] [CrossRef]
- Groshong, A.M.; Grassmann, A.A.; Luthra, A.; McLain, M.A.; Provatas, A.A.; Radolf, J.D.; Caimano, M.J. PlzA is a bifunctional c-di-GMP biosensor that promotes tick and mammalian host-adaptation of Borrelia burgdorferi. PLoS Pathog. 2021, 17, e1009725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-J.; Chen, T.; Yang, Y.; Du, J.; Li, H.; Troxell, B.; He, M.; Carrasco, S.E.; Gomelsky, M.; Yang, X.F. Positive and negative regulation of glycerol utilization by the c-di-GMP binding protein PlzA in Borrelia burgdorferi. J. Bacteriol. 2018, 200, e00243-18. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhang, J.-J.; Ye, M.; Lou, Y.; Yang, X.F. Cyclic di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi. Infect. Immun. 2014, 82, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Sze, C.W.; Smith, A.; Choi, Y.H.; Yang, X.; Pal, U.; Yu, A.; Li, C. Study of the response regulator Rrp1 reveals its regulatory role in chitobiose utilization and virulence of Borrelia burgdorferi. Infect. Immun. 2013, 81, 1775–1787. [Google Scholar] [CrossRef]
- Yang, X.F.; Alani, S.M.; Norgard, M.V. The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 2003, 100, 11001–11006. [Google Scholar] [CrossRef]
- Boardman, B.K.; He, M.; Ouyang, Z.; Xu, H.; Pang, X.; Yang, X.F. Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect. Immun. 2008, 76, 3844–3853. [Google Scholar] [CrossRef]
- Xu, H.; Caimano, M.J.; Lin, T.; He, M.; Radolf, J.D.; Norris, S.J.; Gheradini, F.; Wolfe, A.J.; Yang, X.F. Correction: Role of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi. PLoS Pathog. 2010, 6, e1001104. [Google Scholar] [CrossRef]
- Burtnick, M.N.; Downey, J.S.; Brett, P.J.; Boylan, J.A.; Frye, J.G.; Hoover, T.R.; Gherardini, F.C. Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol. Microbiol. 2007, 65, 277–293. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Zhang, Y.; Yang, J.; Du, J.; Zhou, Y.; Yang, X.F.; Lou, Y. Corrigendum: Role of HK2 in the Enzootic Cycle of Borrelia burgdorferi. Front. Med. 2021, 8, 668709. [Google Scholar] [CrossRef]
- Ouyang, Z.; Blevins, J.S.; Norgard, M.V. Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. Microbiology 2008, 154, 2641–2658. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhou, J.; Norgard, M.V. Synthesis of RpoS is dependent on a putative enhancer binding protein Rrp2 in Borrelia burgdorferi. PLoS ONE 2014, 9, e96917. [Google Scholar] [CrossRef]
- Caimano, M.J.; Eggers, C.H.; Hazlett, K.R.; Radolf, J.D. RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect. Immun. 2004, 72, 6433–6445. [Google Scholar] [CrossRef] [PubMed]
- Caimano, M.J.; Iyer, R.; Eggers, C.H.; Gonzalez, C.; Morton, E.A.; Gilbert, M.A.; Schwartz, I.; Radolf, J.D. Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol. Microbiol. 2007, 65, 1193–1217. [Google Scholar] [CrossRef]
- Blevins, J.S.; Xu, H.; He, M.; Norgard, M.V.; Reitzer, L.; Yang, X.F. Rrp2, a σ54-dependent transcriptional activator of Borrelia burgdorferi, activates rpoS in an enhancer-independent manner. J. Bacteriol. 2009, 191, 2902–2905. [Google Scholar] [CrossRef] [PubMed]
- Groshong, A.M.; Gibbons, N.E.; Yang, X.F.; Blevins, J.S. Rrp2, a prokaryotic enhancer-like binding protein, is essential for viability of Borrelia burgdorferi. J. Bacteriol. 2012, 194, 3336–3342. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Yang, Y.; Xiang, X.; Wang, Q.; Yang, Z.-N.; Blevins, J.; Lou, Y.; Yang, X.F. Insight into the dual functions of bacterial enhancer-binding protein Rrp2 of Borrelia burgdorferi. J. Bacteriol. 2016, 198, 1543–1552. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhou, J. The putative Walker A and Walker B motifs of R rp2 are required for the growth of B orrelia burgdorferi. Mol. Microbiol. 2017, 103, 86–98. [Google Scholar] [CrossRef]
- Raghunandanan, S.; Zhang, K.; Zhang, Y.; Priya, R.; Sze, C.W.; Lou, Y.; Lynch, M.J.; Crane, B.R.; Kaplan, M.H.; Li, C. MCP5, a methyl-accepting chemotaxis protein regulated by both the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, is required for the immune evasion of Borrelia burgdorferi. PLoS Pathog. 2024, 20, e1012327. [Google Scholar]
- Grassmann, A.A.; Tokarz, R.; Golino, C.; McLain, M.A.; Groshong, A.M.; Radolf, J.D.; Caimano, M.J. BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals. J. Clin. Investig. 2023, 133, e166710. [Google Scholar] [CrossRef]
- Browning, D.F.; Busby, S.J. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2004, 2, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Almonte, C.; Busby, S.J.; Wade, J.T.; van Helden, J.; Arkin, A.P.; Stormo, G.D.; Eilbeck, K.; Palsson, B.O.; Galagan, J.E.; Collado-Vides, J. Redefining fundamental concepts of transcription initiation in bacteria. Nat. Rev. Genet. 2020, 21, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Minchin, S.D.; Busby, S.J. Activating transcription in bacteria. Annu. Rev. Microbiol. 2012, 66, 125–152. [Google Scholar] [CrossRef] [PubMed]
- Darst, S.A. Bacterial RNA polymerase. Curr. Opin. Struct. Biol. 2001, 11, 155–162. [Google Scholar] [CrossRef]
- Murakami, K.S. Structural biology of bacterial RNA polymerase. Biomolecules 2015, 5, 848–864. [Google Scholar] [CrossRef]
- Kazmierczak, M.J.; Wiedmann, M.; Boor, K.J. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 2005, 69, 527–543. [Google Scholar] [CrossRef]
- Roberts, M.; Rowley, G.; Kormanec, J.; Zalm, M.E.J. The role of alternative sigma factors in pathogen virulence. In Foodborne Pathogens: Virulence Factors Host Susceptibility; Springer: Berlin/Heidelberg, Germany, 2017; pp. 229–303. [Google Scholar]
- Paget, M.S. Bacterial sigma factors and anti-sigma factors: Structure, function and distribution. Biomolecules 2015, 5, 1245–1265. [Google Scholar] [CrossRef]
- Schellhorn, H.E. Function, evolution, and composition of the RpoS regulon in Escherichia coli. Front. Microbiol. 2020, 11, 560099. [Google Scholar] [CrossRef]
- Battesti, A.; Majdalani, N.; Gottesman, S. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 2011, 65, 189–213. [Google Scholar] [CrossRef]
- Jørgensen, F.; Bally, M.; Chapon-Herve, V.; Michel, G.; Lazdunski, A.; Williams, P.; Stewart, G. RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 1999, 145, 835–844. [Google Scholar] [CrossRef]
- Potvin, E.; Sanschagrin, F.; Levesque, R.C. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 2008, 32, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Caimano, M.J.; Groshong, A.M.; Belperron, A.; Mao, J.; Hawley, K.L.; Luthra, A.; Graham, D.E.; Earnhart, C.G.; Marconi, R.T.; Bockenstedt, L.K.; et al. The RpoS Gatekeeper in Borrelia burgdorferi: An Invariant Regulatory Scheme That Promotes Spirochete Persistence in Reservoir Hosts and Niche Diversity. Front. Microbiol. 2019, 10, 1923. [Google Scholar] [CrossRef] [PubMed]
- Hübner, A.; Yang, X.; Nolen, D.M.; Popova, T.G.; Cabello, F.C.; Norgard, M.V. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. Proc. Natl. Acad. Sci. USA 2001, 98, 12724–12729. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.F.; Lybecker, M.C.; Pal, U.; Alani, S.M.; Blevins, J.; Revel, A.T.; Samuels, D.S.; Norgard, M.V. Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J. Bacteriol. 2005, 187, 4822–4829. [Google Scholar] [CrossRef]
- Stewart, P.E.; Wang, X.; Bueschel, D.M.; Clifton, D.R.; Grimm, D.; Tilly, K.; Carroll, J.A.; Weis, J.J.; Rosa, P.A. Delineating the requirement for the Borrelia burgdorferi virulence factor OspC in the mammalian host. Infect. Immun. 2006, 74, 3547–3553. [Google Scholar] [CrossRef]
- Ouyang, Z.; Narasimhan, S.; Neelakanta, G.; Kumar, M.; Pal, U.; Fikrig, E.; Norgard, M.V. Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi. BMC Microbiol. 2012, 12, 44. [Google Scholar] [CrossRef]
- Smith, A.H.; Blevins, J.S.; Bachlani, G.N.; Yang, X.F.; Norgard, M.V. Evidence that RpoS (σS) in Borrelia burgdorferi is controlled directly by RpoN (σ54/σN). J. Bacteriol. 2007, 189, 2139–2144. [Google Scholar] [CrossRef]
- Hoch, J.A. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 2000, 3, 165–170. [Google Scholar] [CrossRef]
- Ouyang, Z.; Kumar, M.; Kariu, T.; Haq, S.; Goldberg, M.; Pal, U.; Norgard, M.V. BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol. Microbiol. 2009, 74, 1331–1343. [Google Scholar] [CrossRef]
- Hyde, J.A.; Shaw, D.K.; Smith III, R.; Trzeciakowski, J.P.; Skare, J.T. The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Mol. Microbiol. 2009, 74, 1344–1355. [Google Scholar] [CrossRef]
- Ouyang, Z.; Deka, R.K.; Norgard, M.V. BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. PLoS Pathog. 2011, 7, e1001272. [Google Scholar] [CrossRef] [PubMed]
- Katona, L.I.; Tokarz, R.; Kuhlow, C.J.; Benach, J.; Benach, J.L. The fur homologue in Borrelia burgdorferi. J. Bacteriol. 2004, 186, 6443–6456. [Google Scholar] [CrossRef]
- Posey, J.E.; Gherardini, F.C. Lack of a role for iron in the Lyme disease pathogen. Science 2000, 288, 1651–1653. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhou, J.; Brautigam, C.A.; Deka, R.; Norgard, M.V. Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Microbiology 2014, 160, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Delany, I.; Pacheco, A.B.F.; Spohn, G.; Rappuoli, R.; Scarlato, V. Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein. J. Bacteriol. 2001, 183, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Gao, H.; Zhang, Y.; Wang, L.; Fang, N.; Tan, Y.; Guo, Z.; Xia, P.; Zhou, D.; Yang, R. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS ONE 2012, 7, e52392. [Google Scholar] [CrossRef]
- Friedman, Y.E.; O’Brian, M.R. The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro. J. Biol. Chem. 2004, 279, 32100–32105. [Google Scholar] [CrossRef]
- Carpenter, B.M.; Whitmire, J.M.; Merrell, D.S. This is not your mother’s repressor: The complex role of fur in pathogenesis. Infect. Immun. 2009, 77, 2590–2601. [Google Scholar] [CrossRef]
- Raghunandanan, S.; Priya, R.; Alanazi, F.; Lybecker, M.C.; Schlax, P.J.; Yang, X.F. A Fur family protein BosR is a novel RNA-binding protein that controls rpoS RNA stability in the Lyme disease pathogen. Nucleic Acids Res. 2024, 52, 5320–5335. [Google Scholar] [CrossRef]
- Katona, L.I. The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice. Microbiology 2015, 161, 2243–2255. [Google Scholar] [CrossRef]
- Hyde, J.A.; Seshu, J.; Skare, J.T. Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative oxidative stress regulon. Microbiology 2006, 152, 2599–2609. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhou, J.; Norgard, M.V. Evidence that BosR (BB0647) is a positive autoregulator in Borrelia burgdorferi. Infect. Immun. 2016, 84, 2566–2574. [Google Scholar] [CrossRef]
- Raghunandanan, S.; Priya, R.; Lin, G.; Alanazi, F.; Zoss, A.; Warren, E.; Stewart, P.; Yang, X.F. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. mBio 2025, 16, e0276624. [Google Scholar] [CrossRef]
- Mason, C.; Liu, X.; Prabhudeva, S.; Ouyang, Z. The CXXC motifs are essential for the function of BosR in Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lutton, A.; Olesik, J.; Vali, H.; Li, X. A novel iron-and copper-binding protein in the L yme disease spirochaete. Mol. Microbiol. 2012, 86, 1441–1451. [Google Scholar] [CrossRef]
- Wang, P.; Yu, Z.; Santangelo, T.J.; Olesik, J.; Wang, Y.; Heldwein, E.; Li, X. BosR is a novel fur family member responsive to copper and regulating copper homeostasis in Borrelia burgdorferi. J. Bacteriol. 2017, 199, e00276-17. [Google Scholar] [CrossRef] [PubMed]
- Lybecker, M.C.; Samuels, D.S. Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol. Microbiol. 2007, 64, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Lybecker, M.C.; Abel, C.A.; Feig, A.L.; Samuels, D.S. Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 2010, 78, 622–635. [Google Scholar] [CrossRef]
- Zamba-Campero, M.; Soliman, D.; Yu, H.; Lasseter, A.G.; Chang, Y.-Y.; Silberman, J.L.; Liu, J.; Aravind, L.; Jewett, M.W.; Storz, G. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. Nat. Commun. 2024, 15, 10417. [Google Scholar] [CrossRef]
- Karna, S.R.; Sanjuan, E.; Esteve-Gassent, M.D.; Miller, C.L.; Maruskova, M.; Seshu, J. CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect. Immun. 2011, 79, 732–744. [Google Scholar] [CrossRef]
- Sanjuan, E.; Esteve-Gassent, M.D.; Maruskova, M.; Seshu, J. Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect. Immun. 2009, 77, 5149–5162. [Google Scholar] [CrossRef]
- Sze, C.W.; Li, C. Inactivation of bb0184, which encodes carbon storage regulator A, represses the infectivity of Borrelia burgdorferi. Infect. Immun. 2011, 79, 1270–1279. [Google Scholar] [CrossRef]
- Karna, S.R.; Prabhu, R.G.; Lin, Y.-H.; Miller, C.L.; Seshu, J. Contributions of environmental signals and conserved residues to the functions of carbon storage regulator A of Borrelia burgdorferi. Infect. Immun. 2013, 81, 2972–2985. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zhou, J.; Norgard, M.V. CsrA (BB0184) is not involved in activation of the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. Infect. Immun. 2014, 82, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.L.; Karna, S.R.; Seshu, J. Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi. Mol. Microbiol. 2013, 88, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zhou, J. BadR (BB0693) controls growth phase-dependent induction of rpoS and bosR in Borrelia burgdorferi via recognizing TAAAATAT motifs. Mol. Microbiol. 2015, 98, 1147–1167. [Google Scholar] [CrossRef]
- George, S.; Ouyang, Z. Analysis of the BadR regulon in Borrelia burgdorferi. BMC Microbiol. 2025, 25, 94. [Google Scholar] [CrossRef]
- Arnold, W.K.; Savage, C.R.; Lethbridge, K.G.; Smith, T.C., 2nd; Brissette, C.A.; Seshu, J.; Stevenson, B. Transcriptomic insights on the virulence-controlling CsrA, BadR, RpoN, and RpoS regulatory networks in the Lyme disease spirochete. PLoS ONE 2018, 13, e0203286. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Raghunandanan, S.; Wang, Q.; Priya, R.; Alanazi, F.; Lou, Y.; Yang, X.F. BadR directly represses the expression of the glycerol utilization operon in the Lyme disease pathogen. J. Bacteriol. 2024, 206, e0034023. [Google Scholar] [CrossRef]
- Saylor, T.C.; Savage, C.R.; Krusenstjerna, A.C.; Jusufovic, N.; Zückert, W.R.; Brissette, C.A.; Motaleb, M.; Schlax, P.J.; Stevenson, B. Quantitative analyses of interactions between SpoVG and RNA/DNA. Biochem. Biophys. Res. Commun. 2023, 654, 40–46. [Google Scholar] [CrossRef]
- Savage, C.R.; Jutras, B.L.; Bestor, A.; Tilly, K.; Rosa, P.A.; Tourand, Y.; Stewart, P.E.; Brissette, C.A.; Stevenson, B. Borrelia burgdorferi SpoVG DNA-and RNA-binding protein modulates the physiology of the Lyme disease spirochete. J. Bacteriol. 2018, 200, e00033-18. [Google Scholar] [CrossRef] [PubMed]
- Jutras, B.L.; Savage, C.R.; Arnold, W.K.; Lethbridge, K.G.; Carroll, D.W.; Tilly, K.; Bestor, A.; Zhu, H.; Seshu, J.; Zückert, W.R. The Lyme disease spirochete’s BpuR DNA/RNA-binding protein is differentially expressed during the mammal–tick infectious cycle, which affects translation of the SodA superoxide dismutase. Mol. Microbiol. 2019, 112, 973–991. [Google Scholar] [CrossRef] [PubMed]
- Van Gundy, T.; Patel, D.; Bowler, B.E.; Rothfuss, M.T.; Hall, A.J.; Davies, C.; Hall, L.S.; Drecktrah, D.; Marconi, R.T.; Samuels, D.S. c-di-GMP regulates activity of the PlzA RNA chaperone from the Lyme disease spirochete. Mol. Microbiol. 2023, 119, 711–727. [Google Scholar] [CrossRef] [PubMed]
- Wachter, J.; Cheff, B.; Hillman, C.; Carracoi, V.; Dorward, D.W.; Martens, C.; Barbian, K.; Nardone, G.; Renee Olano, L.; Kinnersley, M. Coupled induction of prophage and virulence factors during tick transmission of the Lyme disease spirochete. Nat. Commun. 2023, 14, 198. [Google Scholar] [CrossRef]
- Mason, C.; Thompson, C.; Ouyang, Z. DksA plays an essential role in regulating the virulence of Borrelia burgdorferi. Mol. Microbiol. 2020, 114, 172–183. [Google Scholar] [CrossRef]
- Boyle, W.K.; Richards, C.L.; Dulebohn, D.P.; Zalud, A.K.; Shaw, J.A.; Lovas, S.; Gherardini, F.C.; Bourret, T.J. DksA-dependent regulation of RpoS contributes to Borrelia burgdorferi tick-borne transmission and mammalian infectivity. PLoS Pathog. 2021, 17, e1009072. [Google Scholar] [CrossRef]
- Mason, C.; Thompson, C.; Ouyang, Z. The Lon-2 protease of Borrelia burgdorferi is critical for infection in the mammalian host. Mol. Microbiol. 2020, 113, 938–950. [Google Scholar] [CrossRef]
- Thompson, C.; Mason, C.; Parrilla, S.; Ouyang, Z. The Lon-1 protease is required by Borrelia burgdorferi to infect the mammalian host. Infect. Immun. 2020, 88, e00951-19. [Google Scholar] [CrossRef] [PubMed]
- Burke, T.P.; Portnoy, D.A. SpoVG is a conserved RNA-binding protein that regulates Listeria monocytogenes lysozyme resistance, virulence, and swarming motility. MBio 2016, 7, e00240. [Google Scholar] [CrossRef]
- Shi, C.; Zheng, L.; Lu, Z.; Zhang, X.; Bie, X. The global regulator SpoVG regulates Listeria monocytogenes biofilm formation. Microb. Pathog. 2023, 180, 106144. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, Z.; Liu, Q.; Liu, F.; Liu, Y.; Zhang, J.; Wang, G. SpoVG is an important regulator of sporulation and affects biofilm formation by regulating Spo0A transcription in Bacillus cereus 0–9. BMC Microbiol. 2021, 21, 172. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, B.; Sun, B. SpoVG modulates cell aggregation in Staphylococcus aureus by regulating sasC expression and extracellular DNA release. Appl. Environ. Microbiol. 2020, 86, e00591-20. [Google Scholar] [CrossRef]
- Schürmann, J.; Fischer, M.A.; Herzberg, M.; Reemtsma, T.; Strommenger, B.; Werner, G.; Schuster, C.F.; Layer-Nicolaou, F. The genes mgtE and spoVG are involved in zinc tolerance of Staphylococcus aureus. Appl. Environ. Microbiol. 2024, 90, e00453-24. [Google Scholar] [CrossRef] [PubMed]
- Jutras, B.L.; Chenail, A.M.; Rowland, C.L.; Carroll, D.; Miller, M.C.; Bykowski, T.; Stevenson, B. Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins. PLoS ONE 2013, 8, e66683. [Google Scholar] [CrossRef]
- Jutras, B.L.; Chenail, A.M.; Carroll, D.W.; Miller, M.C.; Zhu, H.; Bowman, A.; Stevenson, B. Bpur, the Lyme disease spirochete’s PUR domain protein: Identification as a transcriptional modulator and characterization of nucleic acid interactions. J. Biol. Chem. 2013, 288, 26220–26234. [Google Scholar] [CrossRef]
- Graebsch, A.; Roche, S.; Kostrewa, D.; Söding, J.; Niessing, D. Of bits and bugs—On the use of bioinformatics and a bacterial crystal structure to solve a eukaryotic repeat-protein structure. PLoS ONE 2010, 5, e13402. [Google Scholar] [CrossRef]
- Jutras, B.L.; Jones, G.S.; Verma, A.; Brown, N.A.; Antonicello, A.D.; Chenail, A.M.; Stevenson, B. Posttranscriptional self-regulation by the Lyme disease bacterium’s BpuR DNA/RNA-binding protein. J. Bacteriol. 2013, 195, 4915–4923. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Gassent, M.D.; Elliott, N.L.; Seshu, J. sodA is essential for virulence of Borrelia burgdorferi in the murine model of Lyme disease. Mol. Microbiol. 2009, 71, 594–612. [Google Scholar] [CrossRef]
- Esteve-Gassent, M.D.; Smith, T.C.; Small, C.M.; Thomas, D.P.; Seshu, J. Absence of sodA increases the levels of oxidation of key metabolic determinants of Borrelia burgdorferi. PLoS ONE 2015, 10, e0136707. [Google Scholar] [CrossRef]
- Eggers, C.H.; Caimano, M.J.; Clawson, M.L.; Miller, W.G.; Samuels, D.S.; Radolf, J.D. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochaete. Mol. Microbiol. 2002, 43, 281–295. [Google Scholar] [CrossRef]
- Stewart, P.E.; Thalken, R.; Bono, J.L.; Rosa, P. Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol. Microbiol. 2001, 39, 714–721. [Google Scholar] [CrossRef]
- Stewart, P.E.; Chaconas, G.; Rosa, P. Conservation of plasmid maintenance functions between linear and circular plasmids in Borrelia burgdorferi. J. Bacteriol. 2003, 185, 3202–3209. [Google Scholar] [CrossRef]
- Chenail, A.M.; Jutras, B.L.; Adams, C.A.; Burns, L.H.; Bowman, A.; Verma, A.; Stevenson, B. Correction for Chenail et al., “Borrelia burgdorferi cp32 BpaB modulates expression of the prophage NucP nuclease and SsbP single-stranded DNA-binding protein”. J. Bacteriol. 2017, 199, e00400-17. [Google Scholar] [CrossRef]
- Cooley, A.E.; Riley, S.P.; Kral, K.; Miller, M.C.; DeMoll, E.; Fried, M.G.; Stevenson, B. DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family. BMC Microbiol. 2009, 9, 137. [Google Scholar] [CrossRef]
- Pal, P.; Modi, M.; Ravichandran, S.; Yennamalli, R.M.; Priyadarshini, R. DNA-binding properties of YbaB, a putative nucleoid-associated protein from Caulobacter crescentus. Front. Microbiol. 2021, 12, 733344. [Google Scholar] [CrossRef]
- Riley, S.P.; Bykowski, T.; Cooley, A.E.; Burns, L.H.; Babb, K.; Brissette, C.A.; Bowman, A.; Rotondi, M.; Miller, M.C.; DeMoll, E. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins. Nucleic Acids Res. 2009, 37, 1973–1983. [Google Scholar] [CrossRef]
- Cordeiro, T.F.V.B.; Gontijo, M.T.P.; Jorge, G.P.; Brocchi, M. EbfC/YbaB: A widely distributed nucleoid-associated protein in prokaryotes. Microorganisms 2022, 10, 1945. [Google Scholar] [CrossRef]
- Lim, K.; Tempczyk, A.; Parsons, J.F.; Bonander, N.; Toedt, J.; Kelman, Z.; Howard, A.; Eisenstein, E.; Herzberg, O. Crystal structure of YbaB from Haemophilus influenzae (HI0442), a protein of unknown function coexpressed with the recombinational DNA repair protein RecR. Proteins Struct. Funct. Bioinform. 2003, 50, 375–379. [Google Scholar] [CrossRef]
- Krusenstjerna, A.C.; Saylor, T.C.; Arnold, W.K.; Tucker, J.S.; Stevenson, B. Borrelia burgdorferi DnaA and the nucleoid-associated protein EbfC coordinate expression of the dnaX-ebfC operon. J. Bacteriol. 2023, 205, e00396-22. [Google Scholar] [CrossRef]
- Jutras, B.L.; Bowman, A.; Brissette, C.A.; Adams, C.A.; Verma, A.; Chenail, A.M.; Stevenson, B. EbfC (YbaB) is a new type of bacterial nucleoid-associated protein and a global regulator of gene expression in the Lyme disease spirochete. J. Bacteriol. 2012, 194, 3395–3406. [Google Scholar] [CrossRef]
- Jutras, B.L.; Verma, A.; Adams, C.A.; Brissette, C.A.; Burns, L.H.; Whetstine, C.R.; Bowman, A.; Chenail, A.M.; Zückert, W.R.; Stevenson, B. BpaB and EbfC DNA-binding proteins regulate production of the Lyme disease spirochete’s infection-associated Erp surface proteins. J. Bacteriol. 2012, 194, 778–786. [Google Scholar] [CrossRef]
- Stevenson, B.; El-Hage, N.; Hines, M.A.; Miller, J.C.; Babb, K. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: A possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect. Immun. 2002, 70, 491–497. [Google Scholar] [CrossRef]
- Brissette, C.A.; Haupt, K.; Barthel, D.; Cooley, A.E.; Bowman, A.; Skerka, C.; Wallich, R.; Zipfel, P.F.; Kraiczy, P.; Stevenson, B. Borrelia burgdorferi infection-associated surface proteins ErpP, ErpA, and ErpC bind human plasminogen. Infect. Immun. 2009, 77, 300–306. [Google Scholar] [CrossRef]
- Stevenson, B.; Brissette, C.A. Erp and Rev adhesins of the Lyme disease spirochete’s ubiquitous cp32 prophages assist the bacterium during vertebrate infection. Infect. Immun. 2023, 91, e00250-22. [Google Scholar] [CrossRef]
- Brissette, C.A.; Cooley, A.E.; Burns, L.H.; Riley, S.P.; Verma, A.; Woodman, M.E.; Bykowski, T.; Stevenson, B. Lyme borreliosis spirochete Erp proteins, their known host ligands, and potential roles in mammalian infection. Int. J. Med. Microbiol. 2008, 298, 257–267. [Google Scholar] [CrossRef]
- Kraiczy, P.; Hartmann, K.; Hellwage, J.; Skerka, C.; Kirschfink, M.; Brade, V.; Zipfel, P.F.; Wallich, R.; Stevenson, B. Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi. Int. J. Med. Microbiol. Suppl. 2004, 293, 152–157. [Google Scholar] [CrossRef]
- Burns, L.H.; Adams, C.A.; Riley, S.P.; Jutras, B.L.; Bowman, A.; Chenail, A.M.; Cooley, A.E.; Haselhorst, L.A.; Moore, A.M.; Babb, K. BpaB, a novel protein encoded by the Lyme disease spirochete’s cp32 prophages, binds to erp Operator 2 DNA. Nucleic Acids Res. 2010, 38, 5443–5455. [Google Scholar] [CrossRef]
- Babb, K.; Bykowski, T.; Riley, S.P.; Miller, M.C.; DeMoll, E.; Stevenson, B. Borrelia burgdorferi EbfC, a novel, chromosomally encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete’s resident cp32 prophages. J. Bacteriol. 2006, 188, 4331–4339. [Google Scholar] [CrossRef]
- Jutras, B.L.; Chenail, A.M.; Stevenson, B. Correction for Jutras et al., "Changes in Bacterial Growth Rate Govern Expression of the Borrelia burgdorferi OspC and Erp Infection-Associated Surface Proteins". J. Bacteriol. 2017, 199, e00386-17, Erratum in: J. Bacteriol. 2013, 195, 757–764. https://doi.org/10.1128/JB.01956-12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bugrysheva, J.V.; Bryksin, A.V.; Godfrey, H.P.; Cabello, F.C. Borrelia burgdorferi rel is responsible for generation of guanosine-3′-diphosphate-5′-triphosphate and growth control. Infect. Immun. 2005, 73, 4972–4981. [Google Scholar] [CrossRef]
- Concepcion, M.B.; Nelson, D.R. Expression of spoT in Borrelia burgdorferi during serum starvation. J. Bacteriol. 2003, 185, 444–452. [Google Scholar] [CrossRef]
- Hauryliuk, V.; Atkinson, G.C.; Murakami, K.S.; Tenson, T.; Gerdes, K. Recent functional insights into the role of (p) ppGpp in bacterial physiology. Nat. Rev. Microbiol. 2015, 13, 298–309. [Google Scholar] [CrossRef]
- Drecktrah, D.; Lybecker, M.; Popitsch, N.; Rescheneder, P.; Hall, L.S.; Samuels, D.S. Correction: The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation. PLoS Pathog. 2015, 11, e1005242, Erratum for: PLoS Pathog. 2015, 11, e1005160. https://doi.org/10.1371/journal.ppat.1005160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paul, B.J.; Berkmen, M.B.; Gourse, R.L. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA 2005, 102, 7823–7828. [Google Scholar] [CrossRef]
- Ross, W.; Sanchez-Vazquez, P.; Chen, A.Y.; Lee, J.-H.; Burgos, H.L.; Gourse, R.L. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol. Cell 2016, 62, 811–823. [Google Scholar] [CrossRef]
- Boyle, W.K.; Groshong, A.M.; Drecktrah, D.; Boylan, J.A.; Gherardini, F.C.; Blevins, J.S.; Samuels, D.S.; Bourret, T.J. DksA controls the response of the Lyme disease spirochete Borrelia burgdorferi to starvation. J. Bacteriol. 2019, 201, e00582-18. [Google Scholar] [CrossRef]
- PLOS ONE Staff. Correction: Characterization of the RelBbu regulon in Borrelia burgdorferi reveals modu-lation of glycerol metabolism by (p)ppGpp. PLoS ONE 2015, 10, e0123614, Erratum in: PLoS ONE 2015, 10, e0118063. https://doi.org/10.1371/journal.pone.0118063. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doniselli, N.; Rodriguez-Aliaga, P.; Amidani, D.; Bardales, J.A.; Bustamante, C.; Guerra, D.G.; Rivetti, C. New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase–promoter complex. Nucleic Acids Res. 2015, 43, 5249–5262. [Google Scholar] [CrossRef]
- Gray, M.J. Inorganic polyphosphate accumulation in Escherichia coli is regulated by DksA but not by (p) ppGpp. J. Bacteriol. 2019, 201, e00664-18. [Google Scholar] [CrossRef]
- Magnusson, L.U.; Gummesson, B.; Joksimovic, P.; Farewell, A.; Nyström, T. Identical, independent, and opposing roles of ppGpp and DksA in Escherichia coli. J. Bacteriol. 2007, 189, 5193–5202. [Google Scholar] [CrossRef]
- Dalebroux, Z.D.; Yagi, B.F.; Sahr, T.; Buchrieser, C.; Swanson, M.S. Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol. Microbiol. 2010, 76, 200–219. [Google Scholar] [CrossRef]
- Huang, C.; Li, W.; Chen, J. Transcriptomic analysis reveals key roles of (p) ppGpp and DksA in regulating metabolism and chemotaxis in Yersinia enterocolitica. Int. J. Mol. Sci. 2023, 24, 7612. [Google Scholar] [CrossRef]
- Huang, C.; Meng, J.; Li, W.; Chen, J. Similar and divergent roles of stringent regulator (p) ppGpp and DksA on pleiotropic phenotype of Yersinia enterocolitica. Microbiol. Spectr. 2022, 10, e02055-22. [Google Scholar] [CrossRef]
- Drecktrah, D.; Hall, L.S.; Rescheneder, P.; Lybecker, M.; Samuels, D.S. The stringent response-regulated sRNA transcriptome of Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 2018, 8, 231. [Google Scholar] [CrossRef]
- Kim, N.; Son, J.H.; Kim, K.; Kim, H.J.; Kim, Y.J.; Shin, M.; Lee, J.C. Global regulator DksA modulates virulence of Acinetobacter baumannii. Virulence 2021, 12, 2750–2763. [Google Scholar] [CrossRef]
- Kim, N.; Son, J.-H.; Kim, K.; Kim, H.-J.; Shin, M.; Lee, J.-C. DksA modulates antimicrobial susceptibility of Acinetobacter baumannii. Antibiotics 2021, 10, 1472. [Google Scholar] [CrossRef]
- Chawla, M.; Verma, J.; Kumari, S.; Matta, T.; Senapati, T.; Babele, P.; Kumar, Y.; Bhadra, R.K.; Das, B. (p) ppGpp and DksA play a crucial role in reducing the efficacy of β-lactam antibiotics by modulating bacterial membrane permeability. Microbiol. Spectr. 2025, 13, e01169-24. [Google Scholar] [CrossRef]
- Grützner, J.; Remes, B.; Eisenhardt, K.M.; Scheller, D.; Kretz, J.; Madhugiri, R.; McIntosh, M.; Klug, G. sRNA-mediated RNA processing regulates bacterial cell division. Nucleic Acids Res. 2021, 49, 7035–7052. [Google Scholar] [CrossRef]
- Yang, S.; Kim, S.-H.; Yang, E.; Kang, M.; Joo, J.-Y. Molecular insights into regulatory RNAs in the cellular machinery. Exp. Mol. Med. 2024, 56, 1235–1249. [Google Scholar] [CrossRef]
- Holmqvist, E.; Wagner, E.G.H. Impact of bacterial sRNAs in stress responses. Biochem. Soc. Trans. 2017, 45, 1203–1212. [Google Scholar] [CrossRef]
- Felden, B.; Cattoir, V. Bacterial adaptation to antibiotics through regulatory RNAs. Antimicrob. Agents Chemother. 2018, 62, e02503-17. [Google Scholar] [CrossRef]
- Cheah, H.-L.; Raabe, C.A.; Lee, L.-P.; Rozhdestvensky, T.S.; Citartan, M.; Ahmed, S.A.; Tang, T.-H. Bacterial regulatory RNAs: Complexity, function, and putative drug targeting. Crit. Rev. Biochem. Mol. Biol. 2018, 53, 335–355. [Google Scholar] [CrossRef]
- Westermann, A.J. Regulatory RNAs in virulence and host-microbe interactions. Regul. RNA Bact. Archaea 2018, 6, 305–337. [Google Scholar]
- Chauvier, A.; Walter, N.G. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem. Biol. 2024, 31, 71–85. [Google Scholar] [CrossRef]
- Eichner, H.; Karlsson, J.; Loh, E. The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol. 2022, 30, 959–972. [Google Scholar] [CrossRef]
- Chakravarty, S.; Massé, E. RNA-dependent regulation of virulence in pathogenic bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 337. [Google Scholar] [CrossRef]
- Menard, G.; Silard, C.; Suriray, M.; Rouillon, A.; Augagneur, Y. Thirty years of sRNA-mediated regulation in Staphylococcus aureus: From initial discoveries to in vivo biological implications. Int. J. Mol. Sci. 2022, 23, 7346. [Google Scholar] [CrossRef]
- Le Huyen, K.B.; Gonzalez, C.D.; Pascreau, G.; Bordeau, V.; Cattoir, V.; Liu, W.; Bouloc, P.; Felden, B.; Chabelskaya, S. A small regulatory RNA alters Staphylococcus aureus virulence by titrating RNAIII activity. Nucleic Acids Res. 2021, 49, 10644–10656. [Google Scholar] [CrossRef]
- Jin, Y.; Watt, R.M.; Danchin, A.; Huang, J.-d. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli. BMC Genom. 2009, 10, 1–7. [Google Scholar] [CrossRef]
- Ju, X.; Fang, X.; Xiao, Y.; Li, B.; Shi, R.; Wei, C.; You, C. Small RNA GcvB regulates oxidative stress response of Escherichia coli. Antioxidants 2021, 10, 1774. [Google Scholar] [CrossRef]
- Popitsch, N.; Bilusic, I.; Rescheneder, P.; Schroeder, R.; Lybecker, M. Temperature-dependent sRNA transcriptome of the Lyme disease spirochete. BMC Genom. 2017, 18, 28. [Google Scholar] [CrossRef]
- Arnold, W.K.; Savage, C.R.; Brissette, C.A.; Seshu, J.; Livny, J.; Stevenson, B. RNA-Seq of Borrelia burgdorferi in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS ONE 2016, 11, e0164165. [Google Scholar] [CrossRef]
- Petroni, E.; Esnault, C.; Tetreault, D.; Dale, R.K.; Storz, G.; Adams, P.P. Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen Borrelia burgdorferi. Nat. Commun. 2023, 14, 3931. [Google Scholar] [CrossRef]
- Ostberg, Y.; Bunikis, I.; Bergström, S.; Johansson, J. The etiological agent of Lyme disease, Borrelia burgdorferi, appears to contain only a few small RNA molecules. J. Bacteriol. 2004, 186, 8472–8477. [Google Scholar] [CrossRef]
- Medina-Pérez, D.N.; Wager, B.; Troy, E.; Gao, L.; Norris, S.J.; Lin, T.; Hu, L.; Hyde, J.A.; Lybecker, M.; Skare, J.T. The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi. PLoS Pathog. 2020, 16, e1008423. [Google Scholar] [CrossRef]
- Warner, K.D.; Hajdin, C.E.; Weeks, K.M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 2018, 17, 547–558. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, S.; Ouyang, Z. Virulence Regulation in Borrelia burgdorferi. Microorganisms 2025, 13, 2183. https://doi.org/10.3390/microorganisms13092183
George S, Ouyang Z. Virulence Regulation in Borrelia burgdorferi. Microorganisms. 2025; 13(9):2183. https://doi.org/10.3390/microorganisms13092183
Chicago/Turabian StyleGeorge, Sierra, and Zhiming Ouyang. 2025. "Virulence Regulation in Borrelia burgdorferi" Microorganisms 13, no. 9: 2183. https://doi.org/10.3390/microorganisms13092183
APA StyleGeorge, S., & Ouyang, Z. (2025). Virulence Regulation in Borrelia burgdorferi. Microorganisms, 13(9), 2183. https://doi.org/10.3390/microorganisms13092183