Detecting Environmental Stress In Situ Using Molecular Data: A Case Study with the Filamentous Green Alga Klebsormidium and Antarctic Biocrusts
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling
2.2. Isolation and Cultivation of Klebsormidium from Livingston Island
2.3. RNA Isolation and Sequencing
2.4. Bioinformatic Analysis
2.5. Identification of Klebsormidium Species Using Bioinformatic Analysis
2.6. Re-Analysis of RNA-Seq Data from a Stress Experiment Involving K. flaccidum and K. dissectum
2.7. Gene Marker Indices
2.8. Statistical Tests of Marker Gene Sets
3. Results
3.1. Identification of Klebsormidium flaccidum in Biocrusts from Livingston Island
3.2. Identification of Desiccation- and Cold-Regulated Transcripts in K. dissectum and K. flaccidum
3.3. Metatranscriptomes for In Situ Stress Analysis
3.4. Evaluation of In Situ Stress State in Biocrusts Using GMI
3.5. Comparison of Overall Gene Expression Profiles to Assess Stress State of Biocrusts
4. Discussion
Identification of Marker Genes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Convey, P.; Bowman, V.; Chown, S.L.; Francis, J.; Fraser, C.; Smellie, J.L.; Terauds, A. Ice Bound Antarctica: Biotic Consequences of the Shift from a Temperate to a Polar Climate; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 355–373. [Google Scholar]
- Cowan, D.A.; Tow, L.A. Endangered antarctic environments. Annu. Rev. Microbiol. 2004, 58, 649–690. [Google Scholar] [CrossRef]
- Cary, S.C.; McDonald, I.R.; Barrett, J.E.; Cowan, D.A. On the rocks: The microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 2010, 8, 129–138. [Google Scholar] [CrossRef]
- Almela, P.; Justel, A.; Quesada, A. Heterogeneity of Microbial Communities in Soils From the Antarctic Peninsula Region. Front. Microbiol. 2021, 12, 628792. [Google Scholar] [CrossRef]
- Pushkareva, E.; Elster, J.; Kudoh, S.; Imura, S.; Becker, B. Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs. Front. Microbiol. 2024, 14, 1323148. [Google Scholar] [CrossRef]
- Belnap, J.; Büdel, B.; Lange, O.L. Biological Soil Crusts: Characteristics and Distribution. In Biological Soil Crusts: Structure, Function, and Management; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–30. [Google Scholar]
- Pointing, S.B.; Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 2012, 10, 551–562. [Google Scholar] [CrossRef]
- Bajerski, F.; Wagner, D. Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica. FEMS Microbiol. Ecol. 2013, 85, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Darby, B.J.; Neher, D.A. Microfauna within biological soil crusts. In Biological Soil Crusts: An Organizing Principle in Drylands, 2nd ed.; Belnap, J., Weber, B., Büdel, B., Eds.; Springer: Cham, Switzerland, 2016; pp. 139–157. [Google Scholar]
- Zhang, E.; Thibaut, L.M.; Terauds, A.; Raven, M.; Tanaka, M.M.; van Dorst, J.; Wong, S.Y.; Crane, S.; Ferrari, B.C. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: A tale of two oases. Microbiome 2020, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Škaloud, P.; Rindi, F. Ecological Differentiation of Cryptic Species within an Asexual Protist Morphospecies: A Case Study of Filamentous Green Alga Klebsormidium (Streptophyta). J. Eukaryot. Microbiol. 2013, 60, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Borchhardt, N.; Baum, C.; Mikhailyuk, T.; Karsten, U. Biological soil crusts of Arctic Svalbard—Water availability as potential controlling factor for microalgal biodiversity. Front. Microbiol. 2017, 8, 1485. [Google Scholar] [CrossRef]
- Pushkareva, E.; Johansen, J.R.; Elster, J. A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol. 2016, 39, 2227–2240. [Google Scholar] [CrossRef]
- Ryšánek, D.; Elster, J.; Kováčik, L.; Škaloud, P. Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions. FEMS Microbiol. Ecol. 2016, 92, fnw039. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Lütz, C.; Karsten, U. DESICCATION Stress causes structural and ultrastructural alterations in the aeroterrestrial green alga klebsormidium crenulatum (klebsormidiophyceae, streptophyta) isolated from an alpine soil crust1. J. Phycol. 2011, 47, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Karsten, U.; Lütz, C.; Holzinger, A. Ecophysiological performance of the aeroterrestrial green alga klebsormidium crenulatum (charophyceae, streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress 1. J. Phycol. 2010, 46, 1187–1197. [Google Scholar] [CrossRef]
- Elster, J.; Degma, P.; Kováčik, Ľ.; Valentová, L.; Šramková, K.; Batista Pereira, A. Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 2008, 63, 843–851. [Google Scholar] [CrossRef]
- Míguez, F.; Holzinger, A.; Fernandez-Marin, B.; García-Plazaola, J.I.; Karsten, U.; Gustavs, L. Ecophysiological changes and spore formation: Two strategies in response to low-temperature and high-light stress in Klebsormidium cf. flaccidum (Klebsormidiophyceae, Streptophyta) 1. J Phycol. 2020, 56, 649–661. [Google Scholar] [CrossRef]
- Rippin, M.; Borchhardt, N.; Karsten, U.; Becker, B. Cold Acclimation Improves the Desiccation Stress Resilience of Polar Strains of Klebsormidium (Streptophyta). Front. Microbiol. 2019, 10, 1730. [Google Scholar] [CrossRef]
- Alpert, P. Constraints of tolerance: Why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 2006, 209, 1575–1584. [Google Scholar] [CrossRef]
- Blaas, K.; Holzinger, A. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum. Micron 2017, 98, 34–38. [Google Scholar] [CrossRef]
- Herburger, K.; Holzinger, A. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance. Plant Cell Physiol. 2015, 56, 2259–2270. [Google Scholar] [CrossRef]
- Holzinger, A.; Kaplan, F.; Blaas, K.; Zechmann, B.; Komsic-Buchmann, K.; Becker, B. Transcriptomics of Desiccation Tolerance in the Streptophyte Green Alga Klebsormidium Reveal a Land Plant-Like Defense Reaction. PLoS ONE 2014, 9, e110630. [Google Scholar] [CrossRef]
- Holzinger, A.; Becker, B. Desiccation tolerance in the streptophyte green alga Klebsormidium: The role of phytohormones. Commun. Integr. Biol. 2015, 8, e1059978. [Google Scholar] [CrossRef]
- Nagao, M.; Matsui, K.; Uemura, M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ. 2008, 31, 872–885. [Google Scholar] [CrossRef]
- Hrbáček, F.; Oliva, M.; Laska, K.; Ruiz-Fernández, J.; De Pablo, M.A.; Vieira, G.; Ramos, M.; Nývlt, D. Active layer thermal regime in two climatically contrasted sites of the Antarctic Peninsula region. Cuad. Investig. Geogr. 2016, 42, 457–474. [Google Scholar] [CrossRef]
- York, P.V.; Johnson, L.R. The Freshwater Algal Flora of the British Isles an Identification Guide to Freshwater and Terrestrial Algae Second Edition, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- BioBam Bioinformatics. OmicsBox—Bioinformatics Made Easy. 2019. Available online: https://www.biobam.com/omicsbox (accessed on 5 December 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kopylova, E.; Noé, L.; Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012, 28, 3211–3217. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Hori, K.; Maruyama, F.; Fujisawa, T.; Togashi, T.; Yamamoto, N.; Seo, M.; Sato, S.; Yamada, T.; Mori, H.; Tajima, N.; et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 2014, 5, 3978. [Google Scholar] [CrossRef]
- Borchhardt, N.; Schiefelbein, U.; Abarca, N.; Boy, J.; Mikhailyuk, T.; Sipman, H.J.; Karsten, U. Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica. Antarct. Sci. 2017, 29, 229–237. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A. TransDecoder5.5.0. 2019. Available online: https://github.com/TransDecoder/TransDecoder/wiki (accessed on 10 November 2024).
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Mustroph, A.; Lee, S.C.; Oosumi, T.; Zanetti, M.E.; Yang, H.; Ma, K.; Yaghoubi-Masihi, A.; Fukao, T.; Bailey-Serres, J. Cross-Kingdom Comparison of Transcriptomic Adjustments to Low-Oxygen Stress Highlights Conserved and Plant-Specific Responses. Plant Physiol. 2010, 152, 1484–1500. [Google Scholar] [CrossRef] [PubMed]
- Short, A.W.; Sebastian, J.S.V.; Huang, J.; Wang, G.; Dassanayake, M.; Finnegan, P.M.; Wee, A.K. Comparative transcriptomics of the chilling stress response in two Asian mangrove species, Bruguiera gymnorhiza and Rhizophora apiculata. Tree Physiol. 2024, 44, tpae019. [Google Scholar] [CrossRef] [PubMed]
- Lovén, J.; Orlando, D.A.; Sigova, A.A.; Lin, C.Y.; Rahl, P.B.; Burge, C.B.; Levens, D.L.; Lee, T.I.; Young, R.A. Revisiting Global Gene Expression Analysis. Cell 2012, 151, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Rajeev, L.; da Rocha, U.N.; Klitgord, N.; Luning, E.G.; Fortney, J.; Axen, S.D.; Shih, P.M.; Bouskill, N.J.; Bowen, B.P.; AKerfeld, C.; et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 2013, 7, 2178–2191. [Google Scholar] [CrossRef]
Site 1 | Site 2 | Site 3 | |
---|---|---|---|
Location | 62°39′39.4847″S 61°5′46.9031″ W | 62°39′55.785″ S 61°6′02.052″ W | 62°39′50.5″ S, 61°06′01.6″ W |
Sampling date | 9 January 2023 | 9 January 2023 | 11 January 2023 |
Sampling time | 15:55:00 | 17:07:00 | 18:50:00 |
Characteristics | Biocrust dominated by lichens and moss | Algae-dominated biocrust; 100–150 m away from petrel nests and dead seals | Algae-dominated biocrust; 30 m away from last tent in camp, mild human disturbance |
Soil temperature | 4.6 °C | 3.8 °C | 2.8 °C |
Air temperature | 2.3 °C | 2.2 °C | 2.0 °C |
Relative humidity | 99.9% | 100% | 99.8% |
Stress | No. of Transcripts Regulated in K. flaccidum | No. of Transcripts Regulated in K. dissectum | ||
---|---|---|---|---|
Upregulated | Downregulated | Upregulated | Downregulated | |
Cold stress | 8576 | 12,725 | 8004 | 7556 |
Desiccation | 4435 | 5034 | 1897 | 3957 |
Site 1 | Site 3 | ||
---|---|---|---|
Raw reads | Bases before processing | 7,825,615,239 | 11,906,629,319 |
De novo metatranscriptome assembly | No. transcripts | 679,102 | 300,904 |
No. genes | 534,509 | 227,696 | |
N50 [bases] | 491 | 736 | |
Hits with Klebsormidium BLAST library | 46,341 | 23,618 | |
BLAST analysis | Similarity > 98%, e-value < 1 × 10−66 | 123 | 81 |
Manual selection | Selected transcripts used for GMIs | 35 | 31 |
Expression Profile in K. flaccidum Stress Transcriptome | Site 1 | Site 3 | |
---|---|---|---|
Effect of cold | Constantly expressed transcripts | 13 | 13 |
Regulated transcripts | 11 | 10 | |
Effect of desiccation | Constantly expressed transcripts | 12 | 12 |
Regulated transcripts | 8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palaniappan, D.; Pushkareva, E.; Becker, B. Detecting Environmental Stress In Situ Using Molecular Data: A Case Study with the Filamentous Green Alga Klebsormidium and Antarctic Biocrusts. Microorganisms 2025, 13, 2108. https://doi.org/10.3390/microorganisms13092108
Palaniappan D, Pushkareva E, Becker B. Detecting Environmental Stress In Situ Using Molecular Data: A Case Study with the Filamentous Green Alga Klebsormidium and Antarctic Biocrusts. Microorganisms. 2025; 13(9):2108. https://doi.org/10.3390/microorganisms13092108
Chicago/Turabian StylePalaniappan, Deepamalini, Ekaterina Pushkareva, and Burkhard Becker. 2025. "Detecting Environmental Stress In Situ Using Molecular Data: A Case Study with the Filamentous Green Alga Klebsormidium and Antarctic Biocrusts" Microorganisms 13, no. 9: 2108. https://doi.org/10.3390/microorganisms13092108
APA StylePalaniappan, D., Pushkareva, E., & Becker, B. (2025). Detecting Environmental Stress In Situ Using Molecular Data: A Case Study with the Filamentous Green Alga Klebsormidium and Antarctic Biocrusts. Microorganisms, 13(9), 2108. https://doi.org/10.3390/microorganisms13092108