Response of Soil Microbial Communities Between Different Vegetation Types in the Greater and Lesser Khingan Mountains Ecotone in Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Soil Sample Collection
2.3. Soil Physicochemical Properties Analyses
2.4. DNA Extraction, Metagenome Sequencing, and Data Processing
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soils in Different Forest Types
3.2. Soil Microbial Community Diversity in Different Forest Types
3.3. Composition of Soil Microbial Communities in Different Forest Types
3.4. Main Shapers of Soil Microbial Community Structure
4. Discussion
4.1. Differences in the Physicochemical Properties of Soils in Different Forest Types
4.2. Differences in Soil Microbial Community Diversity and Composition Among Different Forest Types
4.3. Soil Microbial Community Diversity and Composition Are Related to Soil Physicochemical Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, J.J.; Zhou, Y.B.; Yin, Y.; Wei, Y.W.; Qin, S.J.; Zhu, W.X. Soil bacterial community structure characteristics in coniferous forests of Montane Regions of eastern Liaoning Province, China. Acta Ecol. Sin. 2019, 39, 997–1008. [Google Scholar] [CrossRef]
- Sui, X.; Zeng, X.N.; Li, M.S.; Weng, X.H.; Frey, B.; Yang, L.B.; Li, M.H. Influence of different vegetation types on soil physicochemical parameters and fungal communities. Microorganisms 2022, 10, 829. [Google Scholar] [CrossRef]
- Adamczyk, M.; Hagedorn, F.; Wipf, S.; Donhauser, J.; Vittoz, P.; Rixen, C.; Frossard, A.; Theurllat, J.P.; Frey, B. The soil microbiome of Gloria Mountain summits in the Swiss Alps. Front. Microbiol. 2019, 10, 1080. [Google Scholar] [CrossRef] [PubMed]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Pisani, O.; Frey, S.D.; Simpson, A.J.; Simpson, M.J. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level. Biogeochemistry 2015, 123, 391–409. [Google Scholar] [CrossRef]
- Widdig, M.; Heintz-Buschart, A.; Schleuss, P.M.; Guhr, A.; Borer, E.T.; Seabloom, E.W.; Spohn, M. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biol. Biochem. 2020, 151, 108041. [Google Scholar] [CrossRef]
- Chai, Y.F.; Cao, Y.; Yue, M.; Tian, T.T.; Yin, Q.L.; Dang, H.; Quan, J.X.; Zhang, R.C.; Wang, M. Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau. Front. Microbiol. 2019, 10, 895. [Google Scholar] [CrossRef]
- Qiang, W.; He, L.L.; Zhang, Y.; Liu, B.; Liu, Y.; Liu, Q.H.; Pang, X.Y. Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in southwest China. Catena 2021, 202, 105251. [Google Scholar] [CrossRef]
- Chirilǎ Bǎbǎu, A.M.; Micle, V.; Damian, G.E.; Sur, I.M. Lead and copper removal from sterile dumps by phytoremediation with Robinia pseudoacacia. Sci. Rep. 2024, 14, 9842. [Google Scholar] [CrossRef]
- Deng, J.J.; Zhang, Y.; Yin, Y.; Zhu, X.; Zhu, W.X.; Zhou, Y.B. Comparison of soil bacterial community and functional characteristics following afforestation in the semi-arid areas. PeerJ 2019, 7, e7141. [Google Scholar] [CrossRef]
- Bach, L.H.; Grytnes, J.A.; Halvorsen, R.; Ohlson, M. Tree influence on soil microbial community structure. Soil Biol. Biochem. 2010, 42, 1934–1943. [Google Scholar] [CrossRef]
- Prada-Salcedo, L.D.; Prada-Salcedo, J.P.; Heintz-Buschart, A.; Buscot, F.; Goldmann, K. Effects of tree composition and soil depth on structure and functionality of belowground microbial communities in temperate European forests. Front. Microbiol. 2022, 13, 920618. [Google Scholar] [CrossRef]
- Lin, Q.; Baldrian, P.; Li, L.J.; Novotny, V.; Heděnec, P.; Kukla, J.; Umari, R.; Meszárošová, L.; Frouz, J. Dynamics of soil bacterial and fungal communities during the secondary succession following swidden agriculture in lowland forests. Front. Microbiol. 2021, 12, 1421. [Google Scholar] [CrossRef]
- Chen, Y.; Xi, J.J.; Xiao, M.; Wang, S.L.; Chen, W.J.; Liu, F.Q.; Shao, Y.Z.; Yuan, Z.L. Soil fungal communities show more specificity than bacteria for plant species composition in a temperate forest in China. BMC Microbiol. 2022, 22, 208. [Google Scholar] [CrossRef]
- Yang, L.B.; Sui, X.; Zhang, T.; Zhu, D.G.; Cui, F.X.; Chai, C.R.; Ni, H.W. Soil bacterial community structure and diversity of brown coniferous forest in Daxing’Anling Mountain, China. Bangl. J. Bot. 2018, 47, 677–688. [Google Scholar]
- Sui, X.; Zhang, R.T.; Frey, B.; Yang, L.B.; Liu, Y.N.; Ni, H.W.; Li, M.H. Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China. Ecol. Evol. 2021, 11, 2194–2208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Wang, W.C.; Fang, X.Q.; Ye, Y.; Zheng, J.Y. Vegetation of Northeast China during the late seventeenth to early twentieth century as revealed by historical documents. Reg. Environ. Change 2011, 11, 869–882. [Google Scholar] [CrossRef]
- Liu, A.W.; Yin, W.P.; Ma, D.L.; Wang, X.; Kan, S.P. Vertical distribution patterns and potential activities of methanogenic and methanotrophic communities in permafrost peatlands of Greater Khingan Mountain. Ecol. Indic. 2025, 175, 113539. [Google Scholar] [CrossRef]
- Liu, L.; Xie, R.F.; Ma, D.L.; Fu, L.Y.; Wu, X.W. Effects of snow removal on seasonal dynamics of soil bacterial community and enzyme activity. Eur. J. Soil Biol. 2023, 119, 103564. [Google Scholar] [CrossRef]
- Vishnivetskaya, T.A.; Layton, A.C.; Lau, M.C.Y.; Chauhan, A.; Cheng, K.R.; Meyers, A.J.; Murphy, J.R.; Rogers, A.W.; Saarunya, G.S.; Williams, D.E.; et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol. Ecol. 2014, 87, 217–230. [Google Scholar] [CrossRef]
- Canarini, A.; Schmidt, H.; Fuchslueger, L.; Martin, V.; Herbold, C.W.; Zezula, D.; Gündler, P.; Hasibeder, R.; Jecmenica, M.; Bahn, M.; et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat. Commun. 2021, 12, 5308. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wei, J.; Zhou, X.L.; Tian, Q.; He, W.P.; Cao, X.P. Dynamic restoration mechanism of plant community in the burned area of northeastern margin of Qinghai-Tibet Plateau. Front. Plant Sci. 2024, 15, 1368814. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jia, X.Y.; Yan, W.M.; Zhong, Y.Q.W.; Shangguan, Z.P. Changes in soil microbial community structure during long-term secondary succession. Land Degrad. Dev. 2020, 31, 1151–1166. [Google Scholar] [CrossRef]
- Vitali, F.; Mastromei, G.; Senatore, G.; Caroppo, C.; Casalone, E. Long lasting effects of the conversion from natural forest to poplar plantation on soil microbial communities. Microbiol. Res. 2016, 182, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Cao, G.C.; Zhang, Z.; Zhang, J.H.; Yan, X. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China. J. Arid. Land. 2023, 15, 359–376. [Google Scholar] [CrossRef]
- Bei, S.K.; Zhang, Y.L.; Li, T.T.; Christie, P.; Li, X.L.; Zhang, J.L. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agric. Ecosyst. Environ. 2018, 260, 58–69. [Google Scholar] [CrossRef]
- Kooch, Y.; Tarighat, F.S.; Hosseini, S.M. Tree species effects on soil chemical, biochemical and biological features in mixed Caspian lowland forests. Trees 2017, 31, 863–872. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldívar, R. Soil carbon sequestration-An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Meena, M.; Yadav, G.; Sonigra, P.; Nagda, A.; Mehta, T.; Swapnil, P.; Harish; Marwal, A.; Kumar, S. Multifarious responses of forest soil microbial community toward climate change. Microb. Ecol. 2023, 86, 49–74. [Google Scholar] [CrossRef]
- Schroeter, S.A.; Eveillard, D.; Chaffron, S.; Zoppi, J.; Kampe, B.; Lohmann, P.; Jehmlich, N.; von Bergen, M.; Sanchez-Arcos, C.; Pohnert, G.; et al. Microbial community functioning during plant litter decomposition. Sci. Rep. 2022, 12, 7451. [Google Scholar] [CrossRef]
- Maillard, F.; Colin, Y.; Viotti, C.; Buée, M.; Brunner, I.; Brabcová, V.; Kohout, P.; Baldrian, P.; Kennedy, P.G. A cryptically diverse microbial community drives organic matter decomposition in forests. Appl. Soil Ecol. 2024, 193, 105148. [Google Scholar] [CrossRef]
- An, R.; Ma, F.Y.; Cui, H.R.; Qin, G.H.; Huang, Y.L.; Tian, Q. Analysis of bacterial community structure and diversity characteristics of mixed forest of Robinia pseudoacacia and Ailanthus altissima and there pure forest in the Yellow River Delta. Acta. Ecol. Sin. 2019, 39, 7960–7967. [Google Scholar]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef]
- Li, Y.N.; Qian, Z.Y.; Li, D.J. Effects of tree diversity on soil microbial community in a subtropical forest in Southwest China. Eur. J. Soil Biol. 2023, 116, 103490. [Google Scholar] [CrossRef]
- Urbanová, M.; Snajdr, J.; Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015, 84, 53–64. [Google Scholar] [CrossRef]
- Li, J.Y.; Li, X.Y.; Guo, S.Q.; Xi, J.J.; Shao, Y.Z.; Chen, Y.; Yuan, Z.L. Soil microorganism distributions depend on habitat partitioning of topography in a temperate mountain forest. Microbiol. Spectr. 2025, 13, e02056-24. [Google Scholar] [CrossRef]
- Tedersoo, L.; Drenkhan, R.; Abarenkov, K.; Anslan, S.; Bahram, M.; Bitenieks, K.; Buegger, F.; Gohar, D.; Hagh-Doust, N.; Klavina, D.; et al. The influence of tree genus, phylogeny, and richness on the specificity, rarity, and diversity of ectomycorrhizal fungi. Environ. Microbiol. Rep. 2024, 16, e13253. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Shen, F.Y.; Liu, Y.; Yang, Y.C.; Wang, J.; Purahong, W.; Yang, L.X. Contrasting altitudinal patterns and co-occurrence networks of soil bacterial and fungal communities along soil depths in the cold-temperate montane forests of China. Catena 2022, 209, 105844. [Google Scholar] [CrossRef]
- Winder, R.S.; Lamarche, J.; Constabel, C.P.; Hamelin, R.C. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils. Front. Microbiol. 2013, 4, 290. [Google Scholar] [CrossRef]
- Chen, X.B.; Su, Y.R.; He, X.Y.; Liang, Y.M.; Wu, J.S. Comparative analysis of basidiomycetous laccase genes in forest soils reveals differences at the cDNA and DNA levels. Plant Soil. 2013, 366, 321–331. [Google Scholar] [CrossRef]
- Goldmann, K.; Schöning, I.; Buscot, F.; Wubet, T. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front. Microbiol. 2015, 6, 1300. [Google Scholar] [CrossRef]
- Fracchia, F.; Guinet, F.; Engle, N.L.; Tschaplinski, T.J.; Veneault-Fourrey, C.; Deveau, A. Microbial colonisation rewires the composition and content of poplar root exudates, root and shoot metabolomes. Microbiome 2024, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.A.; Zhelezova, A.D.; Chernov, T.I.; Dedysh, S.N. Linking ecology and systematics of acidobacteria: Distinct habitat preferences of the Acidobacteriia and Blastocatellia in tundra soils. PLoS ONE 2020, 15, e0230157. [Google Scholar] [CrossRef] [PubMed]
- Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.Z.; El-Enshasy, H.A.; Dailin, D.J.; Suriani, N.L. Recent understanding of soil Acidobacteria and their ecological significance: A critical review. Front. Microbiol. 2020, 11, 580024. [Google Scholar] [CrossRef]
- Liu, J.J.; Sui, Y.Y.; Yu, Z.H.; Yao, Q.; Shi, Y.; Chu, H.Y.; Jin, J.; Liu, X.B.; Wang, G.H. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol. Biochem. 2016, 95, 212–222. [Google Scholar] [CrossRef]
- Kim, H.M.; Lee, M.J.; Jung, J.Y.; Hwang, C.Y.; Kim, M.; Ro, H.M.; Chun, J.; Lee, Y.K. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. J. Microbiol. 2016, 54, 713–723. [Google Scholar] [CrossRef]
- Demina, T.; Marttila, H.; Pessi, I.S.; Männistö, M.K.; Dutilh, B.E.; Roux, S.; Hultman, J. Tunturi virus isolates and metagenome-assembled viral genomes provide insights into the virome of Acidobacteriota in Arctic tundra soils. Microbiome 2025, 13, 79. [Google Scholar] [CrossRef]
- Meng, M.; Wang, B.; Zhang, Q.L.; Tian, Y. Driving force of soil microbial community structure in a burned area of Daxing’anling, China. J. For. Res. 2021, 32, 1723–1738. [Google Scholar] [CrossRef]
Sample | QM | BP | QB | LB | LG | Effect_Size | F_Stat_Sig |
---|---|---|---|---|---|---|---|
pH | 5.34 ± 0.07 a | 5.08 ± 0.05 b | 4.86 ± 0.07 c | 4.80 ± 0.05 c | 4.79 ± 0.04 c | 0.873 | F(4,10) = 17.26 *** |
SWC (%) | 18.61 ± 1.25 b | 14.93 ± 1.29 b | 14.22 ± 1.18 b | 18.18 ± 1.08 b | 23.40 ± 2.01 a | 0.731 | F(4,10) = 6.78 ** |
NH4+-N (mg/kg) | 10.47 ± 1.10 b | 3.88 ± 0.53 d | 5.68 ± 0.74 cd | 8.08 ± 0.55 bc | 11.45 ± 0.98 a | 0.859 | F(4,10) = 15.22 *** |
NO3−-N (mg/kg) | 0.67 ± 0.05 b | 0.30 ± 0.05 c | 0.11 ± 0.02 d | 0.36 ± 0.05 c | 1.19 ± 0.04 a | 0.974 | F(4,10) = 95.53 *** |
TN (g/kg) | 2.50 ± 0.11 c | 4.02 ± 0.16 b | 2.53 ± 0.11 c | 3.62 ± 012 b | 5.29 ± 0.15 a | 0.969 | F(4,10) = 78.65 *** |
TP (g/kg) | 0.79 ± 0.11 b | 0.94 ± 0.08 b | 0.65 ± 0.06 b | 0.87 ± 0.06 b | 1.37 ± 0.11 a | 0.793 | F(4,10) = 9.59 ** |
TC (g/kg) | 45.14 ± 1.84 c | 52.25 ± 1.64 b | 35.28 ± 1.65 d | 44.61 ± 1.50 c | 64.81 ± 2.30 a | 0.937 | F(4,10) = 36.95 *** |
DOC (mg/kg) | 224.58 ± 7.15 b | 209.08 ± 9.69 b | 254.24 ± 8.48 a | 184.22 ± 6.54 c | 225.11 ± 4.05 b | 0.826 | F(4,10) = 11.85 *** |
POC (mg/g) | 37.10 ± 1.81 b | 34.26 ± 1.99 b | 21.78 ± 1.35 c | 32.72 ± 1.53 b | 51.16 ± 2.09 a | 0.934 | F(4,10) = 35.31 *** |
MAOC (mg/g) | 2.42 ± 0.57 ab | 2.21 ± 0.15 b | 3.13 ± 0.18 ab | 3.35 ± 0.14 a | 2.79 ± 0.16 ab | 0.515 | F(4,10) = 2.66 ns |
Soil Physicochemical Parameters | Bacteria Shannon | Bacteria Chao 1 | Fungi Shannon | Fungi Chao 1 |
---|---|---|---|---|
SWC | 0.284 | 0.21 | −0.232 | −0.204 |
DOC | −0.223 | −0.693 ** | −0.321 | −0.554 * |
NH4+-N | 0.127 | −0.246 | −0.296 | −0.232 |
NO3−-N | 0.354 | 0.079 | 0.050 | −0.057 |
TN | 0.531 * | 0.393 | 0.093 | −0.100 |
TC | 0.624 * | 0.379 | 0.186 | −0.082 |
TP | 0.357 | 0.211 | −0.125 | −0.275 |
pH | −0.464 | −0.286 | −0.043 | −0.064 |
POC | 0.354 | 0.104 | −0.025 | −0.114 |
MAOC | −0.004 | −0.032 | −0.071 | 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, W.; Guo, X.; Ma, D.; Yu, H. Response of Soil Microbial Communities Between Different Vegetation Types in the Greater and Lesser Khingan Mountains Ecotone in Northeast China. Microorganisms 2025, 13, 2107. https://doi.org/10.3390/microorganisms13092107
Yin W, Guo X, Ma D, Yu H. Response of Soil Microbial Communities Between Different Vegetation Types in the Greater and Lesser Khingan Mountains Ecotone in Northeast China. Microorganisms. 2025; 13(9):2107. https://doi.org/10.3390/microorganisms13092107
Chicago/Turabian StyleYin, Weiping, Xinmiao Guo, Dalong Ma, and Huan Yu. 2025. "Response of Soil Microbial Communities Between Different Vegetation Types in the Greater and Lesser Khingan Mountains Ecotone in Northeast China" Microorganisms 13, no. 9: 2107. https://doi.org/10.3390/microorganisms13092107
APA StyleYin, W., Guo, X., Ma, D., & Yu, H. (2025). Response of Soil Microbial Communities Between Different Vegetation Types in the Greater and Lesser Khingan Mountains Ecotone in Northeast China. Microorganisms, 13(9), 2107. https://doi.org/10.3390/microorganisms13092107