Microbial Communities and Environmental Factors Interact to Regulate Soil Respiration Under Nitrogen Addition Conditions in Alpine Meadows in Northwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Determination of Soil Physicochemical Properties
2.4. Measurement of Soil Enzyme Activities
2.5. Soil Respiration Measurements
2.6. Soil Microbiological Sequencing
2.7. Statistical Analyses
3. Results
3.1. Soil Respiration and Soil Abiotic Factors Are Affected by Different Levels of Nitrogen Addition
3.2. Structure and Functional Features of Soil Microbial Communities Across Varying Nitrogen Addition Levels
3.3. Soil Respiration and Its Relationships with Soil Environmental Factors, Enzyme Activities, and Soil Microbial Communities
4. Discussion
4.1. Nitrogen Addition Modulates Rs by Functionally Restructuring Soil Microbial Guilds
4.2. Multifactor Regulation of the Rs Response to Nitrogen Addition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-G | α-1,4-glucosidase |
β-G | β-1,4-glucosidase |
ALP | Alkaline phosphatase |
AP | Available phosphorus |
CBH | Cellobiohydrolase |
EC | Electrical conductivity |
LAP | L-leucine aminopeptidase |
LSD | Least significant difference |
MFA | Multiple factor analysis |
NAG | N-acetylglucosaminidase |
NH4+-N | Soil ammonium nitrogen |
NO3−-N | Soil nitrate nitrogen |
PLS-PM | Partial least squares path modeling |
POD | Peroxidase |
Rs | Soil respiration |
RDA | Redundancy analysis |
TN | Total nitrogen |
SOC | Soil organic carbon |
ST | Soil temperature |
References
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Zhang, H.; Dong, L.; Zuo, Y.; Li, X.; Wang, W. 12-year N addition enhances soil organic carbon decomposition by mediating microbial community composition in temperate plantations. Appl. Soil Ecol. 2025, 206, 105856. [Google Scholar] [CrossRef]
- Zhang, D.; Den, J.; Zhu, Y.; Wang, Y.-n.; Chen, Z.-y.; Zhao, X.; Hu, W.-y. Effect of Nitrogen Addition on the Organic Carbon Pool of Grassland Soil Aggregates in Loess Hilly Region. Acta Agrestia Sin. 2023, 31, 2031. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Lu, X.; Zhong, B.; Guo, Y.; Lu, X.; Zhao, Y.; He, W.; Wang, S.; Zhang, X. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl. Acad. Sci. USA 2022, 119, e2121998119. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, C.; Chen, H.Y.H. Nitrogen deposition suppresses soil respiration by reducing global belowground activity. Sci. Total Environ. 2024, 921, 171246. [Google Scholar] [CrossRef]
- Lee, K.-H.; Jose, S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For. Ecol. Manag. 2003, 185, 263–273. [Google Scholar] [CrossRef]
- Tiruvaimozhi, Y.V.; Sankaran, M. Soil respiration in a tropical montane grassland ecosystem is largely heterotroph-driven and increases under simulated warming. Agric. For. Meteorol. 2019, 276, 107619. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Li, G. Effects of nitrogen deposition on N2O emission in a wet meadow on the Qinghai-Tibet Plateau. Appl. Soil Ecol. 2023, 191, 105049. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 2016, 25, 475–488. [Google Scholar] [CrossRef]
- Riggs, C.E.; Hobbie, S.E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol. Biochem. 2016, 99, 54–65. [Google Scholar] [CrossRef]
- Li, C.; Song, X.; Yang, B.; Zhang, Y.; Zhang, H.; Zong, Y.; Shangguan, Z.; Hao, X. Long-Term Nitrogen Addition Stimulated Soil Respiration in a Rainfed Wheat Field on the Loess Plateau. Agronomy 2024, 14, 1136. [Google Scholar] [CrossRef]
- Ngaba, M.J.Y.; Uwiragiye, Y.; Hu, B.; Zhou, J.; Dannenmann, M.; Calanca, P.; Bol, R.; de Vries, W.; Kuzyakov, Y.; Rennenberg, H. Effects of environmental changes on soil respiration in arid, cold, temperate, and tropical zones. Sci. Total Environ. 2024, 952, 175943. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Campbell, B.J.; Polson, S.W.; Hanson, T.E.; Mack, M.C.; Schuur, E.A. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 2010, 12, 1842–1854. [Google Scholar] [CrossRef]
- Coolon, J.D.; Jones, K.L.; Todd, T.C.; Blair, J.M.; Herman, M.A. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS ONE 2013, 8, e67884. [Google Scholar] [CrossRef]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef]
- Widdig, M.; Heintz-Buschart, A.; Schleuss, P.-M.; Guhr, A.; Borer, E.T.; Seabloom, E.W.; Spohn, M. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biol. Biochem. 2020, 151, 108041. [Google Scholar] [CrossRef]
- Jing, H.; Li, J.; Yan, B.; Wei, F.; Wang, G.; Liu, G. The effects of nitrogen addition on soil organic carbon decomposition and microbial C-degradation functional genes abundance in a Pinus tabulaeformis forest. For. Ecol. Manag. 2021, 489, 119098. [Google Scholar] [CrossRef]
- Yin, R.; Li, L.; Li, X.; Liu, H.; Yao, J.; Ma, C.; Pu, L.; Peng, Y.; Lei, Z. Positive effects of nitrogen fertilization on the flavor ingredients of tea (Wuniuzao), soil physicochemical properties, and microbial communities. Environ. Technol. Innov. 2025, 37, 103911. [Google Scholar] [CrossRef]
- Bengtson, P.; Bengtsson, G. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecol. Lett. 2007, 10, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Janssens, I.; Dieleman, W.; Luyssaert, S.; Subke, J.-A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Miehe, G.; Schleuss, P.-M.; Seeber, E.; Babel, W.; Biermann, T.; Braendle, M.; Chen, F.; Coners, H.; Foken, T.; Gerken, T.; et al. The Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci. Total Environ. 2019, 648, 754–771. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Wang, J.; Ding, X. Effects of Short-Term Nitrogen Additions on Biomass and Soil Phytochemical Cycling in Alpine Grasslands of Tianshan, China. Plants 2024, 13, 1103. [Google Scholar] [CrossRef] [PubMed]
- Juan, W.; Junjie, L.; Chao, L.; Xiaoyu, D.; Yong, W. Species niche and interspecific associations alter flora structure along a fertilization gradient in an alpine meadow of Tianshan Mountain, Xinjiang. Ecol. Indic. 2023, 147, 109953. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Song, L.; Gong, Y.; Lu, C.; Yue, P.; Tian, C.; Zhang, F. Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia 2015, 177, 65–72. [Google Scholar] [CrossRef]
- Wang, J.; Song, B.; Ma, F.; Tian, D.; Li, Y.; Yan, T.; Quan, Q.; Zhang, F.; Li, Z.; Wang, B.; et al. Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Funct. Ecol. 2019, 33, 2239–2253. [Google Scholar] [CrossRef]
- Guo, N.; Wang, A.; Allan Degen, A.; Deng, B.; Shang, Z.; Ding, L.; Long, R. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau. Atmos. Environ. 2018, 174, 92–98. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Chang, S.X.; Wang, J.; Shi, Z.; Huang, X.; Wen, Y.; Lu, L.; Cai, D. Stable soil organic carbon is positively linked to microbial-derived compounds in four plantations of subtropical China. Biogeosci. Discuss. 2013, 2013, 18093–18119. [Google Scholar] [CrossRef]
- Shidan, B. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Ciavatta, C.; Govi, M.; Antisari, L.V.; Sequi, P. Determination of organic carbon in aqueous extracts of soils and fertilizers. Commun. Soil Sci. Plant Anal. 1991, 22, 795–807. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 595–624. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, X.; Xiong, Z.; Xie, Y.; Xing, G.; Shi, S.; Zhu, Z. Spatial and temporal variation of inorganic nitrogen wet deposition to the Yangtze River Delta Region, China. Water Air Soil Pollut. 2009, 203, 277–289. [Google Scholar] [CrossRef]
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- German, D.P.; Weintraub, M.N.; Grandy, A.S.; Lauber, C.L.; Rinkes, Z.L.; Allison, S.D. Optimization of hydrolytic and oxidative enzyme assays for fluorometric measurement in soils. Soil Biol. Biochem. 2011, 43, 1387–1397. [Google Scholar] [CrossRef]
- Wang, J.; Teng, D.; He, X.; Qin, L.; Yang, X.; Lv, G. Spatial non-stationarity effects of driving factors on soil respiration in an arid desert region. CATENA 2021, 207, 105617. [Google Scholar] [CrossRef]
- LI-COR Biosciences. LI-8100A Automated Soil CO2 Flux System Instruction Manual; LI-COR Biosciences: Lincoln, NE, USA, 2023. [Google Scholar]
- Zhang, X.; Song, X.; Wang, T.; Huang, L.; Ma, H.; Wang, M.; Tan, D. The responses to long-term nitrogen addition of soil bacterial, fungal, and archaeal communities in a desert ecosystem. Front. Microbiol. 2022, 13, 1015588. [Google Scholar] [CrossRef]
- Qu, F.; Cheng, H.; Han, Z.; Wei, Z.; Song, C. Identification of driving factors of lignocellulose degrading enzyme genes in different microbial communities during rice straw composting. Bioresour. Technol. 2023, 381, 129109. [Google Scholar] [CrossRef]
- Kalntremtziou, M.; Papaioannou, I.A.; Vangalis, V.; Polemis, E.; Pappas, K.M.; Zervakis, G.I.; Typas, M.A. Evaluation of the lignocellulose degradation potential of Mediterranean forests soil microbial communities through diversity and targeted functional metagenomics. Front. Microbiol. 2023, 14, 1121993. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Lynch, L.; Xie, H.; Bao, X.; Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. 2021, 153, 108112. [Google Scholar] [CrossRef]
- Floudas, D.; Held, B.W.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martínez, A.T.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Li, H.; Sayer, E.J.; Liu, Z.; Li, L.; Chen, Y.; Qin, G.; Li, J.; Zhou, J.; Huang, X.; et al. Enhanced abundance of generalist and litter saprotrophs explain increased tropical forest soil carbon with long-term nitrogen deposition. Funct. Ecol. 2023, 37, 2282–2296. [Google Scholar] [CrossRef]
- Qin, X.; Bao, R.; Huang, W.; Li, Q. Facilitating the enzymatic hydrolysis of polysaccharides by carbohydrate active enzymes and enhanced humification process with microbial consortium revealed by metagenomics analysis during cow manure-straw composting. J. Environ. Chem. Eng. 2025, 13, 115428. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, B.; Li, J.; Ning, Y.; Zhu, J.; Li, H. District ammonium-to-nitrate ratios change soil N dynamics and shape inverse patterns of resource acquisition strategy and biomass production of four urban greening trees. Sci. Total Environ. 2025, 967, 178841. [Google Scholar] [CrossRef]
- Crowther, T.W.; Maynard, D.S.; Crowther, T.R.; Peccia, J.; Smith, J.R.; Bradford, M.A. Untangling the fungal niche: The trait-based approach. Front. Microbiol. 2014, 5, 579. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.-X. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Appl. Soil Ecol. 2017, 114, 99–104. [Google Scholar] [CrossRef]
- Dong, L.; Berg, B.; Gu, W.; Wang, Z.; Sun, T. Effects of different forms of nitrogen addition on microbial extracellular enzyme activity in temperate grassland soil. Ecol. Process. 2022, 11, 36. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; Weintraub, M.N.; Gartner, T.B.; Waldrop, M.P. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In Soil Enzymology; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Stroud, E.; Craig, B.L.H.; Henry, H.A.L. Short-term vs. long-term effects of warming and nitrogen addition on soil extracellular enzyme activity and litter decomposition in a grass-dominated system. Plant Soil 2022, 481, 165–177. [Google Scholar] [CrossRef]
- He, L.; Lai, C.-T.; Mayes, M.A.; Murayama, S.; Xu, X. Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study. Glob. Change Biol. 2021, 27, 3035–3051. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, L.; Wang, X. Freeze-thaw processes alter the peak characteristics and temperature hysteresis of diel soil respiration in a Tibetan alpine steppe. Agric. For. Meteorol. 2025, 362, 110358. [Google Scholar] [CrossRef]
- Salazar, A.; Lennon, J.T.; Dukes, J.S. Microbial dormancy improves predictability of soil respiration at the seasonal time scale. Biogeochemistry 2019, 144, 103–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Wang, J.; Bahethan, B.; Chen, Y.; Liu, J.; Lü, G. Microbial Communities and Environmental Factors Interact to Regulate Soil Respiration Under Nitrogen Addition Conditions in Alpine Meadows in Northwest China. Microorganisms 2025, 13, 2098. https://doi.org/10.3390/microorganisms13092098
Cao X, Wang J, Bahethan B, Chen Y, Liu J, Lü G. Microbial Communities and Environmental Factors Interact to Regulate Soil Respiration Under Nitrogen Addition Conditions in Alpine Meadows in Northwest China. Microorganisms. 2025; 13(9):2098. https://doi.org/10.3390/microorganisms13092098
Chicago/Turabian StyleCao, Xiaojuan, Jinlong Wang, Bota Bahethan, Yudong Chen, Junjie Liu, and Guanghui Lü. 2025. "Microbial Communities and Environmental Factors Interact to Regulate Soil Respiration Under Nitrogen Addition Conditions in Alpine Meadows in Northwest China" Microorganisms 13, no. 9: 2098. https://doi.org/10.3390/microorganisms13092098
APA StyleCao, X., Wang, J., Bahethan, B., Chen, Y., Liu, J., & Lü, G. (2025). Microbial Communities and Environmental Factors Interact to Regulate Soil Respiration Under Nitrogen Addition Conditions in Alpine Meadows in Northwest China. Microorganisms, 13(9), 2098. https://doi.org/10.3390/microorganisms13092098