Distinct Host-Specific Bacterial Assemblages in Four Congeneric Pocillopora Corals Reveal a Minimal Core Microbiome and Probiotic Partitioning
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Genomic DNA Isolation and PCR Amplification
2.3. High-Throughput Sequencing
2.4. Amplicon Sequence Processing
2.5. Statistical Analysis
3. Results
3.1. Sequencing Information and Bacterial Diversity Analysis
3.2. Structure of Coral-Associated Bacterial Communities
3.3. Composition of the Core Microbiome
3.4. Predicted Functional Profiles in Pocillopora Corals
4. Discussion
4.1. Bacterial Diversity in Pocillopora Corals
4.2. Core Bacterial Communities in Pocillopora Corals
4.3. Functional Profiles in Pocillopora Corals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASV | Amplicon Sequence Variants |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
NMDS | Non-metric Multidimensional Scaling |
PERMANOVA | Permutational Multivariate Analysis of Variance |
References
- Fredrik Moberg, C.F. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 1999, 29, 215–233. [Google Scholar] [CrossRef]
- Quigley, K.M.; Baird, A.H. Future climate warming threatens coral reef function on World Heritage reefs. Glob. Change Biol. 2024, 30, e17407. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Tong, H.; Cai, L.; Huang, H. Transgenerational Effects on the Coral Pocillopora damicornis Microbiome Under Ocean Acidification. Microb. Ecol. 2021, 82, 572–580. [Google Scholar] [CrossRef]
- Yan, F.; Niu, Z. Impacts of pollution on coral bacterial and metabolites diversity across Dapeng Cove of South China sea. Sci. Rep. 2025, 15, 24107. [Google Scholar] [CrossRef] [PubMed]
- Burdett, H.L.; Albright, R.; Foster, G.L.; Mass, T.; Page, T.M.; Rinkevich, B.; Schoepf, V.; Silverman, J.; Kamenos, N.A. Including environmental and climatic considerations for sustainable coral reef restoration. PLoS Biol. 2024, 22, e3002542. [Google Scholar] [CrossRef]
- Voolstra, C.R.; Raina, J.-B.; Dörr, M.; Cárdenas, A.; Pogoreutz, C.; Silveira, C.B.; Mohamed, A.R.; Bourne, D.G.; Luo, H.; Amin, S.A.; et al. The coral microbiome in sickness, in health and in a changing world. Nat. Rev. Microbiol. 2024, 22, 460–475. [Google Scholar] [CrossRef]
- Xu, M.; Cheng, K.; Xiao, B.; Tong, M.; Cai, Z.; Jong, M.-C.; Chen, G.; Zhou, J.; Wang, J. Bacterial Communities Vary from Different Scleractinian Coral Species and between Bleached and Non-Bleached Corals. Microbiol. Spectr. 2023, 11, e0491022. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, H.; Qiu, J.-W.; Huang, D.; Zhou, X.; Zheng, X. Symbiotic Symbiodiniaceae mediate coral-associated bacterial communities along a natural thermal gradient. Environ. Microbiome 2025, 20, 72. [Google Scholar] [CrossRef]
- Irudayarajan, L.; Ravindran, C.; Raveendran, H.P. Antimicrobial activity of coral-associated beneficial bacteria against coral disease-causing microbial pathogens. J. Basic. Microbiol. 2024, 64, 81–93. [Google Scholar] [CrossRef]
- Van Oppen, M.J.H.; Blackall, L.L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 2019, 17, 557–567. [Google Scholar] [CrossRef]
- Nelson, C.E.; Wegley Kelly, L.; Haas, A.F. Microbial Interactions with Dissolved Organic Matter Are Central to Coral Reef Ecosystem Function and Resilience. Annu. Rev. Mar. Sci. 2023, 15, 431–460. [Google Scholar] [CrossRef]
- Huffmyer, A.S.; Bean, N.K.; Majerová, E.; Harris, C.I.; Drury, C. Variable intraspecific genetic diversity effects impact thermal tolerance in a reef-building coral. Coral Reefs 2022, 42, 119–129. [Google Scholar] [CrossRef]
- Oury, N.; Mona, S.; Magalon, H. Same places, same stories? Genomics reveals similar structuring and demographic patterns for four Pocillopora coral species in the southwestern Indian Ocean. J. Biogeogr. 2023, 51, 754–768. [Google Scholar] [CrossRef]
- von Xylander, N.S.H.; Hedouin, L.; Smith, T.K.; Allison, N. The effect of depth on the composition and saturation of total fatty acids present within the tissues and skeletons of two reef-building corals. Mar. Biol. 2025, 172, 65. [Google Scholar] [CrossRef]
- Qin, Z.; Yu, K.; Chen, S.; Chen, B.; Yao, Q.; Yu, X.; Pan, N.; Wei, X. Significant Changes in Bacterial Communities Associated with Pocillopora Corals Ingestion by Crown-of-Thorns Starfish: An Important Factor Affecting the Coral’s Health. Microorganisms 2022, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Hussein, E.I.; Juhmani, A.-S.F.; Jacob, J.H.; Telfah, M.A.; Al-Razaq, M.A.A.; Al-Horani, F.A.; Al Zoubi, M.S.; Malkawi, H.I. Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities. J. Mar. Sci. Eng. 2022, 10, 863. [Google Scholar] [CrossRef]
- Gantt, S.E.; Kemp, K.M.; Colin, P.L.; Hoadley, K.D.; LaJeunesse, T.C.; Warner, M.E.; Kemp, D.W. Influence of reef habitat on coral microbial associations. Environ. Microbiol. Rep. 2024, 16, e70051. [Google Scholar] [CrossRef]
- Connelly, M.T.; Snyder, G.; Palacio-Castro, A.M.; Gillette, P.R.; Baker, A.C.; Traylor-Knowles, N. Antibiotics reduce Pocillopora coral-associated bacteria diversity, decrease holobiont oxygen consumption and activate immune gene expression. Mol. Ecol. 2023, 32, 4677–4694. [Google Scholar] [CrossRef]
- Ostria-Hernández, M.L.; Hernández-Zulueta, J.; Vargas-Ponce, O.; Díaz-Pérez, L.; Araya, R.; Rodríguez-Troncoso, A.P.; Ríos-Jara, E.; Rodríguez-Zaragoza, F.A. Core microbiome of corals Pocillopora damicornis and Pocillopora verrucosa in the northeastern tropical Pacific. Mar. Ecol. 2022, 43, e12729. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2015, 13, 581–583. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Chiarello, M.; Auguet, J.-C.; Graham, N.A.J.; Claverie, T.; Sucré, E.; Bouvier, C.; Rieuvilleneuve, F.; Restrepo-Ortiz, C.X.; Bettarel, Y.; Villéger, S.; et al. Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proc. R. Soc. B Biol. Sci. 2020, 287, 20200642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Q.; Zhang, Y.; Ahmad, M.; Ling, J.; Dong, J.; Wang, Y. The diversity and metabolic potential of the microbial functional gene associated with Porites pukoensis. Ecotoxicology 2021, 30, 986–995. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, H.; Jiang, Y.; Liang, J.; Liao, B.; Wang, R.; Li, A.; Xiao, B. Elevated temperature alters bacterial community composition and metabolism in seawaters of coral reef ecosystem: An evidence of laboratory experiment with Acropora digitifera bleaching. Ecol. Indic. 2022, 139, 108886. [Google Scholar] [CrossRef]
- Meron, D.; Atias, E.; Iasur Kruh, L.; Elifantz, H.; Minz, D.; Fine, M.; Banin, E. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 2011, 5, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Yang, H.; Zhang, X.; Tan, F.; Shi, Q. Response characteristics of bacterial communities in multiple coral genera at the early stages of coral bleaching during El Niño. Ecol. Indic. 2022, 144, 109569. [Google Scholar] [CrossRef]
- McDevitt-Irwin, J.M.; Baum, J.K.; Garren, M.; Vega Thurber, R.L. Responses of Coral-Associated Bacterial Communities to Local and Global Stressors. Front. Mar. Sci. 2017, 4, 262. [Google Scholar] [CrossRef]
- Liang, J.; Yu, K.; Wang, Y.; Huang, X.; Huang, W.; Qin, Z.; Pan, Z.; Yao, Q.; Wang, W.; Wu, Z. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress. Front. Microbiol. 2017, 8, 979. [Google Scholar] [CrossRef]
- Shore, A.; Day, R.D.; Stewart, J.A.; Burge, C.A.; Stabb, E.V. Dichotomy between Regulation of Coral Bacterial Communities and Calcification Physiology under Ocean Acidification Conditions. Appl. Environ. Microbiol. 2021, 87, e02189-20. [Google Scholar] [CrossRef]
- Xu, M.; Cai, Z.; Cheng, K.; Chen, G.; Zhou, J.; Spear, J.R. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl. Environ. Microbiol. 2024, 90, e02274-23. [Google Scholar] [CrossRef]
- Sparagon, W.J.; Arts, M.G.I.; Quinlan, Z.A.; Wegley Kelly, L.; Koester, I.; Comstock, J.; Bullington, J.A.; Carlson, C.A.; Dorrestein, P.C.; Aluwihare, L.I.; et al. Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation. Commun. Biol. 2024, 7, 160. [Google Scholar] [CrossRef]
- Marangon, E.; Rädecker, N.; Li, J.Y.Q.; Terzin, M.; Buerger, P.; Webster, N.S.; Bourne, D.G.; Laffy, P.W. Destabilization of mutualistic interactions shapes the early heat stress response of the coral holobiont. Microbiome 2025, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Jasmin, C.; Anas, A.; Nair, S. Bacterial Diversity Associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the Coral Reef Ecosystem of Gulf of Mannar, Southeast Coast of India. PLoS ONE 2015, 10, e0123222. [Google Scholar] [CrossRef]
- Galand, P.E.; Ruscheweyh, H.-J.; Salazar, G.; Hochart, C.; Henry, N.; Hume, B.C.C.; Oliveira, P.H.; Perdereau, A.; Labadie, K.; Belser, C.; et al. Diversity of the Pacific Ocean coral reef microbiome. Nat. Commun. 2023, 14, 3039. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, G.; Afiq-Rosli, L.; Lee, J.N.; Waheed, Z.; Wainwright, B.J. Effects of life history strategy on the diversity and composition of the coral holobiont communities of Sabah, Malaysia. Sci. Rep. 2025, 15, 4459. [Google Scholar] [CrossRef]
- Bhagwat, P.V.; Ravindran, C.; Irudayarajan, L. Beneficial properties of mucus in coral adaptations and ecological interactions. Mar. Biol. 2024, 171, 46. [Google Scholar] [CrossRef]
- Brown, T.; Sonett, D.; Zaneveld, J.R.; Padilla-Gamiño, J.L. Characterization of the microbiome and immune response in corals with chronicMontiporawhite syndrome. Mol. Ecol. 2021, 30, 2591–2606. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, H.; Zhang, J.; Li, Z.; Liu, X.; Wang, H.; Chen, R.; Li, X. Bacterial community dynamics, co-occurrence relationship and assembly processes associated with two Acropora corals in nursery transplantation. Acta Oceanol. Sin. 2025, 44, 52–64. [Google Scholar] [CrossRef]
- Xiao, Z.; Feng, C.; Gao, B.; Huang, Y.; Long, L.; Yang, F. Marine macroalgae and their associated bacterial communities affect larval settlement and survivorship of the coral Pocillopora damicornis. Mar. Environ. Res. 2024, 199, 106597. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, W.; Baguya, E.B.; Gu, Y.; Yi, K.; Zhou, J.; Tong, M. Bleached coral supports high diversity and heterogeneity of bacterial communities: Following the rule of the ‘Anna Karenina principle’. Environ. Res. 2024, 262, 119977. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Zhu, W.; Liu, X.; Chen, R.-W.; Wang, A.; Li, X. The Symbiodiniaceae and Bacterial Dynamic Composition of the Coral Echinopora gemmacea on Wuzhizhou Island. J. Mar. Sci. Eng. 2023, 11, 2262. [Google Scholar] [CrossRef]
- Hochart, C.; Paoli, L.; Ruscheweyh, H.-J.; Salazar, G.; Boissin, E.; Romac, S.; Poulain, J.; Bourdin, G.; Iwankow, G.; Moulin, C.; et al. Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean. Nat. Commun. 2023, 14, 3037. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Toquica, J.; Franco Herrera, A.; Medina, M. Endozoicomonas dominance and Vibrionaceae stability underpin resilience in urban coral Madracis auretenra. PeerJ 2025, 13, e19226. [Google Scholar] [CrossRef]
- Shnit-Orland, M.; Sivan, A.; Kushmaro, A. Antibacterial Activity of Pseudoalteromonas in the Coral Holobiont. Microb. Ecol. 2012, 64, 851–859. [Google Scholar] [CrossRef]
- Ghobashy, M.O.I.; Al-otaibi, A.S.; Alharbi, B.M.; Alshehri, D.; Ghabban, H.; Albalawi, D.A.; Alenzi, A.M.; Alatawy, M.; Alatawi, F.A.; Algammal, A.M.; et al. Metagenomic Characterization of Microbiome Taxa Associated with Coral Reef Communities in North Area of Tabuk Region, Saudia Arabia. Life 2025, 15, 423. [Google Scholar] [CrossRef]
- Krediet, C.J.; Ritchie, K.B.; Alagely, A.; Teplitski, M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 2013, 7, 980–990. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, Z.; Li, Y.; Li, X.; Guan, Z.; Zheng, J.; Kent, A.D. Comparative Genomics of Exiguobacterium Reveals What Makes a Cosmopolitan Bacterium. mSystems 2021, 6, e0038321. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y.; Yang, Q.; Zhang, H.; Xu, N.; Tang, Z.; Wu, S.; Jiang, Y.; Mohamed, H.F.; Ou, D.; et al. Identification of quorum sensing-regulated Vibrio fortis as potential pathogenic bacteria for coral bleaching and the effects on the microbial shift. Front. Microbiol. 2023, 14, 1116737. [Google Scholar] [CrossRef]
- Rahmi, J.J.A.T. In Vitro Pathogenicity of Bacterial Brown Band Disease on Acropora sp. IOP Conf. Ser. Earth Environ. Sci. 2019, 253, 012013. [Google Scholar] [CrossRef]
- Amalia, R.; Ayuningrum, D.; Sabdono, A.; Radjasa, O.K. Antipathogenic Activity of Acroporid Bacterial Symbionts Against Brown Band Disease-Associated Bacteria. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2021, 16, 65–74. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Abdrabo, M.A.; Abdel-Fattah, L.S.; Kelany, M.S.; Hegazy, G.E.; Hussein, H.; Hamed, M.M. Bacterial Communities Associated with Healthy and Diseased Corals during a Heatwave Event in the Northern Red Sea, Egypt. Egypt. J. Aquat. Biol. Fish. 2023, 27, 93–110. [Google Scholar] [CrossRef]
- Sun, F.; Yang, H.; Shi, Q.; Wang, G. Changes in coral bacterial communities during a natural bleaching event linked to El Niño in the South China Sea. Reg. Stud. Mar. Sci. 2022, 53, 102383. [Google Scholar] [CrossRef]
- Pei, J.-Y.; Yu, W.-F.; Zhang, J.-J.; Kuo, T.-H.; Chung, H.-H.; Hu, J.-J.; Hsu, C.-C.; Yu, K.-F. Mass spectrometry–based metabolomic signatures of coral bleaching under thermal stress. Anal. Bioanal. Chem. 2022, 414, 7635–7646. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, Y.; Yi, Y.; Liu, J.; Fu, P. Coral-Associated Bacteria Provide Alternative Nitrogen Source for Symbiodiniaceae Growth in Oligotrophic Environment. Microorganisms 2025, 13, 748. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, Y.; Yang, J.; Li, Q.; Bourne, D.G.; Sweet, M.; Liu, C.; Guo, A.; Zhang, S.; Wilkins, L.G. Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome. mSystems 2022, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chai, G.; Xiao, Y.; Li, Z. The impacts of ocean acidification, warming and their interactive effects on coral prokaryotic symbionts. Environ. Microbiome 2023, 18, 49. [Google Scholar] [CrossRef] [PubMed]
- Palladino, G.; Caroselli, E.; Tavella, T.; D’Amico, F.; Prada, F.; Mancuso, A.; Franzellitti, S.; Rampelli, S.; Candela, M.; Goffredo, S.; et al. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient. ISME Commun. 2022, 2, 65. [Google Scholar] [CrossRef]
- He, X.; Zou, J.; Chen, Q.; Qin, X.; Liu, Y.; Zeng, L.; Su, H. Microbial and transcriptional response of Acropora valida and Turbinaria peltata to Vibrio coralliilyticus challenge: Insights into corals disease resistance. BMC Microbiol. 2024, 24, 288. [Google Scholar] [CrossRef]
Group | Sample | Effective Reads | Sobs | Chao | Shannon | Simpson | Coverage | Pd |
---|---|---|---|---|---|---|---|---|
PE | P. eydouxi 1 | 35,139 | 432 | 434.33 | 3.40 | 0.17 | 99.94% | 62.19 |
P. eydouxi 2 | 35,162 | 687 | 708.21 | 4.00 | 0.08 | 99.75% | 75.28 | |
P. eydouxi 3 | 32,683 | 546 | 550.52 | 3.52 | 0.16 | 99.90% | 52.60 | |
PM | P. meandrina 1 | 39,402 | 436 | 444.53 | 2.67 | 0.23 | 99.86% | 49.53 |
P. meandrina 2 | 29,943 | 400 | 405.43 | 3.05 | 0.19 | 99.91% | 49.98 | |
P. meandrina 3 | 34,570 | 322 | 331.29 | 2.52 | 0.26 | 99.88% | 40.82 | |
PV | P. verrucosa 1 | 31,564 | 303 | 306.64 | 2.72 | 0.32 | 99.94% | 32.03 |
P. verrucosa 2 | 32,802 | 153 | 155.50 | 2.66 | 0.30 | 99.97% | 23.19 | |
P. verrucosa 3 | 35,121 | 271 | 282.05 | 2.54 | 0.36 | 99.91% | 26.40 | |
PW | P. woodjonesi 1 | 36,094 | 157 | 158.17 | 2.01 | 0.32 | 99.97% | 20.78 |
P. woodjonesi 2 | 36,230 | 302 | 307.88 | 2.57 | 0.28 | 99.92% | 31.51 | |
P. woodjonesi 3 | 32,354 | 148 | 148.38 | 2.40 | 0.28 | 99.99% | 20.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Xu, S.; Shangguan, M.; Wang, M.; Xiong, X. Distinct Host-Specific Bacterial Assemblages in Four Congeneric Pocillopora Corals Reveal a Minimal Core Microbiome and Probiotic Partitioning. Microorganisms 2025, 13, 2083. https://doi.org/10.3390/microorganisms13092083
Chen C, Xu S, Shangguan M, Wang M, Xiong X. Distinct Host-Specific Bacterial Assemblages in Four Congeneric Pocillopora Corals Reveal a Minimal Core Microbiome and Probiotic Partitioning. Microorganisms. 2025; 13(9):2083. https://doi.org/10.3390/microorganisms13092083
Chicago/Turabian StyleChen, Chenghao, Shuailiang Xu, Maosen Shangguan, Meng Wang, and Xiaofei Xiong. 2025. "Distinct Host-Specific Bacterial Assemblages in Four Congeneric Pocillopora Corals Reveal a Minimal Core Microbiome and Probiotic Partitioning" Microorganisms 13, no. 9: 2083. https://doi.org/10.3390/microorganisms13092083
APA StyleChen, C., Xu, S., Shangguan, M., Wang, M., & Xiong, X. (2025). Distinct Host-Specific Bacterial Assemblages in Four Congeneric Pocillopora Corals Reveal a Minimal Core Microbiome and Probiotic Partitioning. Microorganisms, 13(9), 2083. https://doi.org/10.3390/microorganisms13092083