Antioxidant and Antifungal Effects of Six Plant Essential Oils Against Penicillium digitatum and Penicillium italicum
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material, Essential Oil Extraction, and Chemical Characterization of Essential Oils
2.2. Antioxidant Activity
2.2.1. ABTS [2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] Assay
2.2.2. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Assay
2.3. In Vitro Antifungal Activity Assay
2.3.1. Fungal Isolation
2.3.2. Antifungal Activity–Disk Diffusion Method
2.4. Statistical Analysis
3. Results
3.1. Essential Oil Composition
3.2. Antioxidant Activity
3.3. In Vitro Antifungal Activity Assay
3.3.1. Fungal Isolation
3.3.2. Antifungal Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodges, R.J.; Buzby, J.C.; Bennett, B. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J. Agric. Sci. 2011, 149, 37–45. [Google Scholar] [CrossRef]
- Snyder, A.B.; Worobo, R.W. Fungal Spoilage in Food Processing. J. Food Prot. 2018, 81, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Rizwana, H.; Bokahri, N.A.; Alsahli, S.A.; Al Showiman, A.S.; Alzahrani, R.M.; Aldehaish, H.A. Postharvest disease management of Alternaria spots on tomato fruit by Annona muricata fruit extracts. Saudi J. Biol. Sci. 2021, 28, 2236–2244. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, Q.; Shaheen, M.R.; Ali, S.; Ahmad, A.; Raheel, M.; Bajwa, R.T. Chapter 1—Postharvest management of fruits and vegetables. In Applications of Biosurfactant in Agriculture; Inamuddin, C.O.A., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Zakaria, L. Fusarium Species Associated with Diseases of Major Tropical Fruit Crops. Horticulturae 2023, 9, 322. [Google Scholar] [CrossRef]
- Pouris, J.; Kolyva, F.; Bratakou, S.; Vogiatzi, C.A.; Chaniotis, D.; Beloukas, A. The Role of Fungi in Food Production and Processing. Appl. Sci. 2024, 14, 5046. [Google Scholar] [CrossRef]
- Dijksterhuis, J.; Houbraken, J. Fungal Spoilage of Crops and Food. In Agricultural and Industrial Applications. The Mycota; Grüttner, S., Kollath-Leiß, K., Kempken, F., Eds.; Springer: Cham, Switzerland, 2025; Volume 16, pp. 31–66. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef]
- Costa, J.H.; Wassano, C.I.; Angolini, C.F.F.; Scherlach, K.; Hertweek, C.; Fill, T.P. Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Sci. Rep. 2019, 9, 18647. [Google Scholar] [CrossRef]
- Papoutsis, K.; Mathioudakis, M.M.; Hasperué, J.H.; Ziogas, V. Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, Y.; Cao, H.; Li, Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. Microorganisms 2020, 8, 449. [Google Scholar] [CrossRef]
- Hanif, Z.; Ashari, H. Post-harvest losses of citrus fruits and perceptions of farmers in marketing decisions. E3S Web Conf. 2021, 306, 02059. [Google Scholar] [CrossRef]
- Kadhim, Z.R.; Ali, S.H.; AL-Rubaye, S.A. The economic impacts of the post-harvest losses of tangerines and Seville oranges crops in Iraq (Baghdad Governorate: As a case study). Bulg. J. Agric. Sci. 2025, 31, 237–244. [Google Scholar]
- Hall, D.J. Comparative activity of selected food preservatives as citrus postharvest fungicides. Proc. Fla. State Hortic. Soc. 1988, 101, 184–187. [Google Scholar]
- Holmes, G.J.; Eckert, J.W. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology 1999, 89, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Chen, H.; Zeng, Z.; Li, Z.-L.; Jiang, H. Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules 2016, 21, 254. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants 2019, 8, 26. [Google Scholar] [CrossRef]
- Kanashiro, A.M.; Akiyama, D.Y.; Kupper, K.C.; Fill, T.P. Penicillium italicum: An Underexplored Postharvest Pathogen. Front. Microbiol. 2020, 11, 606852. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sui, Y.; Li, J.; Tian, X.; Wang, Q. Biological control of postharvest fungal decays in citrus: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 861–870. [Google Scholar] [CrossRef]
- Strano, M.C.; Altieri, G.; Allegra, M.; Di Renzo, G.C.; Paterna, G.; Matera, A.; Genovese, F. Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. Horticulturae 2022, 8, 612. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef]
- Teles, S.; Pereira, J.A.; Santos, C.H.B.; Menezes, R.V.; Malheiro, R.; Lucchese, A.M.; Silva, F. Effect of geographical origin on the essential oil content and composition of fresh and dried Mentha × villosa Hudson leaves. Ind. Crop. Prod. 2013, 46, 1–7. [Google Scholar] [CrossRef]
- Ademiluyi, A.O.; Sharifi-Rad, R.; Ayatollahi, S.A.; Iriti, M. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Heydari, Z.; Jafari, L.; Yavari, A. Diversity in Essential Oil Compounds in Relation to Different Geographic Origins and Plant Organs of Salvia sharifii. J. Med. Plants By Prod. 2023, 12, 83–92. [Google Scholar] [CrossRef]
- Tomou, E.-M.; Fraskou, P.; Dimakopoulou, K.; Dariotis, E.; Krigas, N.; Skaltsa, H. Chemometric Analysis Evidencing the Variability in the Composition of Essential Oils in 10 Salvia Species from Different Taxonomic Sections or Phylogenetic Clades. Molecules 2024, 29, 1547. [Google Scholar] [CrossRef]
- Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential Oils: A Natural Weapon against Antibiotic-Resistant Bacteria Responsible for Nosocomial Infections. Antibiotics 2021, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Janotto, L.; de Melo Nazareth, T.; Meca, G.; Bittecourt Luciano, F.; Gonçalves Evangelista, A. Exploring the efficacy of antibiotic-essential oil combinations: Implications for combating antimicrobial resistance. Bioresour. Technol. Rep. 2023, 24, 101679. [Google Scholar] [CrossRef]
- Öner, E.K.; Yeşil, M. Effects of altitudes on secondary metabolite contents of Origanum majorana L. Sci. Rep. 2023, 13, 10765. [Google Scholar] [CrossRef]
- Miloudi, S.; Abbad, I.; Soulaimani, B.; Ferradous, A.; Abbad, A.; El Mouden, H. Optimization of herbicidal activity of essential oil mixtures from Satureja alpina, Thymus satureioides and Myrtus communis on seed germination and post-emergence growth of Amaranthus retroflexus L. Crop Prot. 2024, 180, 106642. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer Properties of Essential Oils and Other Natural Products. Evid. Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef]
- Abd Rashed, A.; Rathi, D.-N.G.; Ahmad Nasir, N.A.H.; Abd Rahman, A.Z. Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. Molecules 2021, 26, 1093. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Ainane, A.; Houmed Aboubaker, I.; Mohamed, J.; Ainane, T. Exploring the Potent Anticancer Activity of Essential Oils and Their Bioactive Compounds: Mechanisms and Prospects for Future Cancer Therapy. Pharmaceuticals 2023, 16, 1086. [Google Scholar] [CrossRef]
- Ivanova, S.; Gvozdeva, Y.; Staynova, R.; Grekova-Kafalova, D.; Nalbantova, V.; Benbassat, N.; Koleva, N.; Ivanov, K. Essential oils—A review of the natural evolution of applications and some future perspectives. Pharmacia 2025, 72, 1–12. [Google Scholar] [CrossRef]
- Tejeswini, M.G.; Sowmya, H.V.; Swarnalatha, S.P.; Negi, P.S. Antifungal activity of essential oils and their combinations in vitro and in vivo conditions. Arch. Phytopathol. Plant Prot. 2013, 47, 564–570. [Google Scholar] [CrossRef]
- Felšöciová, S.; Vukovic, N.; Jeżowski, P.; Kačániová, M. Antifungal activity of selected volatile essential oils against Penicillium sp. Open Life Sci. 2020, 15, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.S.; Rosalen, P.L.; Benso, B.; de Cássia Orlandi Sardi, J.; Denny, C.; de Sousa, S.A.; Guerra, F.Q.S.; de Oliveira Lima, E.; Almeida Freires, I.; Dias de Castro, R. The Use of Essential Oils and Their Isolated Compounds for the Treatment of Oral Candidiasis: A Literature Review. Evid. Based Complement. Altern. Med. 2021, 2021, 1059274. [Google Scholar] [CrossRef]
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Tran, H.M.; Le, D.H.; Nguyen, V.-A.T.; Vu, T.X.; Thanh, N.T.K.; Giang, D.H.; Dat, N.T.; Pham, H.T.; Muller, M.; Nguyen, H.Q.; et al. Penicillium digitatum as a Model Fungus for Detecting Antifungal Activity of Botanicals: An Evaluation on Vietnamese Medicinal Plant Extracts. J. Fungi 2022, 8, 956. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef]
- Plaza, P.; Torres, R.; Usall, J.; Lamarca, N.; Vinas, I. Evaluation of the potential of commercial postharvest application of essential oils to control citrus decay. J. Hortic. Sci. Biotechnol. 2004, 79, 935–940. [Google Scholar] [CrossRef]
- Yahyazadeh, M.; Omidbaigi, R.; Zare, R.; Taheri, H. Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World J. Microbiol. Biotechnol. 2008, 24, 1445–1450. [Google Scholar] [CrossRef]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal Activity of Citrus Essential Oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
- Tao, N.; Jia, L.; Zhou, H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem. 2014, 153, 265–271. [Google Scholar] [CrossRef]
- Boubaker, H.; Karim, H.; El Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Ait Ben Aoumar, A. Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Ind. Crops Prod. 2016, 86, 95–101. [Google Scholar] [CrossRef]
- Moussa, H.; El Omari, B.; Chefchaou, H.; Tanghort, M.; Mzabi, A.; Chami, N.; Remmal, A. Action of thymol, carvacrol and eugenol on Penicillium and Geotrichum isolates resistant to commercial fungicides and causing postharvest citrus decay. Can. J. Plant Pathol. 2020, 43, 26–34. [Google Scholar] [CrossRef]
- Et-tazy, L.; Lamiri, A.; Satia, L.; Essahli, M.; Bencheqroun, S.K. In Vitro Antioxidant and Antifungal Activities of Four Essential Oils and Their Major Compounds against Post-Harvest Fungi Associated with Chickpea in Storage. Plants 2023, 12, 3587. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.A.; Bicas, J.L. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. Braz. J. Food Technol. 2024, 27, e2023071. [Google Scholar] [CrossRef]
- Arras, G.; Usai, M. Fungitoxic Activity of 12 Essential Oils against Four Postharvest Citrus Pathogens: Chemical Analysis of Thymus capitatus Oil and its Effect in Subatmospheric Pressure Conditions. J. Food Prot. 2001, 64, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Wills, R.B.H.; Bowyer, M.C.; Golding, J.B.; Kirkman, T.; Pristijono, P. Efficacy of Orange Essential Oil and Citral after Exposure to UV-C Irradiation to Inhibit Penicillium digitatum in Navel Oranges. Horticulturae 2020, 6, 102. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Palou, L.; Taberner, V.; Fernández-Catalán, A.; Argente-Sanchis, M.; Pitta, E.; Pérez-Gago, M.B. Natural Pectin-Based Edible Composite Coatings with Antifungal Properties to Control Green Mold and Reduce Losses of ‘Valencia’ Oranges. Foods 2022, 11, 1083. [Google Scholar] [CrossRef]
- Wardana, A.A.; Kingwascharapong, P.; Wigati, L.P.; Tanaka, F.; Tanaka, F. The antifungal effect against Penicillium italicum and characterization of fruit coating from chitosan/ZnO nanoparticle/Indonesian sandalwood essential oil composites. Food Packag. Shelf Life 2022, 32, 100849. [Google Scholar] [CrossRef]
- Olmedo, G.M.; Zhang, J.; Zhao, W.; Mattia, M.; Rosskopf, E.N.; Ritenour, M.; Plotto, A.; Bai, J. Application of Thymol Vapors to Control Postharvest Decay Caused by Penicillium digitatum and Lasiodiplodia theobromae in Grapefruit. Foods 2023, 12, 3637. [Google Scholar] [CrossRef] [PubMed]
- Gharzouli, M.; Aouf, A.; Mahmoud, E.; Ali, H.; Alsulami, T.; Badr, A.N.; Ban, Z.; Farouk, A. Antifungal effect of Algerian essential oil nanoemulsions to control Penicillium digitatum and Penicillium expansum in Thomson Navel oranges (Citrus sinensis L. Osbeck). Front. Plant Sci. 2024, 15, 1491491. [Google Scholar] [CrossRef]
- Maunpuii, C.V.L.; Maisnam, R.; Antuhu, Y.L.; Kumari, A.; López-Menchero, J.R.; González-Coloma, A.; Andrés, M.F.; Kaushik, N. Evaluating the efficiency of essential oils as fumigants in controlling Penicillium digitatum in citrus fruits. BIO Web Conf. 2024, 110, 02009. [Google Scholar] [CrossRef]
- Maswanganye, L.T.C.; Pillai, S.K.; Sivakumar, D. Chitosan Coating Loaded with Spearmint Essential Oil Nanoemulsion for Antifungal Protection in Soft Citrus (Citrus reticulata) Fruits. Coatings 2025, 15, 105. [Google Scholar] [CrossRef]
- Sánchez-Torres, P. Emerging alternatives to control fungal contamination. Curr. Opin. Food Sci. 2025, 61, 101255. [Google Scholar] [CrossRef]
- Pérez-Alonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int. J. Food Microbiol. 2012, 158, 101–106. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Morris, S.C.; Nicholls, P.J. An evaluation of optical density to estimate fungal spore concentrations in water suspensions. Phytopathology 1978, 68, 1240–1242. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; APS Press: Saint Paul, MN, USA, 1998; 218p. [Google Scholar]
- Pitt, J.I. A Laboratory Guide to Common Penicillium Species, 2nd ed.; CSIRO Division of Food Processing: North Ryde, New South Wales, Australia, 1988; 187p. [Google Scholar]
- Romero, C.S. Hongos Fitopatógenos; Universidad Autónoma Chapingo: Chapingo, Estado de México, Mexico, 1988; 347p. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. 2024, 14, 97–115. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- El Hajli, F.; Chakir, S.; Annemer, S.; Assouguem, A.; Elaissaoui, F.; Ullah, R.; Ali, E.A.; Choudhary, R.; Hammani, K.; Lahlali, R.; et al. Tetraclinis articulata (Vahl) Mast., Mentha pulegium L. and Thymus zygis L. essential oils: Chemical composition, antioxidant and antifungal properties against postharvest fungal diseases of apple, and in vitro, in vivo, and in silico investigation. Open Chem. 2025, 23, 20250131. [Google Scholar] [CrossRef]
- Radi, F.Z.; Bouhrim, M.; Mechchate, H.; Al-zahrani, M.; Qurtam, A.A.; Aleissa, A.M.; Drioiche, A.; Handaq, N.; Zair, T. Phytochemical Analysis, Antimicrobial and Antioxidant Properties of Thymus zygis L. and Thymus willdenowii Boiss. Essential Oils. Plants 2022, 11, 15. [Google Scholar] [CrossRef]
- Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Lopes, M.C.; Salgueiro, L. Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus zygis subsp. sylvestris. Ind. Crops Prod. 2010, 32, 70–75. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Gonçalves, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef]
- Gourich, A.A.; Bencheikh, N.; Bouhrim, M.; Regragui, M.; Rhafouri, R.; Drioiche, A.; Asbabou, A.; Remok, F.; Mouradi, A.; Addi, M.; et al. Comparative Analysis of the Chemical Composition and Antimicrobial Activity of Four Moroccan North Middle Atlas Medicinal Plants’ Essential Oils: Rosmarinus officinalis L., Mentha pulegium L., Salvia officinalis L. and Thymus zygis subsp. gracilis (Boiss.) R. Morales. Chemistry 2022, 4, 1775–1788. [Google Scholar] [CrossRef]
- Sáez, F. Essential oil variability of Thymus zygis growing wild in southeastern Spain. Phytochemistry 1995, 40, 819–825. [Google Scholar] [CrossRef]
- Rodrigues, V.; Cabral, C.; Évora, L.; Ferreira, I.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Chemical composition, anti-inflammatory activity and cytotoxicity of Thymus zygis L. subsp. sylvestris (Hoffmanns. & Link) Cout. essential oil and its main compounds. Arab. J. Chem. 2015, 12, 3236–3243. [Google Scholar] [CrossRef]
- Pérez-Sánchez, R.; Ubera, J.L.; Lafont, F.; Gálvez, C. Composition and Variability of the Essential Oil in Thymus zygis from Southern Spain. J. Essent. Oil Res. 2008, 20, 192–200. [Google Scholar] [CrossRef]
- Šegvić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef]
- Golparvar, A.R.; Hadipanah, A. A Review of the Chemical Composition of Essential Oils of Thymus Species in Iran. Res. Crop Ecophysiol. 2023, 18, 25–51. [Google Scholar] [CrossRef]
- Etri, K.; Pluhár, Z. Exploring Chemical Variability in the Essential Oils of the Thymus Genus. Plants 2024, 13, 1375. [Google Scholar] [CrossRef]
- Delgado, T.; Marinero, P.; Asensio-S.-Manzanera, M.C.; Asensio, C.; Herrero, B.; Pereira, J.A.; Ramalhosa, E. Antioxidant activity of twenty wild Spanish Thymus mastichina L. populations and its relation with their chemical composition. LWT Food Sci. Technol. 2014, 57, 412–418. [Google Scholar] [CrossRef]
- Macedo, S.; Piçarra, A.; Guerreiro, M.; Salvador, C.; Candeias, F.; Caldeira, A.T.; Martins, M.R. Toxicological and pharmacological properties of essential oils of Calamintha nepeta, Origanum virens and Thymus mastichina of Alentejo (Portugal). Food Chem. Toxicol. 2019, 133, 110747. [Google Scholar] [CrossRef]
- Mateus, D.; Costa, F.; de Jesus, V.; Malaquias, L. Biocides Based on Essential Oils for Sustainable Conservation and Restoration of Mural Paintings in Built Cultural Heritage. Sustainability 2024, 16, 11223. [Google Scholar] [CrossRef]
- Fraternale, D.; Giamperi, L.; Ricci, D. Chemical Composition and Antifungal Activity of Essential Oil Obtained from In Vitro Plants of Thymus mastichina L. J. Essent. Oil Res. 2003, 15, 278–281. [Google Scholar] [CrossRef]
- Rodrigues, M.; Lopes, A.C.; Vaz, F.; Filipe, M.; Alves, G.; Ribeiro, M.P.; Coutinho, P.; Araujo, A.R.T.S. Thymus mastichina: Composition and Biological Properties with a Focus on Antimicrobial Activity. Pharmaceuticals 2020, 13, 479. [Google Scholar] [CrossRef]
- Diánez, F.; Santos, M.; Parra, C.; Navarro, M.J.; Blanco, R.; Gea, F.J. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Lett. Appl. Microbiol. 2018, 67, 400–410. [Google Scholar] [CrossRef]
- Machado, A.M.; Lopes, V.; Barata, A.M.; Póvoa, O.; Farinha, N.; Figueiredo, A.C. Essential Oils from Origanum vulgare subsp. virens (Hoffmanns. & Link) Ietsw. Grown in Portugal: Chemical Diversity and Relevance of Chemical Descriptors. Plants 2023, 12, 621. [Google Scholar] [CrossRef]
- Soltani, S.; Shakeri, A.; Iranshahi, M.; Boozari, M. A Review of the Phytochemistry and Antimicrobial Properties of Origanum vulgare L. and Subspecies. Iran J. Pharm. Res. 2001, 20, 268–285. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.D.; Dimić, G.R.; Tanackov, I.J.; Pejin, D.J.; Mojović, L.V.; Pejin, J.D. Antifungal activity of Oregano (Origanum vulgare L.) extract on the growth of Fusarium and Penicillium species isolated from food. Hemjska Ind. 2012, 66, 33–41. [Google Scholar] [CrossRef]
- Zulu, L.; Gao, H.; Zhu, Y.; Wu, H.; Xie, Y.; Liu, X.; Yao, H.; Rao, Q. Antifungal effects of seven plant essential oils against Penicillium digitatum. Chem. Biol. Technol. Agric. 2023, 10, 82. [Google Scholar] [CrossRef]
- Vitoratos, A.; Bilalis, D.; Karkanis, A.; Efthimiadou, A. Antifungal Activity of Plant Essential Oils Against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not. Bot. Horti. Agrobot. 2013, 41, 86–92. [Google Scholar] [CrossRef]
- Domingues, J.; Goulão, M.; Delgado, F.; Gonçalves, J.C.; Gonçalves, J.; Pintado, C.S. Essential Oils of Two Portuguese Endemic Species of Lavandula as a Source of Antifungal and Antibacterial Agents. Processes 2023, 11, 1165. [Google Scholar] [CrossRef]
- Pombal, S.; Rodrigues, C.F.; Araújo, J.P.; Rocha, P.M.; Rodilla, J.M.; Diez, D.; Granja, Á.P.; Gomes, A.C.; Silva, L.A. Antibacterial and antioxidant activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and its relation with their chemical composition. SpringerPlus 2016, 5, 1711. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control 2011, 22, 1707–1714. [Google Scholar] [CrossRef]
- Reddy, D.N.; Al-Rajab, A.J.; Sharma, M.; Moses, M.M.; Reddy, G.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × Piperita L. (peppermint) essential oils. J. King Saud Univ. Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
- Zamanian, Z.; Bonyadian, M.; Moshtaghi, H.; Ebrahimi, A. Antifungal effects of essential oils of Zataria multiflora, Mentha pulegium, and Mentha piperita. J. Food Qual. Hazards Control 2021, 8, 41–44. [Google Scholar] [CrossRef]
- Kgang, I.E.; Mathabe, P.M.K.; Klein, A.; Kalombo, L.; Belay, Z.A.; Caleb, O.J. Effects of lemon (Citrus Limon L.), lemongrass (Cymbopogon citratus) and peppermint (Mentha piperita L.) essential oils against of Botrytis cinerea and Penicillium expansum. JSFA Rep. 2022, 2, 405–414. [Google Scholar] [CrossRef]
Species | Code | Yield (w/w) (g/kg) | % (w/w) |
---|---|---|---|
O. vulgare subsp. virens | OVV | 4.09 | 0.41 |
L. pedunculata subsp. sampaioana | LPS | 12.80 | 1.28 |
L. stoechas subsp. luisieri | LSL | 4.22 | 0.42 |
Th. zygis subsp. sylvestris | TZS | 8.78 | 0.88 |
Th. mastichina | TM | 24.29 | 2.43 |
M. × piperita | MP | 6.17 | 0.62 |
RI-WAX | RI-HP5 | Compound | OVV | LPS | LSL | TM | TZS | MP |
---|---|---|---|---|---|---|---|---|
1025 | 933 | Alpha-Pinene | 0.67 | 6.35 | 1.83 | 3.44 | 0.51 | 0.74 |
1029 | 918 | Alpha-Thujene | 1.63 | 0.01 | 0.21 | 1.32 | 0.06 | |
1069 | 953 | Camphene | 0.29 | 2.29 | 0.10 | 0.10 | 0.14 | 0.02 |
1114 | 978 | Beta-Pinene | 0.18 | 0.05 | 0.30 | 5.11 | 0.13 | 1.17 |
1126 | 972 | Sabinene | 0.29 | 0.03 | 0.12 | 3.83 | 0.07 | 0.67 |
1133 | 940 | Cymene Isomer | 2.67 | |||||
1165 | 991 | Beta-Myrcene | 2.28 | 0.17 | 0.07 | 1.87 | 1.91 | 0.33 |
1186 | 1018 | Alpha-Terpinene | 3.76 | 0.03 | 1.33 | 0.26 | ||
1206 | 1021 | Limonene | 0.35 | 2.03 | 0.20 | 1.17 | 0.32 | 3.42 |
1222 | 1039 | 1,8-Cineole | 0.02 | 0.93 | 17.71 | 66.06 | 6.72 | |
1238 | 1035 | Cis-Beta-Ocimene | 2.15 | 0.15 | 0.45 | 0.02 | 0.01 | 0.27 |
1254 | 1058 | Gamma-Terpinene | 30.69 | 0.05 | 0.12 | 1.79 | 5.72 | 0.41 |
1278 | 1025 | Para-Cymene | 5.26 | 0.24 | 0.14 | 1.03 | 9.36 | 0.08 |
1418 | 1090 | Fenchone | 34.20 | 0.28 | ||||
1465 | 1074 | Trans-Sabinene Hydrate | 0.16 | 0.70 | 0.68 | 0.82 | ||
1484 | 1124 | Menthone | 29.12 | |||||
1500 | 1164 | Menthofuran | 4.94 | |||||
1510 | 1166 | Isomenthone | 4.31 | |||||
1541 | 1149 | Camphor | 36.51 | 1.00 | ||||
1553 | 1100 | Linalool | 0.16 | 2.00 | 2.29 | 4.14 | 0.86 | 0.26 |
1574 | 1294 | Menthyl Acetate | 2.36 | |||||
1592 | 1239 | Thymol Methyl Ether | 1.88 | 0.01 | ||||
1595 | 1119 | Fenchol <endo-> | 0.86 | |||||
1599 | 1288 | Bornyl Acetate | 0.98 | 0.06 | <0.01 | |||
1606 | 1280 | Trans-Alpha-Necrodyl Acetate | 20.46 | |||||
1607 | 1239 | Carvacrol Methyl Ether | 2.38 | 0.05 | ||||
1608 | 1165 | Neo-Menthol | 4.11 | |||||
1617 | 1450 | Trans-Beta Caryophyllene | 1.61 | 0.04 | 0.22 | 0.12 | 1.41 | 1.18 |
1619 | 1284 | Lavandulyl Acetate | 0.20 | 4.01 | ||||
1636 | 1296 | Arbozol | 2.24 | |||||
1653 | 1169 | L-Menthol | 27.56 | |||||
1662 | 1170 | Delta-Terpineol | 1.50 | 0.22 | ||||
1665 | 1244 | Pulegone | 3.98 | |||||
1668 | 1187 | 5-Methylene-2,3,4,4-tetrame-2-Cyclopentenone | 2.37 | |||||
1860 | Unknown Sesquiterpenol | 2.06 | ||||||
1679 | 1172 | Trans-Alpha-Necrodol | 6.56 | |||||
1696 | 1195 | Alpha-Terpineol | 0.11 | 0.29 | 0.29 | 4.86 | 0.13 | 0.44 |
1713 | 1167 | Borneol | 0.65 | 0.78 | 0.12 | 0.34 | 0.02 | |
2168 | 1293 | Thymol | 36.72 | 68.83 | 0.08 | |||
2192 | 1316 | Carvacrol | 0.28 | 0.17 | 2.54 |
Code | ABTS | DPPH | ||
---|---|---|---|---|
mM TROLOX eq. | g TROLOX eq./g EO | mM TROLOX eq. | g TROLOX eq./g EO | |
OVV | 76.45 ± 3.02 | 433.01 ± 17.10 | 25.15 ± 1.69 | 142.45 ± 9.57 |
LPS | 3.84 ± 0.26 | 20.79 ± 1.41 | 2.17 ± 0.16 | 11.73 ± 0.87 |
LSL | 24.06 ± 0.64 | 131.33 ± 3.47 | 33.91 ± 1.21 | 184.99 ± 6.58 |
TM | 9.76 ± 0.41 | 54.19 ± 2.30 | 0.96 ± 0.03 | 5.31 ± 0.16 |
TZS | 161.70 ± 0.15 | 864.20 ± 0.81 | 25.34 ± 1.08 | 135.42 ± 5.78 |
MP | 4.83 ± 0.09 | 26.94 ± 0.51 | 3.83 ± 0.13 | 21.34 ± 0.74 |
EO | x̅ | s | Me | Max | Min | SEM |
---|---|---|---|---|---|---|
P. digitatum | ||||||
OVV | 31.33 | 3.21 | 30.00 | 35.00 | 29.00 | 1.86 |
LPS | 20.17 | 3.25 | 20.00 | 23.50 | 17.00 | 1.88 |
LSL | 30.67 | 1.15 | 30.00 | 32.00 | 30.00 | 0.67 |
TM | 16.17 | 0.29 | 16.00 | 16.50 | 16.00 | 0.17 |
TZS | 60.50 | 5.77 | 60.00 | 66.50 | 55.00 | 3.33 |
MP | 19.33 | 3.21 | 18.00 | 23.00 | 17.00 | 1.86 |
P. italicum | ||||||
OVV | 27.00 | 6.38 | 28.50 | 32.50 | 20.00 | 3.69 |
LPS | 14.17 | 0.76 | 14.00 | 15.00 | 13.50 | 0.44 |
LSL | 37.33 | 2.52 | 37.00 | 40.00 | 35.00 | 1.45 |
TM | 13.67 | 1.26 | 13.50 | 15.00 | 12.50 | 0.73 |
TZS | 54.33 | 2.93 | 55.50 | 56.50 | 51.00 | 1.69 |
MP | 20.33 | 3.06 | 21.00 | 23.00 | 17.00 | 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Custodio, M.d.C.; Márquez-García, F.; García-Alonso, D.; Brieva-Trejo, C.D.; Vázquez Pardo, F.M. Antioxidant and Antifungal Effects of Six Plant Essential Oils Against Penicillium digitatum and Penicillium italicum. Microorganisms 2025, 13, 2042. https://doi.org/10.3390/microorganisms13092042
García-Custodio MdC, Márquez-García F, García-Alonso D, Brieva-Trejo CD, Vázquez Pardo FM. Antioxidant and Antifungal Effects of Six Plant Essential Oils Against Penicillium digitatum and Penicillium italicum. Microorganisms. 2025; 13(9):2042. https://doi.org/10.3390/microorganisms13092042
Chicago/Turabian StyleGarcía-Custodio, María del Carmen, Francisco Márquez-García, David García-Alonso, Cristian David Brieva-Trejo, and Francisco María Vázquez Pardo. 2025. "Antioxidant and Antifungal Effects of Six Plant Essential Oils Against Penicillium digitatum and Penicillium italicum" Microorganisms 13, no. 9: 2042. https://doi.org/10.3390/microorganisms13092042
APA StyleGarcía-Custodio, M. d. C., Márquez-García, F., García-Alonso, D., Brieva-Trejo, C. D., & Vázquez Pardo, F. M. (2025). Antioxidant and Antifungal Effects of Six Plant Essential Oils Against Penicillium digitatum and Penicillium italicum. Microorganisms, 13(9), 2042. https://doi.org/10.3390/microorganisms13092042