Current Advances and Applications of Animal Models in SARS-CoV-2 Pathogenesis and Vaccine Development
Abstract
1. Introduction
2. Virus and Disease
3. Target Cells and Receptors
4. Animal Models
4.1. Pathogenesis of SARS-CoV-2 in Mouse Models
4.2. Hamsters
4.3. Nonhuman Primates (NHP)
4.3.1. Pathogenesis of SARS-CoV-2 in NHPs
4.3.2. Regulatory and Ethical Issues in Using NHPs for SARS-CoV-2 Study
4.4. Transmission in Ferrets
4.5. Cats
4.6. Minks
4.6.1. Pathogenesis and Transmission of SARS-CoV-2 in Minks
4.6.2. Regulatory and Ethical Issues in Using Minks for SARS-CoV-2 Study
4.7. Other Animals
5. Perspective or How to Choose a Suitable Animal Model for Your Research on SARS-CoV-2
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iwendi, C.; Mahboob, K.; Khalid, Z.; Javed, A.R.; Rizwan, M.; Ghosh, U. Classification of COVID-19 individuals using adaptive neuro-fuzzy inference system. Multimed. Syst. 2021, 28, 1223–1237. [Google Scholar] [CrossRef]
- Aleebrahim-Dehkordi, E.; Soveyzi, F.; Deravi, N.; Rabbani, Z.; Saghazadeh, A.; Rezaei, N. Human Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 in Children. J. Pediatr. Nurs. 2021, 56, 70–79. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Balkhy, H.H.; Hayden, F.G.; Bouchama, A.; Luke, T.; Baillie, J.K.; Al-Omari, A.; Hajeer, A.H.; Senga, M.; Denison, M.R.; et al. Middle East Respiratory Syndrome. N. Engl. J. Med. 2017, 376, 584–594. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Raharinirina, N.A.; Gubela, N.; Bornigen, D.; Smith, M.R.; Oh, D.Y.; Budt, M.; Mache, C.; Schillings, C.; Fuchs, S.; Durrwald, R.; et al. SARS-CoV-2 evolution on a dynamic immune landscape. Nature 2025, 639, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.E19. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005, 309, 1864–1868. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef]
- van den Brand, J.M.; Haagmans, B.L.; van Riel, D.; Osterhaus, A.D.; Kuiken, T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J. Comp. Pathol. 2014, 151, 83–112. [Google Scholar] [CrossRef]
- Kowalczuk, S.; Broer, A.; Tietze, N.; Vanslambrouck, J.M.; Rasko, J.E.; Broer, S. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J. 2008, 22, 2880–2887. [Google Scholar] [CrossRef]
- Carossino, M.; Izadmehr, S.; Trujillo, J.D.; Gaudreault, N.N.; Dittmar, W.; Morozov, I.; Balasuriya, U.B.R.; Cordon-Cardo, C.; Garcia-Sastre, A.; Richt, J.A. ACE2 and TMPRSS2 distribution in the respiratory tract of different animal species and its correlation with SARS-CoV-2 tissue tropism. Microbiol. Spectr. 2024, 12, e0327023. [Google Scholar] [CrossRef]
- Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 2020, 176, 104742. [Google Scholar] [CrossRef]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.E.; Williamson, M.K.; Anton-Plagaro, C.; Shoemark, D.K.; Simon-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Landolina, N.; Ricci, B.; Veneziani, I.; Alicata, C.; Mariotti, F.R.; Pelosi, A.; Quatrini, L.; Mortari, E.P.; Carsetti, R.; Vacca, P.; et al. TLR2/4 are novel activating receptors for SARS-CoV-2 spike protein on NK cells. Front. Immunol. 2024, 15, 1368946. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Cao, J.; Zhang, X.; Gao, H.; Wang, Y.; Wang, J.; He, J.; Jiang, X.; Zhang, J.; Shen, G.; et al. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res. 2022, 32, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.X.; Gong, L.; et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283. [Google Scholar] [CrossRef]
- Loo, L.; Waller, M.A.; Moreno, C.L.; Cole, A.J.; Stella, A.O.; Pop, O.T.; Jochum, A.K.; Ali, O.H.; Denes, C.E.; Hamoudi, Z.; et al. Fibroblast-expressed LRRC15 is a receptor for SARS-CoV-2 spike and controls antiviral and antifibrotic transcriptional programs. PLoS Biol. 2023, 21, e3001967. [Google Scholar] [CrossRef]
- Liu, J.; Lu, F.; Chen, Y.; Plow, E.; Qin, J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J. Biol. Chem. 2022, 298, 101710. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, S.B.; Zhou, Z.J.; Li, J.Y.; Lv, J.Z.; Hu, B.; Yuan, S.; Qiu, Y.; Ge, X.Y. Key mutations on spike protein altering ACE2 receptor utilization and potentially expanding host range of emerging SARS-CoV-2 variants. J. Med. Virol. 2023, 95, e28116. [Google Scholar] [CrossRef]
- Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.; et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 2022, 185, 630–640.e10. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Hassan, A.O.; Case, J.B.; Winkler, E.S.; Thackray, L.B.; Kafai, N.M.; Bailey, A.L.; McCune, B.T.; Fox, J.M.; Chen, R.E.; Alsoussi, W.B.; et al. A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell 2020, 182, 744–753.e4. [Google Scholar] [CrossRef]
- Winkler, E.S.; Chen, R.E.; Alam, F.; Yildiz, S.; Case, J.B.; Uccellini, M.B.; Holtzman, M.J.; Garcia-Sastre, A.; Schotsaert, M.; Diamond, M.S. SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. J. Virol. 2022, 96, e0151121. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shan, C.; Zhou, Y.W.; Shen, X.R.; Li, Q.; Zhang, L.; Zhu, Y.; Si, H.R.; et al. Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Cell 2020, 182, 50–58.e8. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.J.; Okuda, K.; Edwards, C.E.; Martinez, D.R.; Asakura, T.; Dinnon, K.H., 3rd; Kato, T.; Lee, R.E.; Yount, B.L.; Mascenik, T.M.; et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020, 182, 429–446.e14. [Google Scholar] [CrossRef] [PubMed]
- Dinnon, K.H., 3rd; Leist, S.R.; Schafer, A.; Edwards, C.E.; Martinez, D.R.; Montgomery, S.A.; West, A.; Yount, B.L., Jr.; Hou, Y.J.; Adams, L.E.; et al. Publisher Correction: A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 2021, 590, E22. [Google Scholar] [CrossRef]
- Nakandakari-Higa, S.; Parsa, R.; Reis, B.S.; de Carvalho, R.V.H.; Mesin, L.; Hoffmann, H.H.; Bortolatto, J.; Muramatsu, H.; Lin, P.J.C.; Bilate, A.M.; et al. A minimally-edited mouse model for infection with multiple SARS-CoV-2 strains. Front. Immunol. 2022, 13, 1007080. [Google Scholar] [CrossRef]
- Le Chevalier, F.; Authie, P.; Chardenoux, S.; Bourgine, M.; Vesin, B.; Cussigh, D.; Sassier, Y.; Fert, I.; Noirat, A.; Nemirov, K.; et al. Mice humanized for MHC and hACE2 with high permissiveness to SARS-CoV-2 omicron replication. Microbes Infect. 2023, 25, 105142. [Google Scholar] [CrossRef]
- Pons-Grifols, A.; Tarres-Freixas, F.; Perez, M.; Riveira-Munoz, E.; Raich-Regue, D.; Perez-Zsolt, D.; Munoz-Basagoiti, J.; Tondelli, B.; Pradenas, E.; Izquierdo-Useros, N.; et al. A human-ACE2 knock-in mouse model for SARS-CoV-2 infection recapitulates respiratory disorders but avoids neurological disease associated with the transgenic K18-hACE2 model. mBio 2025, 16, e0072025. [Google Scholar] [CrossRef]
- Ana-Sosa-Batiz, F.; Verma, S.K.; Shafee, N.; Miller, R.; Conner, C.; Hastie, K.M.; Timis, J.; Maule, E.; Nguyen, M.N.; Tran, L.; et al. A humanised ACE2, TMPRSS2, and FCGRT mouse model reveals the protective efficacy of anti-receptor binding domain antibodies elicited by SARS-CoV-2 hybrid immunity. EBioMedicine 2025, 113, 105619. [Google Scholar] [CrossRef]
- Tailor, N.; Warner, B.M.; Griffin, B.D.; Tierney, K.; Moffat, E.; Frost, K.; Vendramelli, R.; Leung, A.; Willman, M.; Thomas, S.P.; et al. Generation and Characterization of a SARS-CoV-2-Susceptible Mouse Model Using Adeno-Associated Virus (AAV6.2FF)-Mediated Respiratory Delivery of the Human ACE2 Gene. Viruses 2022, 15, 85. [Google Scholar] [CrossRef]
- Yong, K.S.M.; Anderson, D.E.; Zheng, A.K.E.; Liu, M.; Tan, S.Y.; Tan, W.W.S.; Chen, Q.; Wang, L.F. Comparison of infection and human immune responses of two SARS-CoV-2 strains in a humanized hACE2 NIKO mouse model. Sci. Rep. 2023, 13, 12484. [Google Scholar] [CrossRef]
- Alves, R.; Wang, Y.T.; Mikulski, Z.; McArdle, S.; Shafee, N.; Valentine, K.M.; Miller, R.; Verma, S.K.; Batiz, F.A.S.; Maule, E.; et al. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antivir. Res. 2023, 212, 105580. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zhao, Z.; Fu, C.; Wang, Y.; Guo, Z.; Zhang, C.; Liu, L.; Zhang, C.; Shu, C.; He, J.; et al. Humanized mice for investigating SARS-CoV-2 lung infection and associated human immune responses. Eur. J. Immunol. 2022, 52, 1640–1647. [Google Scholar] [CrossRef]
- Abdelnabi, R.; Foo, C.S.; Kaptein, S.J.F.; Boudewijns, R.; Vangeel, L.; De Jonghe, S.; Jochmans, D.; Weynand, B.; Neyts, J. A SCID Mouse Model To Evaluate the Efficacy of Antivirals against SARS-CoV-2 Infection. J. Virol. 2022, 96, e0075822. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, B.A.; Ciabattoni, G.O.; Duerr, R.; Valero-Jimenez, A.M.; Yeung, S.T.; Crosse, K.M.; Schinlever, A.R.; Bernard-Raichon, L.; Rodriguez Galvan, J.; McGrath, M.E.; et al. A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8. Nat. Commun. 2023, 14, 3026. [Google Scholar] [CrossRef] [PubMed]
- Rosenke, K.; Meade-White, K.; Letko, M.; Clancy, C.; Hansen, F.; Liu, Y.; Okumura, A.; Tang-Huau, T.L.; Li, R.; Saturday, G.; et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect. 2020, 9, 2673–2684. [Google Scholar] [CrossRef]
- Imai, M.; Iwatsuki-Horimoto, K.; Hatta, M.; Loeber, S.; Halfmann, P.J.; Nakajima, N.; Watanabe, T.; Ujie, M.; Takahashi, K.; Ito, M.; et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA 2020, 117, 16587–16595. [Google Scholar] [CrossRef]
- Sia, S.F.; Yan, L.M.; Chin, A.W.H.; Fung, K.; Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Perera, R.; Poon, L.L.M.; Nicholls, J.M.; et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020, 583, 834–838. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Z.; Li, N.; Cui, H.; Meng, K.; Liu, L.; Zhao, L.; Zhang, S.; Qin, C.; Liu, J.; et al. Impact of Prior Infection on Protection and Transmission of SARS-CoV-2 in Golden Hamsters. bioRxiv 2021. [Google Scholar] [CrossRef]
- Lee, A.C.; Zhang, A.J.; Chan, J.F.; Li, C.; Fan, Z.; Liu, F.; Chen, Y.; Liang, R.; Sridhar, S.; Cai, J.P.; et al. Oral SARS-CoV-2 Inoculation Establishes Subclinical Respiratory Infection with Virus Shedding in Golden Syrian Hamsters. Cell Rep. Med. 2020, 1, 100121. [Google Scholar] [CrossRef] [PubMed]
- Bertzbach, L.D.; Vladimirova, D.; Dietert, K.; Abdelgawad, A.; Gruber, A.D.; Osterrieder, N.; Trimpert, J. SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound. Emerg. Dis. 2021, 68, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Castellan, M.; Zamperin, G.; Franzoni, G.; Foiani, G.; Zorzan, M.; Drzewniokova, P.; Mancin, M.; Brian, I.; Bortolami, A.; Pagliari, M.; et al. Host Response of Syrian Hamster to SARS-CoV-2 Infection including Differences with Humans and between Sexes. Viruses 2023, 15, 428. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, Z.; Miao, J.; Xue, X.; Dong, Y.; Zhao, L.; Guo, H.; Wang, J.; Wang, Z.; Lu, S.; et al. Genomic-transcriptomic analysis identifies the Syrian hamster as a superior animal model for human diseases. BMC Genom. 2025, 26, 286. [Google Scholar] [CrossRef]
- Rockx, B.; Kuiken, T.; Herfst, S.; Bestebroer, T.; Lamers, M.M.; Oude Munnink, B.B.; de Meulder, D.; van Amerongen, G.; van den Brand, J.; Okba, N.M.A.; et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 2020, 368, 1012–1015. [Google Scholar] [CrossRef]
- Johnston, S.C.; Ricks, K.M.; Jay, A.; Raymond, J.L.; Rossi, F.; Zeng, X.; Scruggs, J.; Dyer, D.; Frick, O.; Koehler, J.W.; et al. Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS ONE 2021, 16, e0246366. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, Y.; Yu, W.; Yang, Y.; Gao, J.; Wang, J.; Kuang, D.; Yang, M.; Yang, J.; Ma, C.; et al. Comparison of SARS-CoV-2 infections among 3 species of non-human primates. bioRxiv 2020. [Google Scholar] [CrossRef]
- Goncalves, A.; Maisonnasse, P.; Donati, F.; Albert, M.; Behillil, S.; Contreras, V.; Naninck, T.; Marlin, R.; Solas, C.; Pizzorno, A.; et al. SARS-CoV-2 viral dynamics in non-human primates. PLoS Comput. Biol. 2021, 17, e1008785. [Google Scholar] [CrossRef]
- Böszörményi, K.P.; Stammes, M.A.; Fagrouch, Z.C.; Kiemenyi-Kayere, G.; Niphuis, H.; Mortier, D.; van Driel, N.; Nieuwenhuis, I.; Zuiderwijk-Sick, E.; Meijer, L.; et al. Comparison of SARS-CoV-2 infection in two non-human primate species: Rhesus and cynomolgus macaques. bioRxiv 2020. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, Y.; Yu, W.; Yang, Y.; Gao, J.; Wang, J.; Kuang, D.; Yang, M.; Yang, J.; Ma, C.; et al. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct. Target. Ther. 2020, 5, 157. [Google Scholar] [CrossRef]
- Munster, V.J.; Feldmann, F.; Williamson, B.N.; van Doremalen, N.; Perez-Perez, L.; Schulz, J.; Meade-White, K.; Okumura, A.; Callison, J.; Brumbaugh, B.; et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 2020, 585, 268–272. [Google Scholar] [CrossRef]
- Hartman, A.L.; Nambulli, S.; McMillen, C.M.; White, A.G.; Tilston-Lunel, N.L.; Albe, J.R.; Cottle, E.; Dunn, M.D.; Frye, L.J.; Gilliland, T.H.; et al. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog. 2020, 16, e1008903. [Google Scholar] [CrossRef] [PubMed]
- Woolsey, C.; Borisevich, V.; Prasad, A.N.; Agans, K.N.; Deer, D.J.; Dobias, N.S.; Heymann, J.C.; Foster, S.L.; Levine, C.B.; Medina, L.; et al. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat. Immunol. 2021, 22, 86–98. [Google Scholar] [CrossRef] [PubMed]
- DeGrazia, D.; Miller, F.G. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection Challenge Experiments in Nonhuman Primates: An Ethical Perspective. Clin. Infect. Dis. 2021, 73, 2121–2125. [Google Scholar] [CrossRef] [PubMed]
- CDC. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/importation/laws-regulations/nonhuman-primates-policy-statements.html (accessed on 25 August 2025).
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef]
- Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e702. [Google Scholar] [CrossRef]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schon, J.; Sehl, J.; Wylezich, C.; Hoper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef]
- Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.M.A.; Fentener van Vlissingen, M.; Rockx, B.; Haagmans, B.L.; Koopmans, M.P.G.; et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 2020, 11, 3496. [Google Scholar] [CrossRef]
- Zumbrun, E.E.; Zak, S.E.; Lee, E.D.; Bowling, P.A.; Ruiz, S.I.; Zeng, X.; Koehler, J.W.; Delp, K.L.; Bakken, R.R.; Hentschel, S.S.; et al. SARS-CoV-2 Aerosol and Intranasal Exposure Models in Ferrets. Viruses 2023, 15, 2341. [Google Scholar] [CrossRef]
- Martins, M.; Fernandes, M.H.V.; Joshi, L.R.; Diel, D.G. Age-Related Susceptibility of Ferrets to SARS-CoV-2 Infection. J. Virol. 2022, 96, e0145521. [Google Scholar] [CrossRef] [PubMed]
- Halfmann, P.J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S.I.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; et al. Transmission of SARS-CoV-2 in Domestic Cats. N. Engl. J. Med. 2020, 383, 592–594. [Google Scholar] [CrossRef] [PubMed]
- Conforti, A.; Sanchez, E.; Salvatori, E.; Lione, L.; Compagnone, M.; Pinto, E.; Palombo, F.; D’Acunto, E.; Muzi, A.; Roscilli, G.; et al. A linear DNA encoding the SARS-CoV-2 receptor binding domain elicits potent immune response and neutralizing antibodies in domestic cats. Mol. Ther. Methods Clin. Dev. 2023, 28, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Tamil Selvan, M.; Gunasekara, S.; Xiao, P.; Griffin, K.; Cowan, S.R.; Narayanan, S.; Ramachandran, A.; Hagen, D.E.; Ritchey, J.W.; Rudd, J.M.; et al. SARS-CoV-2 (Delta Variant) Infection Kinetics and Immunopathogenesis in Domestic Cats. Viruses 2022, 14, 1207. [Google Scholar] [CrossRef]
- Martins, M.; do Nascimento, G.M.; Nooruzzaman, M.; Yuan, F.; Chen, C.; Caserta, L.C.; Miller, A.D.; Whittaker, G.R.; Fang, Y.; Diel, D.G. The Omicron Variant BA.1.1 Presents a Lower Pathogenicity than B.1 D614G and Delta Variants in a Feline Model of SARS-CoV-2 Infection. J. Virol. 2022, 96, e0096122. [Google Scholar] [CrossRef]
- Oude Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Sharun, K.; Tiwari, R.; Natesan, S.; Dhama, K. SARS-CoV-2 infection in farmed minks, associated zoonotic concerns, and importance of the One Health approach during the ongoing COVID-19 pandemic. Vet Q 2021, 41, 50–60. [Google Scholar] [CrossRef]
- Adney, D.R.; Lovaglio, J.; Schulz, J.E.; Yinda, C.K.; Avanzato, V.A.; Haddock, E.; Port, J.R.; Holbrook, M.G.; Hanley, P.W.; Saturday, G.; et al. Severe acute respiratory disease in American mink experimentally infected with SARS-CoV-2. JCI Insight 2022, 7, e159573. [Google Scholar] [CrossRef]
- Shuai, L.; Zhong, G.; Yuan, Q.; Wen, Z.; Wang, C.; He, X.; Liu, R.; Wang, J.; Zhao, Q.; Liu, Y.; et al. Replication, pathogenicity, and transmission of SARS-CoV-2 in minks. Natl. Sci. Rev. 2021, 8, nwaa291. [Google Scholar] [CrossRef]
- Ritter, J.M.; Wilson, T.M.; Gary, J.M.; Seixas, J.N.; Martines, R.B.; Bhatnagar, J.; Bollweg, B.C.; Lee, E.; Estetter, L.; Silva-Flannery, L.; et al. Histopathology and localization of SARS-CoV-2 and its host cell entry receptor ACE2 in tissues from naturally infected US-farmed mink (Neovison vison). Vet. Pathol. 2022, 59, 681–695. [Google Scholar] [CrossRef]
- Hall, J.S.; Hofmeister, E.; Ip, H.S.; Nashold, S.W.; Leon, A.E.; Malave, C.M.; Falendysz, E.A.; Rocke, T.E.; Carossino, M.; Balasuriya, U.; et al. Experimental Infection of Mexican Free-Tailed Bats (Tadarida brasiliensis) with SARS-CoV-2. mSphere 2023, 8, e0026322. [Google Scholar] [CrossRef] [PubMed]
- Boukhvalova, M.S.; Mortensen, E.; Caple, J.; Joseph, J.; Sylla, F.; Kamali, A.; Stylos, D.; Lopez, D.; March, T.; Byrd, K.M.; et al. SARS-CoV-2 infection augments species- and age-specific predispositions in cotton rats. Sci. Rep. 2023, 13, 757. [Google Scholar] [CrossRef] [PubMed]
- Roundy, C.M.; Nunez, C.M.; Thomas, L.F.; Auckland, L.D.; Tang, W.; Richison, J.J., 3rd; Green, B.R.; Hilton, C.D.; Cherry, M.J.; Pauvolid-Correa, A.; et al. High Seroprevalence of SARS-CoV-2 in White-Tailed Deer (Odocoileus virginianus) at One of Three Captive Cervid Facilities in Texas. Microbiol. Spectr. 2022, 10, e0057622. [Google Scholar] [CrossRef] [PubMed]
- McBride, D.S.; Garushyants, S.K.; Franks, J.; Magee, A.F.; Overend, S.H.; Huey, D.; Williams, A.M.; Faith, S.A.; Kandeil, A.; Trifkovic, S.; et al. Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer. Nat. Commun. 2023, 14, 5105. [Google Scholar] [CrossRef]
- Boley, P.A.; Dennis, P.M.; Faraone, J.N.; Xu, J.; Liu, M.; Niu, X.; Gibson, S.; Hale, V.; Wang, Q.; Liu, S.L.; et al. SARS-CoV-2 Serological Investigation of White-Tailed Deer in Northeastern Ohio. Viruses 2023, 15, 1603. [Google Scholar] [CrossRef]
- Willgert, K.; Didelot, X.; Surendran-Nair, M.; Kuchipudi, S.V.; Ruden, R.M.; Yon, M.; Nissly, R.H.; Vandegrift, K.J.; Nelli, R.K.; Li, L.; et al. Transmission history of SARS-CoV-2 in humans and white-tailed deer. Sci. Rep. 2022, 12, 12094. [Google Scholar] [CrossRef]
- Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020, 583, 830–833. [Google Scholar] [CrossRef]
- Sun, S.H.; Chen, Q.; Gu, H.J.; Yang, G.; Wang, Y.X.; Huang, X.Y.; Liu, S.S.; Zhang, N.N.; Li, X.F.; Xiong, R.; et al. A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe 2020, 28, 124–133.e4. [Google Scholar] [CrossRef]
- Song, I.W.; Washington, M.; Leynes, C.; Hsu, J.; Rayavara, K.; Bae, Y.; Haelterman, N.; Chen, Y.; Jiang, M.M.; Drelich, A.; et al. Generation of a humanized mAce2 and a conditional hACE2 mouse models permissive to SARS-CoV-2 infection. Mamm. Genome 2024, 35, 113–121. [Google Scholar] [CrossRef]
- Shuai, H.; Chan, J.F.; Hu, B.; Chai, Y.; Yoon, C.; Liu, H.; Liu, Y.; Shi, J.; Zhu, T.; Hu, J.C.; et al. The viral fitness and intrinsic pathogenicity of dominant SARS-CoV-2 Omicron sublineages BA.1, BA.2, and BA.5. EBioMedicine 2023, 95, 104753. [Google Scholar] [CrossRef]
- Lee, N.Y.; Lee, Y.W.; Hong, S.M.; On, D.; Yoon, G.M.; An, S.H.; Nam, K.T.; Seo, J.Y.; Shin, J.S.; Choi, Y.K.; et al. SARS-CoV-2 Omicron variant causes brain infection with lymphoid depletion in a mouse COVID-19 model. Lab. Anim. Res. 2023, 39, 8. [Google Scholar] [CrossRef]
- Kenney, A.D.; Zani, A.; Kawahara, J.; Eddy, A.C.; Wang, X.L.; Mahesh, K.C.; Lu, M.; Thomas, J.; Kohlmeier, J.E.; Suthar, M.S.; et al. Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice. EMBO Rep. 2023, 24, e56660. [Google Scholar] [CrossRef]
- Tarres-Freixas, F.; Trinite, B.; Pons-Grifols, A.; Romero-Durana, M.; Riveira-Munoz, E.; Avila-Nieto, C.; Perez, M.; Garcia-Vidal, E.; Perez-Zsolt, D.; Munoz-Basagoiti, J.; et al. Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice. Front. Microbiol. 2022, 13, 840757. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.Y.; Gadhave, K.; Villano, J.; Pekosz, A.; Mao, X.; Jia, H. Generation and characterization of a humanized ACE2 mouse model to study long-term impacts of SARS-CoV-2 infection. J. Med. Virol. 2024, 96, e29349. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, C.; Ju, X.; Wu, B.; Wang, Z.; Dong, F.; Yu, Y.; Hou, X.; Fang, M.; Gao, F.; et al. A tissue specific-infection mouse model of SARS-CoV-2. Cell Discov. 2023, 9, 43. [Google Scholar] [CrossRef]
- Liu, K.; Tang, M.; Xu, W.; Meng, X.; Jin, H.; Han, M.; Pu, J.; Li, Y.; Jiao, F.; Sun, R.; et al. An inducible hACE2 transgenic mouse model recapitulates SARS-CoV-2 infection and pathogenesis in vivo. Proc. Natl. Acad. Sci. USA 2023, 120, e2207210120. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, M.M.; Marin-Lopez, A.; Chiem, K.; Jimenez-Cabello, L.; Ullah, I.; Utrilla-Trigo, S.; Calvo-Pinilla, E.; Lorenzo, G.; Moreno, S.; Ye, C.; et al. Vaccinia Virus Strain MVA Expressing a Prefusion-Stabilized SARS-CoV-2 Spike Glycoprotein Induces Robust Protection and Prevents Brain Infection in Mouse and Hamster Models. Vaccines 2023, 11, 1006. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; VanBlargan, L.A.; Wu, K.; Choi, A.; Navarro, M.J.; Lee, D.; Avena, L.; Berrueta, D.M.; Pham, M.N.; Elbashir, S.; et al. Distinct sensitivities to SARS-CoV-2 variants in vaccinated humans and mice. Cell Rep. 2022, 40, 111299. [Google Scholar] [CrossRef]
- Gu, H.; Chen, Q.; Yang, G.; He, L.; Fan, H.; Deng, Y.Q.; Wang, Y.; Teng, Y.; Zhao, Z.; Cui, Y.; et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020, 369, 1603–1607. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020, 182, 1284–1294.e9. [Google Scholar] [CrossRef]
- Thieulent, C.J.; Dittmar, W.; Balasuriya, U.B.R.; Crossland, N.A.; Wen, X.; Richt, J.A.; Carossino, M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023, 8, e0055822. [Google Scholar] [CrossRef]
- Yan, F.; Li, E.; Wang, T.; Li, Y.; Liu, J.; Wang, W.; Qin, T.; Su, R.; Pei, H.; Wang, S.; et al. Characterization of Two Heterogeneous Lethal Mouse-Adapted SARS-CoV-2 Variants Recapitulating Representative Aspects of Human COVID-19. Front. Immunol. 2022, 13, 821664. [Google Scholar] [CrossRef]
- Qin, T.; Shen, B.; Li, E.; Jin, S.; Luo, R.; Zhang, Y.; Qi, J.; Deng, X.; Shi, Z.; Wang, T.; et al. MHC class I links with severe pathogenicity in C57BL/6N mice infected with SARS-CoV-2/BMA8. Virol. J. 2023, 20, 75. [Google Scholar] [CrossRef]
- Bader, S.M.; Cooney, J.P.; Sheerin, D.; Taiaroa, G.; Harty, L.; Davidson, K.C.; Mackiewicz, L.; Dayton, M.; Wilcox, S.; Whitehead, L.; et al. SARS-CoV-2 mouse adaptation selects virulence mutations that cause TNF-driven age-dependent severe disease with human correlates. Proc. Natl. Acad. Sci. USA 2023, 120, e2301689120. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fang, N.; Liang, Z.; Nie, J.; Lang, S.; Fan, C.; Liang, C.; Huang, W.; Wang, Y. Development of a Bioluminescent Imaging Mouse Model for SARS-CoV-2 Infection Based on a Pseudovirus System. Vaccines 2023, 11, 1133. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Zhan, S.; Vilander, A.C.; Fagre, A.C.; Kiaris, H.; Schountz, T. SARS-CoV-2 infects multiple species of North American deer mice and causes clinical disease in the California mouse. bioRxiv 2022. [Google Scholar] [CrossRef]
- Griffin, B.D.; Chan, M.; Tailor, N.; Mendoza, E.J.; Leung, A.; Warner, B.M.; Duggan, A.T.; Moffat, E.; He, S.; Garnett, L.; et al. SARS-CoV-2 infection and transmission in the North American deer mouse. Nat. Commun. 2021, 12, 3612. [Google Scholar] [CrossRef]
- Li, Q.; Vijaykumar, K.; Phillips, S.E.; Hussain, S.S.; Huynh, N.V.; Fernandez-Petty, C.M.; Lever, J.E.P.; Foote, J.B.; Ren, J.; Campos-Gomez, J.; et al. Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection. JCI Insight 2023, 8, e163962. [Google Scholar] [CrossRef]
- Handley, A.; Ryan, K.A.; Davies, E.R.; Bewley, K.R.; Carnell, O.T.; Challis, A.; Coombes, N.S.; Fotheringham, S.A.; Gooch, K.E.; Charlton, M.; et al. SARS-CoV-2 Disease Severity in the Golden Syrian Hamster Model of Infection Is Related to the Volume of Intranasal Inoculum. Viruses 2023, 15, 748. [Google Scholar] [CrossRef]
- Fomin, G.; Tabynov, K.; Islamov, R.; Turebekov, N.; Yessimseit, D.; Yerubaev, T. Cytokine response and damages in the lungs of aging Syrian hamsters on a high-fat diet infected with the SARS-CoV-2 virus. Front. Immunol. 2023, 14, 1223086. [Google Scholar] [CrossRef]
- Bogard, G.; Barthelemy, J.; Hantute-Ghesquier, A.; Sencio, V.; Brito-Rodrigues, P.; Seron, K.; Robil, C.; Flourens, A.; Pinet, F.; Eberle, D.; et al. SARS-CoV-2 infection induces persistent adipose tissue damage in aged golden Syrian hamsters. Cell Death Dis. 2023, 14, 75. [Google Scholar] [CrossRef]
- Rodrigues, C.R.; Aulakh, G.K.; Kroeker, A.; Kulkarni, S.S.; Lew, J.; Falzarano, D.; Singh, B. Recruitment of pulmonary intravascular macrophages in SARS-CoV-2 infected hamsters. Cell Tissue Res. 2025, 400, 1–15. [Google Scholar] [CrossRef]
- Lin, D.; Liu, L.; Zhang, M.; Hu, Y.; Yang, Q.; Guo, J.; Guo, Y.; Dai, Y.; Xu, Y.; Cai, Y.; et al. Co-infections of SARS-CoV-2 with multiple common respiratory pathogens in infected patients. Sci. China Life Sci. 2020, 63, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liu, P.; Xiong, G.; Yang, Z.; Wang, M.; Li, Y.; Yu, X.J. Coinfection of SARS-CoV-2 and multiple respiratory pathogens in children. Clin. Chem. Lab. Med. 2020, 58, 1160–1161. [Google Scholar] [CrossRef] [PubMed]
- Svyatchenko, V.A.; Ternovoi, V.A.; Lutkovskiy, R.Y.; Protopopova, E.V.; Gudymo, A.S.; Danilchenko, N.V.; Susloparov, I.M.; Kolosova, N.P.; Ryzhikov, A.B.; Taranov, O.S.; et al. Human Adenovirus and Influenza A Virus Exacerbate SARS-CoV-2 Infection in Animal Models. Microorganisms 2023, 11, 180. [Google Scholar] [CrossRef]
- Ma, J.; Liu, X.; Zhou, M.; Chen, P.; Chen, R.; Wang, J.; Zhu, H.; Wu, K.; Ye, J.; Zhang, Y.; et al. A Heterologous Challenge Rescues the Attenuated Immunogenicity of SARS-CoV-2 Omicron BA.1 Variant in Syrian Hamster Model. J. Virol. 2023, 97, e0168422. [Google Scholar] [CrossRef]
- Uematsu, T.; Takai-Todaka, R.; Haga, K.; Kobayashi, H.; Imajima, M.; Kobayashi, N.; Katayama, K.; Hanaki, H. Pharmacological effect of cepharanthine on SARS-CoV-2-induced disease in a Syrian hamster model. J. Infect. Chemother. 2025, 31, 102505. [Google Scholar] [CrossRef]
- Davies, E.R.; Ryan, K.A.; Bewley, K.R.; Coombes, N.S.; Salguero, F.J.; Carnell, O.T.; Biddlecombe, S.; Charlton, M.; Challis, A.; Cross, E.S.; et al. The Omicron Sub-Variant BA.4 Displays a Remarkable Lack of Clinical Signs in a Golden Syrian Hamster Model of SARS-CoV-2 Infection. Viruses 2023, 15, 1133. [Google Scholar] [CrossRef]
- Cong, Y.; Lee, J.H.; Perry, D.L.; Cooper, K.; Wang, H.; Dixit, S.; Liu, D.X.; Feuerstein, I.M.; Solomon, J.; Bartos, C.; et al. Longitudinal analyses using 18F-Fluorodeoxyglucose positron emission tomography with computed tomography as a measure of COVID-19 severity in the aged, young, and humanized ACE2 SARS-CoV-2 hamster models. Antivir. Res. 2023, 214, 105605. [Google Scholar] [CrossRef]
- Reyna, R.A.; Kishimoto-Urata, M.; Urata, S.; Makishima, T.; Paessler, S.; Maruyama, J. Recovery of anosmia in hamsters infected with SARS-CoV-2 is correlated with repair of the olfactory epithelium. Sci. Rep. 2022, 12, 628. [Google Scholar] [CrossRef]
- Rasika, S.; Fernandois, D.; Prevot, V. Sowing SARS-CoV-2 to reap neurodegeneration: A hamster study. EBioMedicine 2022, 80, 104071. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.K.; Kandasamy, M. SARS-CoV-2-Mediated Neuropathogenesis, Deterioration of Hippocampal Neurogenesis and Dementia. Am. J. Alzheimer's Dis. Other Dement. 2022, 37, 15333175221078418. [Google Scholar] [CrossRef]
- Kaufer, C.; Schreiber, C.S.; Hartke, A.S.; Denden, I.; Stanelle-Bertram, S.; Beck, S.; Kouassi, N.M.; Beythien, G.; Becker, K.; Schreiner, T.; et al. Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine 2022, 79, 103999. [Google Scholar] [CrossRef]
- Qiao, W.; Lau, H.E.; Xie, H.; Poon, V.K.; Chan, C.C.; Chu, H.; Yuan, S.; Yuen, T.T.; Chik, K.K.; Tsang, J.O.; et al. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nat. Commun. 2022, 13, 2539. [Google Scholar] [CrossRef]
- Plunkard, J.; Mulka, K.; Zhou, R.; Tarwater, P.; Zhong, W.; Lowman, M.; Wong, A.; Pekosz, A.; Villano, J. SARS-CoV-2 Variant Pathogenesis Following Primary Infection and Reinfection in Syrian Hamsters. mBio 2023, 14, e0007823. [Google Scholar] [CrossRef]
- Yamada, H.; Sasaki, S.I.; Tani, H.; Somekawa, M.; Kawasuji, H.; Saga, Y.; Yoshida, Y.; Yamamoto, Y.; Hayakawa, Y.; Morinaga, Y. A novel hamster model of SARS-CoV-2 respiratory infection using a pseudotyped virus. Sci. Rep. 2022, 12, 11125. [Google Scholar] [CrossRef]
- Strbenc, M.; Kuhar, U.; Lainscek, D.; Orehek, S.; Slavec, B.; Krapez, U.; Malovrh, T.; Majdic, G. Rehoming and Other Refinements and Replacement in Procedures Using Golden Hamsters in SARS-CoV-2 Vaccine Research. Animals 2023, 13, 2616. [Google Scholar] [CrossRef]
- Williamson, B.N.; Perez-Perez, L.; Schwarz, B.; Feldmann, F.; Holbrook, M.G.; Singh, M.; Lye, D.S.; Babusis, D.; Subramanian, R.; Haddock, E.; et al. Subcutaneous remdesivir administration prevents interstitial pneumonia in rhesus macaques inoculated with SARS-CoV-2. Antivir. Res. 2022, 198, 105246. [Google Scholar] [CrossRef]
- Pereira, A.H.; Vasconcelos, A.L.; Silva, V.L.; Nogueira, B.S.; Silva, A.C.; Pacheco, R.C.; Souza, M.A.; Colodel, E.M.; Ubiali, D.G.; Biondo, A.W.; et al. Natural SARS-CoV-2 Infection in a Free-Ranging Black-Tailed Marmoset (Mico melanurus) from an Urban Area in Mid-West Brazil. J. Comp. Pathol. 2022, 194, 22–27. [Google Scholar] [CrossRef]
- Ma, Z.M.; Olstad, K.J.; Van Rompay, K.K.A.; Iyer, S.S.; Miller, C.J.; Reader, J.R. Pulmonary lymphoid tissue induced after SARS-CoV-2 infection in rhesus macaques. Front. Immunol. 2025, 16, 1533050. [Google Scholar] [CrossRef]
- Nielsen, S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Rojas, J.L.G.; Gortázar, C.; Herskin, M.; et al. SARS-CoV-2 in animals: Susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J. 2023, 21, e07822. [Google Scholar] [CrossRef]
- Stittelaar, K.J.; de Waal, L.; van Amerongen, G.; Veldhuis Kroeze, E.J.; Fraaij, P.L.; van Baalen, C.A.; van Kampen, J.J.; van der Vries, E.; Osterhaus, A.D.; de Swart, R.L. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts. Viruses 2016, 8, 168. [Google Scholar] [CrossRef]
- van den Brand, J.M.; Haagmans, B.L.; Leijten, L.; van Riel, D.; Martina, B.E.; Osterhaus, A.D.; Kuiken, T. Pathology of experimental SARS coronavirus infection in cats and ferrets. Vet. Pathol. 2008, 45, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Benavides, F.F.W.; Veldhuis Kroeze, E.J.B.; Leijten, L.; Schmitz, K.S.; van Run, P.; Kuiken, T.; de Vries, R.D.; Bauer, L.; van Riel, D. Neuroinvasive and neurovirulent potential of SARS-CoV-2 in the acute and post-acute phase of intranasally inoculated ferrets. PLoS ONE 2025, 20, e0311449. [Google Scholar] [CrossRef]
- Shipley, R.; Seekings, A.H.; Byrne, A.M.P.; Shukla, S.; James, J.; Goharriz, H.; Lean, F.Z.X.; Nunez, A.; Fooks, A.R.; McElhinney, L.M.; et al. SARS-CoV-2 infection and transmission via the skin to oro-nasal route with the production of bioaerosols in the ferret model. J. Gen. Virol. 2024, 105, 002022. [Google Scholar] [CrossRef]
- Park, E.S.; Kuroda, Y.; Uda, A.; Kaku, Y.; Okutani, A.; Hotta, A.; Tatemoto, K.; Ishijima, K.; Inoue, Y.; Harada, M.; et al. The comparison of pathogenicity among SARS-CoV-2 variants in domestic cats. Sci. Rep. 2024, 14, 21815. [Google Scholar] [CrossRef]
- Karavaizoglu, C.; Suleyman, A.; Dolu, K.O.; Yucel, E.; Demirkale, Z.H.; Ozdemir, C.; Tamay, Z.U. Different Aspects of COVID-19: “Stay at Home” Increased Cat and Mite Sensitivity in Preschool Children. Pediatr. Pulmonol. 2025, 60, e27422. [Google Scholar] [CrossRef]
- Wee, J.; Chen, J.; Wei, G.W. Preventing future zoonosis: SARS-CoV-2 mutations enhance human-animal cross-transmission. Comput. Biol. Med. 2024, 182, 109101. [Google Scholar] [CrossRef]
- Nilsson, M.G.; Santana Cordeiro, M.C.; Goncalves, A.C.A.; Dos Santos Conzentino, M.; Huergo, L.F.; Vicentini, F.; Reis, J.B.L.; Biondo, A.W.; Kmetiuk, L.B.; da Silva, A.V. High seroprevalence for SARS-CoV-2 infection in dogs: Age as risk factor for infection in shelter and foster home animals. Prev. Vet. Med. 2024, 222, 106094. [Google Scholar] [CrossRef]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. EuroSurveill 2020, 25, 2001005. [Google Scholar] [CrossRef]
- Yeh, K.B.; Tabynov, K.; Parekh, F.K.; Mombo, I.; Parker, K.; Tabynov, K.; Bradrick, S.S.; Tseng, A.S.; Yang, J.R.; Gardiner, L.; et al. Significance of High-Containment Biological Laboratories Performing Work During the COVID-19 Pandemic: Biosafety Level-3 and -4 Labs. Front. Bioeng. Biotechnol. 2021, 9, 720315. [Google Scholar] [CrossRef]
- Alberto-Orlando, S.; Calderon, J.L.; Leon-Sosa, A.; Patino, L.; Zambrano-Alvarado, M.N.; Pasquel-Villa, L.D.; Rugel-Gonzalez, D.O.; Flores, D.; Mera, M.D.; Valencia, P.; et al. SARS-CoV-2 transmission from infected owner to household dogs and cats is associated with food sharing. Int. J. Infect. Dis. 2022, 122, 295–299. [Google Scholar] [CrossRef]
- Thakor, J.C.; Dinesh, M.; Manikandan, R.; Bindu, S.; Sahoo, M.; Sahoo, D.; Dhawan, M.; Pandey, M.K.; Tiwari, R.; Emran, T.B.; et al. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet. Q. 2022, 42, 125–147. [Google Scholar] [CrossRef]
- Moros, A.; Prenafeta, A.; Barreiro, A.; Perozo, E.; Fernandez, A.; Canete, M.; Gonzalez, L.; Garriga, C.; Pradenas, E.; Marfil, S.; et al. Immunogenicity and safety in pigs of PHH-1V, a SARS-CoV-2 RBD fusion heterodimer vaccine candidate. Vaccine 2023, 41, 5072–5078. [Google Scholar] [CrossRef]
- Chau, L.F.; Lillico, S.; Opriessnig, T.; Blake, R.; Tardy, L.; Lee, C.H.; Maxwell, S.; Warren, C.; Thornton, E.; McLaughlin, C.L.; et al. Human ACE2 transgenic pigs are susceptible to SARS-CoV-2 and develop COVID-19-like disease. Nat. Commun. 2025, 16, 766. [Google Scholar] [CrossRef]
- McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.; Cronk, B.D.; et al. From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. mBio 2020, 11, e02220-20. [Google Scholar] [CrossRef] [PubMed]
- Karikalan, M.; Chander, V.; Mahajan, S.; Deol, P.; Agrawal, R.K.; Nandi, S.; Rai, S.K.; Mathur, A.; Pawde, A.; Singh, K.P.; et al. Natural infection of Delta mutant of SARS-CoV-2 in Asiatic lions of India. Transbound. Emerg. Dis. 2022, 69, 3047–3055. [Google Scholar] [CrossRef]
- Siegrist, A.A.; Richardson, K.L.; Ghai, R.R.; Pope, B.; Yeadon, J.; Culp, B.; Behravesh, C.B.; Liu, L.; Brown, J.A.; Boyer, L.V. Probable Transmission of SARS-CoV-2 from African Lion to Zoo Employees, Indiana, USA, 2021. Emerg. Infect. Dis. 2023, 29, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Dusseldorp, F.; Bruins-van-Sonsbeek, L.G.R.; Buskermolen, M.; Niphuis, H.; Dirven, M.; Whelan, J.; Oude Munnink, B.B.; Koopmans, M.; Fanoy, E.B.; Sikkema, R.S.; et al. SARS-CoV-2 in lions, gorillas and zookeepers in the Rotterdam Zoo, the Netherlands, a One Health investigation, November 2021. Euro Surveill 2023, 28, 2200741. [Google Scholar] [CrossRef] [PubMed]
- Allender, M.C.; Adkesson, M.J.; Langan, J.N.; Delk, K.W.; Meehan, T.; Aitken-Palmer, C.; McEntire, M.M.; Killian, M.L.; Torchetti, M.; Morales, S.A.; et al. Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound. Emerg. Dis. 2022, 69, e3060–e3075. [Google Scholar] [CrossRef]
- Tan, C.W.; Chia, W.N.; Zhu, F.; Young, B.E.; Chantasrisawad, N.; Hwa, S.H.; Yeoh, A.Y.; Lim, B.L.; Yap, W.C.; Pada, S.; et al. SARS-CoV-2 Omicron variant emerged under immune selection. Nat. Microbiol. 2022, 7, 1756–1761. [Google Scholar] [CrossRef]
- Wang, L.F.; Tan, C.W.; Chia, W.N.; Zhu, F.; Young, B.; Chantasrisawad, N.; Hwa, S.H.; Yeoh, A.Y.; Lim, B.L.; Yap, W.C.; et al. Differential escape of neutralizing antibodies by SARS-CoV-2 Omicron and pre-emergent sarbecoviruses. Res. Sq. 2022, rs.3.rs-1362541. [Google Scholar] [CrossRef]
- Marques, A.D.; Sherrill-Mix, S.; Everett, J.K.; Adhikari, H.; Reddy, S.; Ellis, J.C.; Zeliff, H.; Greening, S.S.; Cannuscio, C.C.; Strelau, K.M.; et al. Multiple Introductions of SARS-CoV-2 Alpha and Delta Variants into White-Tailed Deer in Pennsylvania. mBio 2022, 13, e0210122. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Boggiatto, P.M.; Buckley, A.; Cassmann, E.D.; Falkenberg, S.; Caserta, L.C.; Fernandes, M.H.V.; Kanipe, C.; Lager, K.; Palmer, M.V.; et al. From Deer-to-Deer: SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer. PLoS Pathog. 2022, 18, e1010197. [Google Scholar] [CrossRef]
- Fusco, G.; Cardillo, L.; Levante, M.; Brandi, S.; Picazio, G.; Napoletano, M.; Martucciello, A.; Fiorito, F.; De Carlo, E.; de Martinis, C. First serological evidence of SARS-CoV-2 natural infection in small ruminants: Brief report. Vet. Res. Commun. 2023, 47, 1741–1748. [Google Scholar] [CrossRef]
- El Masry, I.; Al Makhladi, S.; Al Abdwany, M.; Al Subhi, A.; Eltahir, H.; Cheng, S.; Peiris, M.; Gardner, E.; Von Dobschuetz, S.; Soumare, B.; et al. Serological evidence of SARS-CoV-2 infection in dromedary camels and domestic bovids in Oman. Emerg. Microbes Infect. 2023, 12, 2220577. [Google Scholar] [CrossRef]
- Toomer, G.; Burns, W.; Garcia, L.; Henry, G.; Biancofiori, A.; George, A.; Duffy, C.; Chu, J.; Sides, M.; Munoz, M.; et al. Characterization of Three Variants of SARS-CoV-2 In Vivo Shows Host-Dependent Pathogenicity in Hamsters, While Not in K18-hACE2 Mice. Viruses 2022, 14, 2584. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Imai, M.; Maeda, K.; Nakajima, N.; Higashi-Kuwata, N.; Iwatsuki-Horimoto, K.; Ito, M.; Kiso, M.; Maemura, T.; Takeda, Y.; et al. Highly Neutralizing COVID-19 Convalescent Plasmas Potently Block SARS-CoV-2 Replication and Pneumonia in Syrian Hamsters. J. Virol. 2022, 96, e0155121. [Google Scholar] [CrossRef]
- Takeshita, M.; Fukuyama, H.; Kamada, K.; Matsumoto, T.; Makino-Okamura, C.; Uchikubo-Kamo, T.; Tomabechi, Y.; Hanada, K.; Moriyama, S.; Takahashi, Y.; et al. Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models. iScience 2022, 25, 105596. [Google Scholar] [CrossRef]
- Klestova, Z. Possible spread of SARS-CoV-2 in domestic and wild animals and body temperature role. Virus Res. 2023, 327, 199066. [Google Scholar] [CrossRef]
- Plebani, R.; Bai, H.; Si, L.; Li, J.; Zhang, C.; Romano, M. 3D Lung Tissue Models for Studies on SARS-CoV-2 Pathophysiology and Therapeutics. Int. J. Mol. Sci. 2022, 23, 71. [Google Scholar] [CrossRef]
- Mathez, G.; Pillonel, T.; Bertelli, C.; Cagno, V. Alpha and Omicron SARS-CoV-2 Adaptation in an Upper Respiratory Tract Model. Viruses 2022, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Kapczynski, D.R.; Sweeney, R.; Spackman, E.; Pantin-Jackwood, M.; Suarez, D.L. Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells. Virology 2022, 569, 1–12. [Google Scholar] [CrossRef]
Species | 19 | 24 | 27 | 28 | 31 | 34 | 35 | 37 | 38 | 41 | 42 | 45 | 79 | 82 | 83 | 325 | 329 | 330 | 353 | 354 | 355 | 357 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chicken | D | - | T | F | E | V | R | E | D | Y | E | L | N | R | F | E | T | N | K | N | D | R |
Chimpanzee | S | Q | T | F | K | H | E | E | D | Y | Q | L | L | M | Y | Q | E | N | K | G | D | R |
Chinese hamster | S | Q | T | F | D | Q | E | E | D | Y | Q | L | L | N | Y | Q | G | N | K | G | D | R |
Chinese tree shrew | T | E | V | F | K | I | E | E | E | H | Q | L | Q | R | Y | Q | D | K | K | N | D | R |
Dog | S | L | T | F | K | Y | E | E | E | Y | Q | L | L | T | Y | Q | G | N | K | G | D | R |
Domestic cat | S | L | T | F | K | H | E | E | E | Y | Q | L | L | T | Y | Q | E | N | K | G | D | R |
Duck (Mallard) | D | - | M | F | E | V | R | E | D | Y | E | L | N | N | F | E | K | N | K | N | D | R |
Ferret | S | L | T | F | K | Y | E | E | E | Y | Q | L | H | T | Y | E | Q | N | K | R | D | R |
Golden hamster | S | Q | T | F | D | Q | E | E | D | Y | Q | L | L | N | Y | Q | E | N | K | G | D | R |
Greater horseshoe bat | S | L | K | F | D | S | E | E | N | H | Q | L | L | N | F | E | N | N | K | G | D | R |
Green monkey | S | Q | T | F | K | H | E | E | D | Y | Q | L | L | M | Y | Q | E | N | K | G | D | R |
Guinea pig | F | Q | T | F | E | L | K | E | D | Y | Q | L | L | A | Y | Q | K | N | K | N | D | R |
Mink | S | L | T | F | K | Y | E | E | E | Y | Q | L | H | T | Y | E | Q | N | K | H | D | R |
Mouse | S | N | T | F | N | Q | E | E | D | Y | Q | L | T | S | F | Q | A | N | H | G | D | R |
Norway rat | S | K | S | F | K | Q | E | E | D | Y | Q | L | I | N | F | P | T | N | H | G | D | R |
Pangolin | S | E | T | F | K | S | E | E | E | Y | Q | L | I | N | Y | Q | E | N | K | H | D | R |
Pig | S | L | T | F | K | L | E | E | D | Y | Q | L | I | T | Y | Q | N | N | K | G | D | R |
Rabbit | S | L | T | F | K | Q | E | E | D | Y | Q | L | L | T | Y | Q | E | N | K | G | D | R |
Rhesus monkey | S | Q | T | F | K | H | E | E | D | Y | Q | L | L | M | Y | Q | E | N | K | G | D | R |
Tree shew | T | D | V | F | K | I | E | E | E | Y | Q | L | Q | R | Y | Q | D | K | N | N | D | R |
White-foot mouse | S | Q | I | F | K | Q | E | E | D | Y | Q | L | L | N | Y | Q | E | N | K | G | D | R |
White-tail deer | S | Q | T | F | K | H | E | E | D | Y | Q | L | M | T | Y | Q | D | N | K | G | D | R |
White-tufted-ear marmoset | S | Q | T | F | K | H | E | E | D | H | E | L | L | T | Y | Q | E | N | K | Q | D | R |
Human | S | Q | T | F | K | H | E | E | D | Y | Q | L | L | M | Y | Q | E | N | K | G | D | R |
Animals | Classification | Advantages | Disadvantages | Refs. |
---|---|---|---|---|
Transgenic mice | K18-hACE2, Hfh4-hACE2, CD147-hACE2, mACE2-mutant, hMHCI-hACE2, Colla1-hACE2, hACE2-TMPRSS2-FCGRT, AAV-hACE2, Ad5-hACE2, hCD34(+)-hACE2-NCG, SCID | Low cost and accessible; Ease to handle and genetic manipulation; susceptible; characterize the clinical presentation of COVID-19, including weight loss and interstitial pneumonia or severe pneumonia. | Wild-type not infectious; Time cost for construction; Not transmissible; High viral titers in the brain. | [17,24,25,26,27,28,29,30,31,32,33,34,35,36,37] |
Hamster | Syrian hamster; Chinese hamster | Low cost and easy to handle; Susceptible to all VOCs; transmissible; Present age and sex bias associated with clinical disease; no or mild clinical disease symptoms. | Virus clears rapidly and is nonlethal. Related reagents shortage. | [38,39,40,41,42,43,44,45] |
Nonhuman Primates | Rhesus, Cynomolgus, African green monkeys, marmosets | Susceptible; Highly similar to humans; Mild to moderate clinical signs; Older age is associated with increased disease severity. | High cost; Shortage; Ethical issues; Almost no severe cases. | [46,47,48,49,50,51,52,53,54,55,56] |
Ferret | Ferret | Highly susceptible and transmissible; Mild clinical disease; Aged ferrets lead to greater susceptibility. | Relatively high cost; Difficult to obtain specific reagents. | [57,58,59,60,61,62] |
Cat | Cat | Susceptible; Highly transmissible. | Lack of standard cats; Reagent shortage. | [57,63,64,65,66] |
Mink | Mink | Highly susceptible and highly transmissible; No to mild signs up to strains; | The lab is difficult to handle. | [67,68,69,70,71] |
Others | Fruit bats; dogs; pigs; deer, etc. | Susceptible and transmissible (deer); Permissive (Fruit bats). | Low susceptibility (dogs, pigs); Shortage of standard animals (bats, deer). | [57,59,72,73,74,75,76,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Tao, Y.; Wu, X.; Li, S.; Yang, R.; Li, C.; Yao, Y.; Xu, S.; Shu, J.; He, Y.; et al. Current Advances and Applications of Animal Models in SARS-CoV-2 Pathogenesis and Vaccine Development. Microorganisms 2025, 13, 2009. https://doi.org/10.3390/microorganisms13092009
Wu L, Tao Y, Wu X, Li S, Yang R, Li C, Yao Y, Xu S, Shu J, He Y, et al. Current Advances and Applications of Animal Models in SARS-CoV-2 Pathogenesis and Vaccine Development. Microorganisms. 2025; 13(9):2009. https://doi.org/10.3390/microorganisms13092009
Chicago/Turabian StyleWu, Li, Yingying Tao, Xing Wu, Shaozhen Li, Rui Yang, Chengying Li, Yao Yao, Shijia Xu, Jianhong Shu, Yulong He, and et al. 2025. "Current Advances and Applications of Animal Models in SARS-CoV-2 Pathogenesis and Vaccine Development" Microorganisms 13, no. 9: 2009. https://doi.org/10.3390/microorganisms13092009
APA StyleWu, L., Tao, Y., Wu, X., Li, S., Yang, R., Li, C., Yao, Y., Xu, S., Shu, J., He, Y., & Feng, H. (2025). Current Advances and Applications of Animal Models in SARS-CoV-2 Pathogenesis and Vaccine Development. Microorganisms, 13(9), 2009. https://doi.org/10.3390/microorganisms13092009