Clinical Features and Outcomes of Patients with Full Spectrum of COVID-19 Severity and Concomitant Herpesvirus Reactivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Laboratory Methods
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Analysis of Herpesvirus Reactivation(s)
3.3. Association of Patients’ Characteristics with Herpesvirus Reactivation(s)
3.4. Factors Associated with Patients’ Outcomes in SARS-CoV-2-Positive Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
ANOVA | Analysis of variance |
AST | Aspartate aminotransferase |
CI | Confidence interval |
COPD | Chronic obstructive pulmonary disease |
COVID-19 | Coronavirus disease 2019 |
CPAP | Continuous positive airway pressure |
CRP | C-reactive protein |
Ct | Cycle threshold |
ETI | Endotracheal intubation |
GCS | Glasgow coma scale |
EBV | Epstein–Barr virus |
FiO2 | Fraction of inspired oxygen |
GGO | Ground glass opacities |
HHV | Human herpesviruses |
HCMV | Human cytomegalovirus |
HFNC | High flow nasal cannula |
HIV | Human immunodeficiency virus |
HSV | Herpes simplex virus |
ICU | Intensive care unit |
IL | Interleukin |
LDH | Lactate dehydrogenase |
NIV | Non-invasive ventilation |
NK | Natural killer |
NKG2A | Natural killer group 2 member A |
OR | Odds ratio |
PaO2 | Arterial partial pressure of oxygen |
PCR | Polymerase chain reaction |
Q-Q | Quantile–quantile |
RT | Real-time reverse transcriptase |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SOFA | Sequential organ failure assessment |
VZV | Varicella-zoster virus |
References
- Tian, S.; Hu, N.; Lou, J.; Chen, K.; Kang, X.; Xiang, Z.; Chen, H.; Wang, D.; Liu, N.; Liu, D.; et al. Characteristics of COVID-19 Infection in Beijing. J. Infect. 2020, 80, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Litvinova, M.; Wang, W.; Wang, Y.; Deng, X.; Chen, X.; Li, M.; Zheng, W.; Yi, L.; Chen, X.; et al. Evolving Epidemiology and Transmission Dynamics of Coronavirus Disease 2019 Outside Hubei Province, China: A Descriptive and Modelling Study. Lancet Infect. Dis. 2020, 20, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; et al. Coronavirus Infections and Immune Responses. J. Med. Virol. 2020, 92, 424–432. [Google Scholar] [CrossRef]
- Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 Infection: Origin, Transmission, and Characteristics of Human Coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 Infection: The Perspectives on Immune Responses. Cell Death Differ. 2020, 27, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Boglione, L.; Crobu, M.G.; Pirisi, M.; Smirne, C. Clinical Characteristics and Outcomes in Patients with Chronic HBV Infection and Hospitalized for COVID-19 Pneumonia: A Retrospective Cohort Study. Viruses 2024, 17, 40. [Google Scholar] [CrossRef]
- Shafiee, A.; Teymouri Athar, M.M.; Nassar, M.; Seighali, N.; Aminzade, D.; Fattahi, P.; Rahmannia, M.; Ahmadi, Z. Comparison of COVID-19 Outcomes in Patients with Type 1 and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. 2022, 16, 102512. [Google Scholar] [CrossRef]
- Chen, T.; Song, J.; Liu, H.; Zheng, H.; Chen, C. Positive Epstein–Barr Virus Detection in Coronavirus Disease 2019 (COVID-19) Patients. Sci. Rep. 2021, 11, 10902. [Google Scholar] [CrossRef]
- Moss, P. “The Ancient and the New”: Is There an Interaction between Cytomegalovirus and SARS-CoV-2 Infection? Immun. Ageing 2020, 17, 14. [Google Scholar] [CrossRef]
- Virgin, H.W. The Virome in Mammalian Physiology and Disease. Cell 2014, 157, 142–150. [Google Scholar] [CrossRef]
- Sehrawat, S.; Kumar, D.; Rouse, B.T. Herpesviruses: Harmonious Pathogens but Relevant Cofactors in Other Diseases? Front. Cell Infect. Microbiol. 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Shamsi, S.; Kohandel Gargari, O.; Beiky, M.; Allahkarami, M.M.; Miyanaji, A.B.; Aghajanian, S.; Mozhgani, S.H. EBV Associated T- and NK-Cell Lymphoproliferative Diseases: A Comprehensive Overview of Clinical Manifestations and Novel Therapeutic Insights. Rev. Med. Virol. 2022, 32, e2328. [Google Scholar] [CrossRef]
- Riaz, A. Recent Understanding of the Classification and Life Cycle of Herpesviruses—A Review. Sci. Lett. J. 2017, 5, 195–207. [Google Scholar]
- Mendonça, F.T.; Mendonça, F.T. Immunosuppressed Patients and the Risk of COVID-19: A Narrative Review. Clin. Oncol. Res. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Ong, D.S.Y.; Bonten, M.J.M.; Spitoni, C.; Lunel, F.M.V.; Frencken, J.F.; Horn, J.; Schultz, M.J.; van der Poll, T.; Klouwenberg, P.M.C.K.; Cremer, O.L. Epidemiology of Multiple Herpes Viremia in Previously Immunocompetent Patients with Septic Shock. Clin. Infect. Dis. 2017, 64, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Malekifar, P.; Pakzad, R.; Shahbahrami, R.; Zandi, M.; Jafarpour, A.; Rezayat, S.A.; Akbarpour, S.; Shabestari, A.N.; Pakzad, I.; Hesari, E.; et al. Viral Coinfection among COVID-19 Patient Groups: An Update Systematic Review and Meta-Analysis. Biomed. Res. Int. 2021, 2021, 5313832. [Google Scholar] [CrossRef]
- Aghbash, P.S.; Eslami, N.; Shirvaliloo, M.; Baghi, H.B. Viral Coinfections in COVID-19. J. Med. Virol. 2021, 93, 5310–5322. [Google Scholar] [CrossRef]
- Feng, Y.; Ling, Y.; Bai, T.; Xie, Y.; Huang, J.; Li, J.; Xiong, W.; Yang, D.; Chen, R.; Lu, F.; et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am. J. Respir. Crit. Care Med. 2020, 201, 1380–1388. [Google Scholar] [CrossRef]
- Pölkki, A.; Pekkarinen, P.T.; Takala, J.; Selander, T.; Reinikainen, M. Association of Sequential Organ Failure Assessment (SOFA) Components with Mortality. Acta Anaesthesiol. Scand. 2022, 66, 731–741. [Google Scholar] [CrossRef]
- Nair, R.; Bhandary, N.M.; D’Souza, A.D. Initial Sequential Organ Failure Assessment Score versus Simplified Acute Physiology Score to Analyze Multiple Organ Dysfunction in Infectious Diseases in Intensive Care Unit. Indian. J. Crit. Care Med. 2016, 20, 210–215. [Google Scholar] [CrossRef]
- Gavelli, F.; Castello, L.M.; Bellan, M.; Azzolina, D.; Hayden, E.; Beltrame, M.; Galbiati, A.; Gardino, C.A.; Gastaldello, M.L.; Giolitti, F.; et al. Clinical Stability and In-Hospital Mortality Prediction in COVID-19 Patients Presenting to the Emergency Department. Minerva Med. 2021, 112, 118–123. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.; Emberson, J.; Mafham, M.; Bell, J.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, P.E.; Nimonkar, A.V. Herpes Virus Replication. IUBMB Life 2003, 55, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Grinde, B. Herpesviruses: Latency and Reactivation—Viral Strategies and Host Response. J. Oral. Microbiol. 2013, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Reese, T.A. Coinfections: Another Variable in the Herpesvirus Latency-Reactivation Dynamic. J. Virol. 2016, 90, 5534–5537. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, J.; Dai, L.; Post, S.R.; Qin, Z. SARS-CoV-2 Infection and Lytic Reactivation of Herpesviruses: A Potential Threat in the Postpandemic Era? J. Med. Virol. 2022, 94, 5103–5111. [Google Scholar] [CrossRef]
- CDC (US Centers for Disease Control and Prevention). COVID-19 (Version for Healthcare Workers): Clinical Presentation. Available online: https://www.cdc.gov/covid/hcp/clinical-care/covid19-presentation.html (accessed on 4 April 2025).
- Alareeki, A.; Osman, A.M.M.; Khandakji, M.N.; Looker, K.J.; Harfouche, M.; Abu-Raddad, L.J. Epidemiology of Herpes Simplex Virus Type 2 in Europe: Systematic Review, Meta-Analyses, and Meta-Regressions. Lancet Reg. Health Eur. 2023, 25, 100558. [Google Scholar] [CrossRef]
- Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.E.; Oxman, M.N.; et al. Varicella Zoster Virus Infection. Nat. Rev. Dis. Primers 2015, 1, 15016. [Google Scholar] [CrossRef]
- Edelman, D.C. Human Herpesvirus 8—A Novel Human Pathogen. Virol. J. 2005, 2, 78. [Google Scholar] [CrossRef]
- Chinna, P.; Bratl, K.; Lambarey, H.; Blumenthal, M.J.; Schäfer, G. The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies. Int. J. Mol. Sci. 2023, 24, 13066. [Google Scholar] [CrossRef]
- White, D.W.; Suzanne Beard, R.; Barton, E.S. Immune Modulation during Latent Herpesvirus Infection. Immunol. Rev. 2012, 245, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Teymouri Athar, M.M.; Amini, M.J.; Hajishah, H.; Siahvoshi, S.; Jalali, M.; Jahanbakhshi, B.; Mozhgani, S.H. Reactivation of Herpesviruses during COVID-19: A Systematic Review and Meta-Analysis. Rev. Med. Virol. 2023, 33, e2437. [Google Scholar] [CrossRef]
- Navarro-Bielsa, A.; Gracia-Cazaña, T.; Aldea-Manrique, B.; Abadías-Granado, I.; Ballano, A.; Bernad, I.; Gilaberte, Y. COVID-19 Infection and Vaccines: Potential Triggers of Herpesviridae Reactivation. An. Bras. Dermatol. 2023, 98, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, V.C.d.S.; Alves-Leon, S.V.; Sarmento, D.J.d.S.; Coelho, W.L.d.C.N.P.; Moreira, O.d.C.; Salvio, A.L.; Ramos, C.H.F.; Filho, C.H.F.R.; Marques, C.A.B.; Gonçalves, J.P.d.C.; et al. Herpesvirus and Neurological Manifestations in Patients with Severe Coronavirus Disease. Virol. J. 2022, 19, 101. [Google Scholar] [CrossRef] [PubMed]
- Roncati, L.; Sweidan, E.; Tchawa, C.; Gianotti, G.; Di Massa, G.; Siciliano, F.; Paolini, A. SARS-CoV-2 Induced Herpes Virus Reactivations and Related Implications in Oncohematology: When Lymphocytopenia Sets in and Immunosurveillance Drops Out. Microorganisms 2023, 11, 2223. [Google Scholar] [CrossRef]
- Talukder, S.; Deb, P.; Parveen, M.; Zannat, K.E.; Bhuiyan, A.H.; Yeasmin, M.; Molla, M.M.A.; Saif-Ur-Rahman, K.M. Clinical Features and Outcomes of COVID-19 Patients with Concomitant Herpesvirus Co-Infection or Reactivation: A Systematic Review. New Microbes New Infect. 2024, 58, 101233. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Saidara, E.; Maes, M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023, 15, 400. [Google Scholar] [CrossRef]
- Gáspár, Z.; Szabó, B.G.; Ceglédi, A.; Lakatos, B. Human Herpesvirus Reactivation and Its Potential Role in the Pathogenesis of Post-Acute Sequelae of SARS-CoV-2 Infection. Geroscience 2024, 47, 167–187. [Google Scholar] [CrossRef]
- Saura, O.; Chommeloux, J.; Levy, D.; Assouline, B.; Lefevre, L.; Luyt, C.E. Updates in the Management of Respiratory Virus Infections in ICU Patients: Revisiting the Non-SARS-CoV-2 Pathogens. Expert. Rev. Anti Infect. Ther. 2022, 20, 1537–1550. [Google Scholar] [CrossRef]
- Fumagalli, J.; Panigada, M.; Klompas, M.; Berra, L. Ventilator-Associated Pneumonia among SARSCoV-2 Acute Respiratory Distress Syndrome Patients. Curr. Opin. Crit. Care 2022, 28, 74–82. [Google Scholar] [CrossRef]
- Conway Morris, A.; Smielewska, A. Viral Infections in Critical Care: A Narrative Review. Anaesthesia 2023, 78, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Le Balc’h, P.; Pinceaux, K.; Pronier, C.; Seguin, P.; Tadié, J.M.; Reizine, F. Herpes Simplex Virus and Cytomegalovirus Reactivations among Severe COVID-19 Patients. Crit. Care 2020, 24, 530. [Google Scholar] [CrossRef]
- Simonnet, A.; Engelmann, I.; Moreau, A.S.; Garcia, B.; Six, S.; El Kalioubie, A.; Robriquet, L.; Hober, D.; Jourdain, M. High Incidence of Epstein–Barr Virus, Cytomegalovirus, and Human-Herpes Virus-6 Reactivations in Critically Ill Patients with COVID-19. Infect. Dis. Now. 2021, 51, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Taherifard, E.; Movahed, H.; Kiani Salmi, S.; Taherifard, A.; Abdollahifard, S.; Taherifard, E. Cytomegalovirus Coinfection in Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Systematic Review of Reported Cases. Infect Dis 2022, 54, 543–557. [Google Scholar] [CrossRef]
- D’Ardes, D.; Boccatonda, A.; Schiavone, C.; Santilli, F.; Guagnano, M.T.; Bucci, M.; Cipollone, F. A Case of Coinfection with SARS-CoV-2 and Cytomegalovirus in the Era of COVID-19. Eur. J. Case Rep. Intern. Med. 2020, 7, 001652. [Google Scholar] [CrossRef]
- Nakase, H.; Herfarth, H. Cytomegalovirus Colitis, Cytomegalovirus Hepatitis and Systemic Cytomegalovirus Infection: Common Features and Differences. Inflamm. Intest. Dis. 2016, 1, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, N.; Jin, R.; Feng, Y.; Wang, S.; Gao, S.; Gao, R.; Wu, G.; Tian, D.; Tan, W.; et al. Immune Suppression in the Early Stage of COVID-19 Disease. Nat. Commun. 2020, 11, 5859. [Google Scholar] [CrossRef]
- Antonioli, L.; Fornai, M.; Pellegrini, C.; Blandizzi, C. NKG2A and COVID-19: Another Brick in the Wall. Cell Mol. Immunol. 2020, 17, 672–674. [Google Scholar] [CrossRef]
- Djaoud, Z.; Riou, R.; Gavlovsky, P.J.; Mehlal, S.; Bressollette, C.; Gérard, N.; Gagne, K.; Charreau, B.; Retière, C. Cytomegalovirus-Infected Primary Endothelial Cells Trigger NKG2C+ Natural Killer Cells. J. Innate Immun. 2016, 8, 374–385. [Google Scholar] [CrossRef]
- Luyt, C.E.; Girardis, M.; Paixão, P. Herpes Simplex Virus and Cytomegalovirus Lung Reactivations in Severe COVID-19 Patients: To Treat or Not to Treat? That Is (Still) the Question. Intensive Care Med. 2024, 50, 1317–1319. [Google Scholar] [CrossRef]
- Gatto, I.; Biagioni, E.; Coloretti, I.; Farinelli, C.; Avoni, C.; Caciagli, V.; Busani, S.; Sarti, M.; Pecorari, M.; Gennari, W.; et al. Cytomegalovirus Blood Reactivation in COVID-19 Critically Ill Patients: Risk Factors and Impact on Mortality. Intensive Care Med. 2022, 48, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Söderberg-Nauclér, C. Does Reactivation of Cytomegalovirus Contribute to Severe COVID-19 Disease? Immun. Ageing 2021, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Granda, M.J.; Catalán, P.; Muñoz, P.; Aldámiz, T.; Barrios, J.C.; Ramírez, C.; García-Martínez, R.; Villalba, M.V.; Puente, L.; Bouza, E. Cytomegalovirus Reactivation in Patients Diagnosed with Severe COVID-19: A Point Prevalence Study in a General Hospital. Rev. Esp. Quimioter. 2023, 26, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Schinas, G.; Moustaka, V.; Polyzou, E.; Almyroudi, M.P.; Dimopoulos, G.; Akinosoglou, K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses 2023, 15, 1165. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Di Bella, S.; Lovecchio, A.; Ball, L.; De Maria, A.; Vena, A.; Bruzzone, B.; Icardi, G.; Pelosi, P.; Luzzati, R.; et al. Herpes Simplex Virus 1 (HSV-1) Reactivation in Critically Ill COVID-19 Patients: A Brief Narrative Review. Infect. Dis. Ther. 2022, 11, 1779–1791. [Google Scholar] [CrossRef]
- Meyer, A.; Buetti, N.; Houhou-Fidouh, N.; Patrier, J.; Abdel-Nabey, M.; Jaquet, P.; Presente, S.; Girard, T.; Sayagh, F.; Ruckly, S.; et al. HSV-1 Reactivation Is Associated with an Increased Risk of Mortality and Pneumonia in Critically Ill COVID-19 Patients. Crit. Care 2021, 25, 417. [Google Scholar] [CrossRef]
- Brooks, B.; Tancredi, C.; Song, Y.; Mogus, A.T.; Huang, M.L.W.; Zhu, H.; Phan, T.L.; Zhu, H.; Kadl, A.; Woodfolk, J.; et al. Epstein–Barr Virus and Human Herpesvirus-6 Reactivation in Acute COVID-19 Patients. Viruses 2022, 14, 1872. [Google Scholar] [CrossRef]
- Kim, J.Y.H.; Ragusa, M.; Tortosa, F.; Torres, A.; Gresh, L.; Méndez-Rico, J.A.; Alvarez-Moreno, C.A.; Lisboa, T.C.; Valderrama-Beltrán, S.L.; Aldighieri, S.; et al. Viral Reactivations and Co-Infections in COVID-19 Patients: A Systematic Review. BMC Infect. Dis. 2023, 23, 259. [Google Scholar] [CrossRef]
- Solomay, T.V.; Semenenko, T.A.; Filatov, N.N.; Vedunova, S.L.; Lavrov, V.F.; Smirnova, D.I.; Gracheva, A.V.; Faizuloev, E.B. Reactivation of Epstein-Barr Virus (Herpesviridae: Lymphocryptovirus, HHV-4) Infection during COVID-19: Epidemiological Features. Vopr. Virusol. 2021, 66, 152–161. [Google Scholar] [CrossRef]
- Manoharan, S.; Ying, L.Y. Epstein Barr Virus Reactivation during COVID-19 Hospitalization Significantly Increased Mortality/Death in SARS-CoV-2(+)/EBV(+) than SARS-CoV-2(+)/EBV(-) Patients: A Comparative Meta-Analysis. Int. J. Clin. Pract. 2023, 2023, 1068000. [Google Scholar] [CrossRef]
- Busnadiego, I.; Abela, I.A.; Frey, P.M.; Hofmaenner, D.A.; Scheier, T.C.; Schuepbach, R.A.; Buehler, P.K.; Brugger, S.D.; Hale, B.G. Critically Ill COVID-19 Patients with Neutralizing Autoantibodies against Type I Interferons Have Increased Risk of Herpesvirus Disease. PLoS Biol. 2022, 20, e3001709. [Google Scholar] [CrossRef] [PubMed]
- Saade, A.; Moratelli, G.; Azoulay, E.; Darmon, M. Herpesvirus Reactivation during Severe COVID-19 and High Rate of Immune Defect. Infect. Dis. Now. 2021, 51, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Vigón, L.; García-Pérez, J.; Rodríguez-Mora, S.; Torres, M.; Mateos, E.; Castillo de la Osa, M.; Cervero, M.; Malo De Molina, R.; Navarro, C.; Murciano-Antón, M.A.; et al. Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With COVID-19 Admitted to the ICU. Front. Immunol. 2021, 12, 742631. [Google Scholar] [CrossRef]
- Huang, R.C.; Chiu, C.H.; Chiang, T.T.; Tsai, C.C.; Wang, Y.C.; Chang, F.Y.; Yang, Y.S.; Wang, C.H. Hospital-Acquired Infections in Patients Hospitalized with COVID-19: First Report from Taiwan. J. Chin. Med. Assoc. 2022, 85, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, S.; Cassaniti, I.; Novazzi, F.; Fiorina, L.; Piralla, A.; Comolli, G.; Bruno, R.; Maserati, R.; Gulminetti, R.; Novati, S.; et al. EBV DNA Increase in COVID-19 Patients with Impaired Lymphocyte Subpopulation Count. Int. J. Infect. Dis. 2021, 104, 315–319. [Google Scholar] [CrossRef]
- Paparoupa, M.; Aldemyati, R.; Roggenkamp, H.; Berinson, B.; Nörz, D.; Olearo, F.; Kluge, S.; Roedl, K.; de Heer, G.; Wichmann, D. The Prevalence of Early- and Late-Onset Bacterial, Viral, and Fungal Respiratory Superinfections in Invasively Ventilated COVID-19 Patients. J. Med. Virol. 2022, 94, 1920–1925. [Google Scholar] [CrossRef]
- Textoris, J.; Mallet, F. Immunosuppression and Herpes Viral Reactivation in Intensive Care Unit Patients: One Size Does Not Fit All. Crit. Care 2017, 21, 230. [Google Scholar] [CrossRef]
- Reizine, F.; Liard, C.; Pronier, C.; Thibault, V.; Maamar, A.; Gacouin, A.; Tadié, J.M. Herpesviridae Systemic Reactivation in Patients with COVID-19-Associated ARDS. J. Hosp. Infect. 2022, 119, 189–191. [Google Scholar] [CrossRef]
- Fuest, K.E.; Erber, J.; Berg-Johnson, W.; Heim, M.; Hoffmann, D.; Kapfer, B.; Kriescher, S.; Ulm, B.; Schmid, R.M.; Rasch, S.; et al. Risk Factors for Herpes Simplex Virus (HSV) and Cytomegalovirus (CMV) Infections in Critically-Ill COVID-19 Patients. Multidiscip. Respir. Med. 2022, 17, 815. [Google Scholar] [CrossRef]
- Blumenthal, M.J.; Lambarey, H.; Chetram, A.; Riou, C.; Wilkinson, R.J.; Schäfer, G. Kaposi’s Sarcoma-Associated Herpesvirus, but Not Epstein-Barr Virus, Co-Infection Associates with Coronavirus Disease 2019 Severity and Outcome in South African Patients. Front. Microbiol. 2022, 12, 795555. [Google Scholar] [CrossRef]
- Mattei, A.; Schiavoni, L.; Riva, E.; Ciccozzi, M.; Veralli, R.; Urselli, A.; Citriniti, V.; Nenna, A.; Pascarella, G.; Costa, F.; et al. Epstein–Barr Virus, Cytomegalovirus, and Herpes Simplex-1/2 Reactivations in Critically Ill Patients with COVID-19. Intensive Care Med. Exp. 2024, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Banko, A.; Miljanovic, D.; Cirkovic, A. Systematic Review with Meta-Analysis of Active Herpesvirus Infections in Patients with COVID-19: Old Players on the New Field. Int. J. Infect. Dis. 2023, 130, 108–125. [Google Scholar] [CrossRef] [PubMed]
- Grubelnik, G.; Korva, M.; Kogoj, R.; Polanc, T.; Mavrič, M.; Jevšnik Virant, M.; Uršič, T.; Keše, D.; Seme, K.; Petrovec, M.; et al. Herpesviridae and Atypical Bacteria Co-Detections in Lower Respiratory Tract Samples of SARS-CoV-2-Positive Patients Admitted to an Intensive Care Unit. Microorganisms 2024, 12, 714. [Google Scholar] [CrossRef] [PubMed]
Variable | All Subjects (n = 153) | SARS-CoV-2-Positive Subjects (n = 102) | SARS-CoV-2-Negative Subjects (n = 51) | p |
---|---|---|---|---|
Male/female, n | 98 (64)/55 (36) | 66 (65)/36 (35) | 32 (62)/19 (38) | 0.952 |
Age, years | 62.2 (50.3–71.4) | 62.6 (54.4–71.9) | 58.0 (39.9–69.5) | 0.068 |
Disease severity | ||||
asymptomatic/mild, n | 34 (22) | 34 (33) | - | |
moderate, n | 67 (44) | 32 (32) | 35 (69) | 0.025 1 |
severe/critical, n | 52 (34) | 36 (35) | 16 (31) | |
Comorbidities 2, n | ||||
Cardiovascular diseases 3, n | 54 (35) | 32 (31) | 22 (43) | 0.209 |
Diabetes mellitus, n | 38 (25) | 28 (27) | 10 (20) | 0.389 |
COPD, n | 29 (19) | 11 (11) | 18 (35) | <0.001 |
Chronic kidney disease, n | 23 (15) | 18 (18) | 5 (10) | 0.298 |
Liver cirrhosis, n | 11 (7) | 7 (7) | 4 (8) | 0.911 |
Active malignancy 4, n | 21 (14) | 15 (15) | 6 (12) | 0.803 |
≥2 comorbidities, n | 98 (64) | 62 (61) | 36 (71) | 0.311 |
Immunosuppressive therapy 5, n | 12 (8) | 7 (7) | 5 (10) | 0.749 |
COVID-19 vaccination coverage 6, n | 90 (59) | 52 (51) | 38 (75) | 0.006 |
Main laboratory findings | ||||
Lymphocyte count, ×103/µL | 995 (680–1650) | 0.850 (0.615–1.180) | 1.650 (1.310–2.210) | <0.001 |
Platelets, ×109/L | 197 (146–263) | 185 (131–243) | 214 (157–268) | 0.226 |
C-reactive protein, mg/dL | 6.0 (3.0–12.0) | 6.2 (3.0–12.7) | 9.0 (4.5–11.5) | 0.779 |
D-dimer, ng/mL | 1302 (593–2808) | 1311 (710–3629) | 593 (556–1302) | 0.092 |
Troponin I, ng/L | 9.0 (4.0–29.0) | 10.5 (3.0–31.0) | 8.0 (5.0–19.0) | 0.667 |
Fibrinogen, mg/dL | 468 (365–576) | 480 (412–600) | 295 (255–428) | 0.027 |
LDH, U/L | 507 (363–622) | 530 (382–625) | 380 (319–431) | 0.043 |
Ferritin, ng/mL | 583 (194–1009) | 676 (217–1066) | 172 (86–302) | 0.019 |
AST, U/L | 25 (19–41) | 28 (19–48) | 24 (20–28) | 0.496 |
ALT, U/L | 26 (17–38) | 27 (19–39) | 18 (17–30) | 0.105 |
Interleukin-6, pg/mL 7 | - | 30.0 (15.2–39.2) | - | - |
Total bilirubin, mg/dL | 0.70 (0.53–0.90) | 0.70 (0.50–0.90) | 0.82 (0.67–1.22) | 0.138 |
Creatinine, mg/dL | 0.88 (0.67–1.18) | 0.87 (0.63–1.37) | 0.92 (0.72–1.06) | 0.696 |
SOFA score 1,8 [19,20] | ||||
0–3 9, n | 62 (52) | 39 (57) | 23 (45) | 0.310 |
4–8 10, n | 47 (40) | 25 (37) | 22 (44) | |
≥9 11, n | 10 (8) | 4 (6) | 6 (11) | |
GCS 1,8, score | 15 (15–15) | 15 (15–15) | 15 (12–15) | 0.406 |
PaO2/FiO2, ratio 1,8 | 211 (127–284) | 221 (124–317) | 210 (145–270) | 0.872 |
Respiratory rate 1,8, breaths per min | 16 (16–26) | 16 (16–25) | 18 (16–29) | 0.254 |
Length of hospital stay 1, days | 12.1 (8.8–22.0) | 19.0 (8.5–37.0) | 9.4 (8.7–16.7) | 0.010 |
Outcome 12 | ||||
Discharge, n | 127 (83) | 79 (77) | 48 (94) | 0.009 |
Death, n | 26 (17) | 23 (23) | 3 (6) |
Variable | |
---|---|
SARS-CoV-2 viral load | |
Time interval for sample detection 1, days | 1.8 (0.8–3.5) |
PCR Ct values 2, n | 28 (22–33) |
Novara-COVID score [21] | |
≤3, n | 66 (65) |
>3, n | 36 (35) |
Respiratory variables | |
COVID-19 pneumonia 3, n | 42 (41) |
Pulmonary impairment 4 | |
<10%, n | 51 (50) |
10–50%, n | 40 (39) |
≥50%, n | 11 (11) |
Supplemental oxygen therapy 5 | |
None, n | 36 (35) |
Nasal cannula/Venturi mask, n | 23 (23) |
HFNC/CPAP/NIV, n | 25 (24) |
Endotracheal intubation, n | 18 (18) |
Length of ICU stay, days | 23 (16–41) |
Systemic corticosteroid treatment 6,7, n | 70 (69) |
Remdesivir treatment 6, n | 100 (98) |
Herpesvirus Reactivations | All Subjects (n = 153) | SARS-CoV-2- Negative Subjects (n = 51) | SARS-CoV-2-Positive Subjects | (a) | (b) | (c) | |||
---|---|---|---|---|---|---|---|---|---|
Mild (n = 34) | Moderate (n = 32) | Severe (n = 36) | All (n = 102) | p | |||||
HSV-1, n | 28 (18) | 1 (2) | 3 (9) | 8 (25) | 16 (44) | 27 (27) | <0.001 | <0.001 | 0.008 |
HSV-2, n | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | - | - |
VZV, n | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | - | - |
HCMV, n | 10 (7) | 2 (4) | 0 (0) | 0 (0) | 8 (22) | 8 (8) | 0.497 | 0.015 | 0.012 |
EBV, n | 49 (32) | 9 (18) | 9 (26) | 14 (44) | 17 (47) | 40 (39) | 0.009 | 0.002 | 0.102 |
HHV-6, n | 58 (38) | 11 (22) | 7 (21) | 20 (62) | 20 (56) | 47 (46) | 0.004 | <0.001 | 0.040 |
HHV-7, n | 78 (51) | 20 (39) | 14 (41) | 18 (56) | 26 (72) | 58 (57) | 0.059 | 0.003 | 0.027 |
HHV-8, n | 1 (1) | 1 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.333 | 0.114 | - |
≥1 reactivation, n | 116 (76) | 31 (61) | 22 (65) | 29 (91) | 34 (94) | 85 (83) | 0.005 | <0.001 | 0.002 |
≥2 reactivations, n | 71 (46) | 14 (27) | 8 (24) | 21 (66) | 28 (78) | 57 (56) | 0.001 | <0.001 | <0.001 |
≥3 reactivations, n | 27 (18) 1 | 0 (0) | 2 (6) | 8 (25) | 17 (47) | 27 (26) | <0.001 | <0.001 | <0.001 |
(a) | |||||||||
---|---|---|---|---|---|---|---|---|---|
HSV-1 Reactivation | HCMV Reactivation | EBV Reactivation | |||||||
Yes | No | p | Yes | No | p | Yes | No | p | |
(n = 27) | (n = 75) | (n = 8) | (n = 94) | (n = 40) | (n = 62) | ||||
Ct value ≤ 20 of SARS-CoV-2 PCR, n | 4 (15) | 18 (24) | 0.418 | 0 (0) | 22 (23) | 0.196 | 8 (30) | 14 (19) | 0.278 |
Male sex, n | 14 (52) | 52 (69) | 0.158 | 4 (50) | 62 (66) | 0.448 | 28 (70) | 38 (61) | 0.403 |
Age, years | 67.1 (60.7–75.8) | 61.5 (53.5–70.1) | 0.124 | 71.1 (55.1–81.2) | 62.3 (53.9–72.6) | 0.289 | 65.9 (54.4–71.4) | 61.5 (55.2–73.6) | 0.818 |
≥1 comorbidity, n | 20 (74) | 43 (57) | 0.167 | 4 (50) | 59 (63) | 0.477 | 25 (62) | 38 (61) | 1.000 |
Lymphocyte count <1000 × 103/µL, n | 6 (22) | 28 (37) | 0.233 | 1 (12) | 33 (35) | 0.263 | 18 (45) | 16 (26) | 0.054 |
CRP > 4.0 mg/dL, n | 18 (67) | 42 (56) | 0.370 | 8 (100) | 52 (55) | 0.020 | 25 (62) | 35 (56) | 0.681 |
D-dimer > 1000 ng/mL, n | 20 (74) | 42 (56) | 0.113 | 6 (75) | 56 (60) | 0.476 | 24 (60) | 38 (61) | 1.000 |
IL-6 > 30 pg/mL, n | 20 (74) | 21 (28) | <0.001 | 6 (75) | 35 (37) | 0.058 | 22 (55) | 19 (31) | 0.022 |
Symptomatic disease ≥ mild, n | 25 (93) | 49 (65) | 0.006 | 8 (100) | 66 (70) | 0.103 | 33 (82) | 41 (66) | 0.110 |
Corticosteroid use, n | 22 (81) | 48 (64) | 0.146 | 5 (62) | 65 (69) | 0.703 | 25 (62) | 45 (73) | 0.382 |
Impairment of lung ≥ 10%, n | 16 (59) | 35 (47) | 0.370 | 7 (88) | 44 (47) | 0.060 | 22 (55) | 29 (47) | 0.543 |
Respiratory treatment need 1, n | 15 (56) | 28 (37) | 0.116 | 6 (75) | 37 (39) | 0.067 | 21 (52) | 22 (35) | 0.103 |
ICU admission, n | 15 (56) | 21 (28) | 0.018 | 6 (75) | 30 (32) | 0.022 | 17 (42) | 19 (31) | 0.289 |
Hospital stay, days | 22.5 (8.5–38.5) | 8.0 (0.0–19.0) | 0.002 | 42.0 (37.5–53.5) | 9.1 (0.0–21.8) | <0.001 | 13.0 (5.5–29.5) | 9.0 (0.0–25.9) | 0.379 |
Death 2, n | 10 (37) | 13 (17) | 0.058 | 2 (25) | 21 (22) | 1.000 | 15 (37) | 8 (13) | 0.007 |
(b) | |||||||||
HHV-6 reactivation | p | HHV-7 reactivation | p | ≥3 any reactivations | p | ||||
yes | no | yes | no | yes | no | ||||
(n = 47) | (n = 55) | (n = 58) | (n = 44) | (n = 27) | (n = 75) | ||||
Ct value ≤ 20 of SARS-CoV-2 PCR, n | 7 (15) | 15 (27) | 0.153 | 12 (21) | 10 (23) | 0.813 | 7 (26) | 15 (20) | 0.588 |
Male sex, n | 33 (70) | 33 (60) | 0.306 | 39 (67) | 27 (61) | 0.676 | 18 (67) | 48 (64) | 1.000 |
Age, years | 62.4 (55.5–72.1) | 62.7 (53.9–72.3) | 0.802 | 66.6 (56.9–75.1) | 60.2 (53.8–68.1) | 0.105 | 67.1 (57.9–75.6) | 61.5 (53.3–70.4) | 0.162 |
≥1 comorbidity, n | 26 (55) | 37 (67) | 0.228 | 37 (64) | 26 (59) | 0.683 | 18 (67) | 45 (60) | 0.646 |
Lymphocyte count <1000 × 103/µL, n | 9 (19) | 25 (45) | 0.006 | 25 (43) | 9 (20) | 0.020 | 8 (30) | 26 (35) | 0.812 |
CRP > 4.0 mg/dL, n | 34 (72) | 26 (47) | 0.015 | 39 (67) | 21 (48) | 0.067 | 23 (85) | 37 (49) | 0.001 |
D-dimer > 1000 ng/mL, n | 27 (57) | 35 (64) | 0.548 | 39 (67) | 23 (52) | 0.153 | 19 (70) | 43 (57) | 0.259 |
IL-6 > 30 pg/mL, n | 20 (43) | 21 (38) | 0.689 | 25 (43) | 16 (36) | 0.545 | 15 (56) | 26 (35) | 0.069 |
Symptomatic disease ≥ mild, n | 42 (89) | 32 (58) | <0.001 | 48 (83) | 26 (59) | 0.013 | 25 (93) | 49 (65) | 0.006 |
Corticosteroid use, n | 36 (77) | 34 (62) | 0.136 | 46 (79) | 24 (55) | 0.010 | 25 (93) | 45 (60) | 0.001 |
Impairment of lung ≥ 10%, n | 28 (60) | 23 (42) | 0.112 | 36 (62) | 15 (34) | 0.009 | 18 (67) | 33 (44) | 0.071 |
Respiratory treatment need 1, n | 24 (51) | 19 (35) | 0.110 | 26 (45) | 17 (39) | 0.551 | 16 (59) | 27 (36) | 0.042 |
ICU admission, n | 20 (43) | 16 (29) | 0.212 | 25 (43) | 11 (25) | 0.064 | 16 (59) | 20 (27) | 0.004 |
Hospital stay, days | 17.5 (7.3–37.8) | 7.2 (0.0–21.4) | 0.009 | 17.1 (7.2–30.3) | 6.2 (0.0–18.4) | 0.015 | 26.1 (8.5–41.2) | 7.3 (0.0–19.4) | <0.001 |
Death 2, n | 12 (26) | 11 (20) | 0.635 | 17 (29) | 6 (14) | 0.093 | 9 (33) | 14 (19) | 0.128 |
Occurrence of Severe/Critical Forms of COVID-19 | Length of Hospital Stay > 14 Days | Non-Invasive 1 or Invasive 2 Ventilatory Assistance Need | Death Within 60 Days from First SARS-CoV-2 Positivity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Factors | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p |
(a) | ||||||||||||
Age (years) | 0.985 | 0.942– 1.030 | 0.519 | 1.011 | 0.968– 1.057 | 0.599 | 1.027 | 0.982– 1.073 | 0.243 | 0.997 | 0.952– 1.043 | 0.898 |
Sex (male/female) | 1.200 | 0.339– 4.243 | 0.777 | 1.784 | 0.717– 3.715 | 0.698 | 0.985 | 0.288– 3.372 | 0.981 | 1.296 | 0.358– 4.687 | 0.692 |
≥2 comorbidities | 0.866 | 0.285– 2.632 | 0.800 | 1.764 | 0.563– 5.531 | 0.329 | 1.544 | 0.507– 4.695 | 0.443 | 1.026 | 0.319– 3.300 | 0.964 |
Lymphocyte count < 1000 × 103/µL | 1.000 | 0.313– 3.191 | 1.000 | 1.916 | 0.602– 6.101 | 0.270 | 0.558 | 0.172– 1.815 | 0.333 | 0.604 | 0.182– 1.998 | 0.409 |
IL-6 > 30 pg/mL | 1.441 | 0.944– 4.851 | 0.997 | 1.285 | 0.158– 10.450 | 0.814 | 3.600 | 0.490– 26.398 | 0.207 | 18.666 | 1.563– 222.926 | 0.020 |
COVID-19 severity | - | - | - | 13.500 | 3.520– 51.774 | <0.001 | 11.885 | 3.220– 43.862 | <0.001 | 2.294 | 1.137– 9.377 | 0.015 |
SOFA ≥ 4 | 1.354 | 1.443– 4.133 | 0.034 | 4.123 | 2.029– 21.358 | 0.009 | 4.028 | 2.579– 5.334 | 0.021 | 3.819 | 1.139– 12.803 | 0.029 |
Length of hospital stay > 14 days | - | - | - | - | - | - | - | - | - | 1.920 | 0.559– 6.589 | 0.299 |
Corticosteroid use | 2.784 | 0.384– 2.369 | 0.998 | 1.550 | 0.091– 26.219 | 0.761 | 1.378 | 0.518– 2.473 | 0.998 | 1.129 | 0.796– 4.713 | 0.997 |
Impairment of lung ≥ 10% | 4.950 | 1.445– 16.955 | 0.010 | 1.846 | 1.561– 6.068 | 0.019 | 2.637 | 1.811– 8.568 | 0.006 | 12.190 | 1.459– 101.804 | 0.020 |
Ventilatory assistance need 1,2 | 11.885 | 3.220– 43.862 | <0.001 | 6.000 | 1.789– 20.115 | 0.003 | - | - | - | 5.490 | 1.347– 22.366 | 0.017 |
HSV-1 reactivation | 2.666 | 0.790– 8.993 | 0.113 | 1.944 | 0.599– 6.305 | 0.267 | 0.855 | 0.280– 2.608 | 0.783 | 1.851 | 0.571– 5.997 | 0.304 |
HCMV reactivation | 2.987 | 1.397– 7.234 | 0.026 | 3.179 | 1.172– 4.765 | 0.012 | 2.019 | 0.955– 11.478 | 0.071 | 0.853 | 0.148– 4.914 | 0.859 |
EBV reactivation | 1.254 | 0.417– 3.775 | 0.686 | 0.707 | 0.234– 2.134 | 0.538 | 1.218 | 0.412– 3.604 | 0.720 | 3.011 | 0.910– 9.961 | 0.070 |
HHV-6 reactivation | 0.738 | 0.241– 2.254 | 0.594 | 1.328 | 0.438– 4.029 | 0.615 | 1.065 | 0.358– 3.168 | 0.909 | 0.767 | 0.241– 2.438 | 0.653 |
HHV-7 reactivation | 2.000 | 0.630– 6.347 | 0.239 | 2.250 | 0.692– 7.306 | 0.177 | 2.211 | 0.698– 6.997 | 0.176 | 1.978 | 0.537– 7.279 | 0.304 |
Number of HHV reactivations | 1.580 | 0.940– 2.656 | 0.083 | 1.533 | 0.914– 2.573 | 0.105 | 1.241 | 0.767– 2.007 | 0.378 | 1.454 | 0.858– 2.465 | 0.163 |
≥2 any HHV reactivations | 1.562 | 0.467– 5.224 | 0.468 | 1.785 | 1.519– 13.140 | 0.038 | 1.828 | 0.549– 6.084 | 0.325 | 2.240 | 0.539– 9.307 | 0.267 |
≥3 any HHV reactivations | 3.011 | 1.894– 10.143 | 0.035 | 4.367 | 2.561– 16.445 | 0.002 | 2.882 | 1.104– 5.858 | 0.044 | 1.641 | 0.510– 5.273 | 0.405 |
(b) | ||||||||||||
Factors | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p |
IL-6 > 30 pg/mL | - | - | - | - | - | - | - | - | 10.228 | 0.467– 223.967 | 0.139 | |
COVID-19 severity | - | - | - | 8.265 | 1.357– 50.332 | 0.021 | 10.668 | 2.555– 44.528 | 0.001 | 3.174 | 1.458– 13.412 | 0.029 |
SOFA ≥ 4 | 2.471 | 1.665– 5.863 | 0.025 | 12.000 | 1.423– 101.187 | 0.022 | 1.801 | 0.475– 6.826 | 0.386 | 5.345 | 1.347– 18.700 | 0.022 |
Impairment of lung ≥ 10% | 3.726 | 1.370– 17.542 | 0.005 | 1.342 | 1.228– 6.219 | 0.014 | 1.236 | 1.284– 5.364 | 0.032 | 13.335 | 1.087– 180.125 | 0.031 |
Ventilatory assistance need 1,2 | 11.334 | 2.636– 48.728 | 0.001 | 2.755 | 0.956– 7.940 | 0.060 | - | - | - | 3.083 | 0.764– 24.140 | 0.091 |
HCMV reactivation | 3.576 | 1.678– 9.189 | 0.026 | 2.224 | 1.364– 6.121 | 0.031 | - | - | - | - | - | - |
≥2 any HHV reactivations | - | - | - | 1.822 | 0.277– 11.968 | 0.532 | - | - | - | - | - | - |
≥3 any HHV reactivations | 2.623 | 1.308– 8.549 | 0.041 | 3.567 | 2.119– 19.453 | 0.046 | 2.192 | 0.897– 4.776 | 0.079 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravanini, P.; Crobu, M.G.; Martello, C.; Faolotto, G.; Castello, L.M.; Palumbo, A.; Fenoglio, L.M.; Impaloni, C.; Briasco, M.; Di Domenico, C.; et al. Clinical Features and Outcomes of Patients with Full Spectrum of COVID-19 Severity and Concomitant Herpesvirus Reactivation. Microorganisms 2025, 13, 1221. https://doi.org/10.3390/microorganisms13061221
Ravanini P, Crobu MG, Martello C, Faolotto G, Castello LM, Palumbo A, Fenoglio LM, Impaloni C, Briasco M, Di Domenico C, et al. Clinical Features and Outcomes of Patients with Full Spectrum of COVID-19 Severity and Concomitant Herpesvirus Reactivation. Microorganisms. 2025; 13(6):1221. https://doi.org/10.3390/microorganisms13061221
Chicago/Turabian StyleRavanini, Paolo, Maria Grazia Crobu, Claudia Martello, Giulia Faolotto, Luigi Mario Castello, Antonia Palumbo, Luigi Maria Fenoglio, Clotilde Impaloni, Melissa Briasco, Christian Di Domenico, and et al. 2025. "Clinical Features and Outcomes of Patients with Full Spectrum of COVID-19 Severity and Concomitant Herpesvirus Reactivation" Microorganisms 13, no. 6: 1221. https://doi.org/10.3390/microorganisms13061221
APA StyleRavanini, P., Crobu, M. G., Martello, C., Faolotto, G., Castello, L. M., Palumbo, A., Fenoglio, L. M., Impaloni, C., Briasco, M., Di Domenico, C., Macaluso, P., Mercandino, A., Riggi, M., Pirisi, M., Andreoni, S., & Smirne, C. (2025). Clinical Features and Outcomes of Patients with Full Spectrum of COVID-19 Severity and Concomitant Herpesvirus Reactivation. Microorganisms, 13(6), 1221. https://doi.org/10.3390/microorganisms13061221