Assessing Bacterial Viability and Label Accuracy in Human and Poultry Probiotics Sold in the United Kingdom
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Probiotic Products Selection and Handling
2.3. Optimisation of Selective Media and Incubation Conditions
Agar Medium | Supplements | Target Organism(s) | Incubation Conditions |
---|---|---|---|
BSM Agar (Sigma, Gillingham, UK) | BSM Supplement (Sigma, UK) | Bifidobacterium spp. | Anaerobic, 37 °C, 72 h |
ChromoSelect Agar Base (Sigma, Gillingham, UK) | E. faecium selective supplement (Sigma, UK) | Enterococcus faecium | Aerobic, 37 °C, 24 h |
MRS Agar (Sigma, Gillingham, UK) | — | Lactobacillus spp. | Anaerobic, 37 °C, 72 h |
Tryptone Soya Agar (TSA; Thermo Scientific, Basingstoke, UK) | — | Bacillus spp. | Aerobic, 33 °C, 17 h 1 |
MRS Agar (Sigma, Gillingham, UK) | Vancomycin hydrochloride (20 mg L−1) 2 | Ligilactobacillus salivarius | Anaerobic, 37 °C, 72 h |
BSM Agar (Sigma, Gillingham, UK) | BSM Supplement; lithium mupirocin (5 mL/100 mL) 3 | Bifidobacterium animalis | Anaerobic, 37 °C, 72 h |
Product Code | Species Declared on the Label | Declared Label Total (CFU/g) | MALDI-TOF MS ID 2 | Observed Viable Plate Counts (Mean ± SD) 3 |
---|---|---|---|---|
P3 | Bacillus subtilis | 2.5 × 107 | Bacillus spp. | 1.375 × 107 ± 0.206 |
P4 | Bacillus subtilis | 3 × 108 | Bacillus spp. | 1.900 × 108 ± 0.182 |
P5 | Bacillus subtilis | 2 × 109 | Bacillus spp. | 1.400 × 1010 ± 0.258 |
P9 | Bifidobacterium animalis | Ratio 1 3/10 | Bifidobacterium animalis | 1.300 × 108 ± 0.258 |
Lactobacillus salivarius | Ratio 1/10 | Ligilactobacillus salivarius | 3.200 × 107 ± 0.365 | |
Enterococcus faecium | Ratio 6/10 | Enterococcus faecium | 1.055 × 109 ± 0.044 | |
Total bacteria | 1 × 109 | Total bacteria | 1.212 × 109 ± 0.042 | |
P10 | Enterococcus faecium | 2 × 1010 | Enterococcus faecium | 5.800 × 1010 ± 0.455 |
P11 | Bacillus subtilis | 2 × 108 | Bacillus spp. | 5.950 × 108 ± 0.311 |
P12 | Bifidobacterium animalis | Ratio 1 3/10 | Bifidobacterium animalis | 1.080 × 107 ± 0.148 |
Lactobacillus salivarius | Ratio 1/10 | Ligilactobacillus salivarius | 1.375 × 106 ± 0.432 | |
Enterococcus faecium | Ratio 6/10 | Enterococcus faecium | 5.300 × 108 ± 0.432 | |
Total bacteria | 2 × 108 | Total bacteria | 5.418 × 108 ± 0.421 |
Product Code | Form | Species Declared on the Label | Declared Label Total (CFU/form 1) | MALDI-TOF MS ID 3 | Observed Viable Plate Counts (Mean ± SD) 4 |
---|---|---|---|---|---|
P1 | Tablets | Lactobacillus acidophilus | 2 × 1011 | NA | No CFU detected 2 |
P2 | Capsule | Lactobacillus acidophilus | ND 5 | Lactobacillus acidophilus | 3.483 × 109 ± 0.277 |
Bifidobacterium animalis | ND | Bifidobacterium animalis | 6.533 × 108 ± 0.351 | ||
Bifidobacterium bifidum | ND | ||||
Total bacteria | 1 × 1010 | Total bacteria | 4.137 × 109 ± 0.297 | ||
P6 | Capsules | Lactobacillus acidophilus | ND | Lactobacillus acidophilus | 3.300 × 109 ± 0.100 |
Lactobacillus salivarius | ND | Lactobacillus salivarius | 2.067 × 106 ± 0.462 | ||
Bifidobacterium animalis | ND | Bifidobacterium animalis | 2.100 × 107 ± 0.200 | ||
Lactobacillus Bulgaricus | ND | ||||
Total bacteria | 3 × 109 | Total bacteria | 3.320 × 109 ± 0.100 | ||
P7 | Capsules | Lactobacillus acidophilus | ND | Lactobacillus acidophilus | 5.667 × 109 ± 0.306 |
Bifidobacterium bifidum | ND | Bifidobacterium bifidum | 8.100 × 108 ± 0.436 | ||
Total bacteria | 1 × 1010 | Total bacteria | 6.477 × 109 ± 0.337 | ||
P8 | Chewable Tablets | Lactobacillus acidophilus | ND | Lactobacillus acidophilus | 5.533 × 108 ± 0.152 |
Bifidobacterium animalis | ND | Bifidobacterium animalis | 2.800 × 107 ± 0.100 | ||
Total bacteria | 1 × 109 | Total bacteria | 5.813 × 108 ± 0.156 |
Product Code | Application | Declared Total Bacteria (log10 CFU/unit 1) | Observed Total Viable Plate Counts (log10 CFU ± SD) 2 | p-Value 3 | 95% Confidence Interval (CI) | Acceptable Log10 Range (±0.5) 4 | Relative Difference (%) 5 |
---|---|---|---|---|---|---|---|
P1 | Human | 11.30 | No CFU | 0.000 | (0.00, 0.00) | 10.80–11.80 | −100.00 |
P2 | Human | 10 | 9.61 ± 0.031 | 0.002 | (9.53, 9.69) | 9.50–10.50 | −3.90 |
P3 | Poultry | 7.39 | 7.13 ± 0.067 | 0.005 | (7.02, 7.24) | 6.89–7.89 | −3.52 |
P4 | Poultry | 8.47 | 8.27 ± 0.042 | 0.003 | (8.21, 8.34) | 7.97–8.97 | −2.36 |
P5 6 | Poultry | min. 9.30 | 10.14 ± 0.081 | 0.001 | (10.01, 10.26) | 8.80–9.80 | 9.03 |
P6 | Human | 9.47 | 9.52 ± 0.007 | 0.023 | (9.48, 9.55) | 8.97–9.97 | 0.53 |
P7 | Human | 10 | 9.81 ± 0.022 | 0.005 | (9.75, 9.86) | 9.50–10.50 | −1.90 |
P8 | Human | 9 | 8.76 ± 0.011 | 0.001 | (8.73, 8.79) | 8.50–9.50 | −2.67 |
P9 | Poultry | 9 | 9.08 ± 0.015 | 0.002 | (9.05, 9.10) | 8.50–9.50 | 0.89 |
P10 | Poultry | 10.30 | 10.76 ± 0.033 | 0.001 | (10.70, 10.81) | 9.80–10.80 | 4.46 |
P11 | Poultry | min. 8.30 | 8.77 ± 0.023 | 0.001 | (8.73, 8.81) | 7.80–8.80 | 5.66 |
P12 | Poultry | 8.30 | 8.73 ± 0.034 | 0.001 | (8.67, 8.78) | 7.80–8.80 | 5.18 |
2.4. Sample Preparation, Culturing and Enumeration
2.5. Species Identification
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hotel, A.; Cordoba, A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 2001, 5, 1–10. [Google Scholar]
- Berreta, A.; Kopper, J.J.; Alexander, T.L.; Kogan, C.J.; Burbick, C.R. Effect of an In Vitro Proximal Gastrointestinal Tract on Viability of Commercially Available Equine Probiotics. J. Equine Vet. Sci. 2021, 104, 103671. [Google Scholar] [CrossRef]
- Ronka, E.; Malinen, E.; Saarela, M.; Rinta-Koski, M.; Aarnikunnas, J.; Palva, A. Probiotic and milk technological properties of Lactobacillus brevis. Int. J. Food Microbiol. 2003, 83, 63–74. [Google Scholar] [CrossRef]
- Pendharkar, S.; Skafte-Holm, A.; Simsek, G.; Haahr, T. Lactobacilli and their probiotic effects in the vagina of reproductive age women. Microorganisms 2023, 11, 636. [Google Scholar] [CrossRef]
- Zawistowska-Rojek, A.; Zareba, T.; Mrowka, A.; Tyski, S. Assessment of the Microbiological Status of Probiotic Products. Pol. J. Microbiol. 2016, 65, 97–104. [Google Scholar] [CrossRef]
- Drago, L.; Rodighiero, V.; Celeste, T.; Rovetto, L.; de Vecchi, E. Microbiological evaluation of commercial probiotic products available in the USA in 2009. J. Chemother. 2010, 22, 373–377. [Google Scholar] [CrossRef]
- Korona-Glowniak, I.; Siwiec, R.; Luszczewska-Sierakowska, I.; Maciejewski, R.; Wrobel, R.; Malm, A. Microbiological evaluation of 10 commercial probiotic products available in Poland. Curr. Issues Pharm. Med. Sci. 2019, 32, 121–124. [Google Scholar] [CrossRef]
- Kesavelu, D., Sr.; Rohit, A.; Karunasagar, I.; Karunasagar, I. Composition and Laboratory Correlation of Commercial Probiotics in India. Cureus 2020, 12, e11334. [Google Scholar] [CrossRef] [PubMed]
- Toscano, M.; de Vecchi, E.; Rodighiero, V.; Drago, L. Microbiological and genetic identification of some probiotics proposed for medical use in 2011. J. Chemother. 2013, 25, 156–161. [Google Scholar] [CrossRef]
- Marinova, V.Y.; Rasheva, I.K.; Kizheva, Y.K.; Dermenzhieva, Y.D.; Hristova, P.K. Microbiological quality of probiotic dietary supplements. Biotechnol. Biotechnol. Equip. 2019, 33, 834–841. [Google Scholar] [CrossRef]
- Fredua-Agyeman, M.; Parab, S.; Gaisford, S. Evaluation of commercial probiotic products. Br. J. Pharm. 2016, 1, 84–89. [Google Scholar] [CrossRef]
- Metras, B.N.; Holle, M.J.; Parker, V.J.; Miller, M.J.; Swanson, K.S. Commercial kefir products assessed for label accuracy of microbial composition and density. JDS Commun. 2021, 2, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Martin, H. Assessment of commercial probiotic bacterial contents and label accuracy. Can. Vet. J. 2011, 52, 43. [Google Scholar]
- ISO 20128: 2006 (IDF 192: 2006); Milk Products–Enumeration of Presumptive Lactobacillus acidophilus on a Selective Medium–Colony-Count Technique at 37 Degrees C. ISO-International Organization for Standardization: Geneva, Switzerland, 2006.
- Leuschner, R.G.; Bew, J.; Simpson, P.; Ross, P.R.; Stanton, C. A collaborative study of a method for the enumeration of probiotic bifidobacteria in animal feed. Int. J. Food Microbiol. 2003, 83, 161–170. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Million, M.; Henry, M.; Raoult, D. Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J. Food Sci. 2011, 76, M568–M572. [Google Scholar] [CrossRef]
- Loy, D.J.; Clawson, M.L. From Genomics to MALDI-TOF MS: Diagnostic Identification and Typing of Bacteria in Veterinary Clinical Laboratories. In Microbiological Identification Using MALDI-TOF and Tandem Mass Spectrometry: Industrial and Environmental Applications; Shah, H.N., Gharbia, S.E., Shah, A.J., Tranfield, E.Y., Thompson, K.C., Eds.; John Wiley & Sons: Chichester, UK, 2023; pp. 283–302. [Google Scholar] [CrossRef]
- Simpson, P.; Fitzgerald, G.; Stanton, C.; Ross, R. The evaluation of a mupirocin-based selective medium for the enumeration of bifidobacteria from probiotic animal feed. J. Microbiol. Methods 2004, 57, 9–16. [Google Scholar] [CrossRef]
- Hartemink, R.; Domenech, V.; Rombouts, F. LAMVAB—A new selective medium for the isolation of lactobacilli from faeces. J. Microbiol. Methods 1997, 29, 77–84. [Google Scholar] [CrossRef]
- Vianna, E.d.F.; Pentagna, L.S.d.S.; Menezes, N.I.M.; de Freitas, F.A.D.; Leite, C.d.C.F.; Albano, R.M.; Leão, R.S.; Marques, E.A. Decreasing the cut-off score value of MALDI-ToF MS increase the identities of burkholderia cepacia complex species. Curr. Microbiol. 2021, 78, 2259–2263. [Google Scholar] [CrossRef]
- della Salute, M. Direzione Generale per l’Igiene e la Sicurezza degli Alimenti e la Nutrizione—Ufficio 4. Linee guida su Probiotici e Prebiotici; Ministero della Salute: Rome, Italy, March 2018. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_1016_allegato.pdf (accessed on 1 July 2025).
- Sarkar, S. Approaches for enhancing the viability of probiotics: A review. Br. Food J. 2010, 112, 329–349. [Google Scholar] [CrossRef]
- Iaconelli, C.; Lemetais, G.; Kechaou, N.; Chain, F.; Bermúdez-Humarán, L.G.; Langella, P.; Gervais, P.; Beney, L. Drying process strongly affects probiotics viability and functionalities. J. Biotechnol. 2015, 214, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Popov, I.V.; Algburi, A.; Prazdnova, E.V.; Mazanko, M.S.; Elisashvili, V.; Bren, A.B.; Chistyakov, V.A.; Tkacheva, E.V.; Trukhachev, V.I.; Donnik, I.M.; et al. A Review of the Effects and Production of Spore-Forming Probiotics for Poultry. Animals 2021, 11, 1941. [Google Scholar] [CrossRef]
- Shori, A.B. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Leuschner, R.G.K.; Kneifel, W.; Vernoux, J.-P.; Stanton, C.; Aldamiz, P. Methods for the Official Control of Probiotics (Microorganisms) Used as Feed Additives; Final Report, Volume III, Project SMT4-CT98-2235; European Commission, Community Research: Luxembourg, 2002; Available online: https://op.europa.eu/en/publication-detail/-/publication/bed1feec-4f66-4f3e-8c95-2710b525fd1a (accessed on 1 July 2025).
- Süle, J.; Kõrösi, T.; Hucker, A.; Varga, L. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Braz. J. Microbiol. 2014, 45, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Al-Hadeedy, I.Y.; Mohammed, A.K.; Al-Tikriti, S.S. Genetic Polymorphism of Estrogen Receptor Alpha Gene (ESRα) and Its Effect on Production and Biochemical Traits of White Quails. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; p. 072094. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, M.W.; Fenwick, D.J.C.; Marrs, E.C.L.; Chaudhry, A.S. Assessing Bacterial Viability and Label Accuracy in Human and Poultry Probiotics Sold in the United Kingdom. Microorganisms 2025, 13, 1933. https://doi.org/10.3390/microorganisms13081933
Taha MW, Fenwick DJC, Marrs ECL, Chaudhry AS. Assessing Bacterial Viability and Label Accuracy in Human and Poultry Probiotics Sold in the United Kingdom. Microorganisms. 2025; 13(8):1933. https://doi.org/10.3390/microorganisms13081933
Chicago/Turabian StyleTaha, Mostafa Waleed, Danielle J. C. Fenwick, Emma C. L. Marrs, and Abdul Shakoor Chaudhry. 2025. "Assessing Bacterial Viability and Label Accuracy in Human and Poultry Probiotics Sold in the United Kingdom" Microorganisms 13, no. 8: 1933. https://doi.org/10.3390/microorganisms13081933
APA StyleTaha, M. W., Fenwick, D. J. C., Marrs, E. C. L., & Chaudhry, A. S. (2025). Assessing Bacterial Viability and Label Accuracy in Human and Poultry Probiotics Sold in the United Kingdom. Microorganisms, 13(8), 1933. https://doi.org/10.3390/microorganisms13081933