Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments
Abstract
1. Introduction
2. Mechanisms of Biofilm Formation in the Food Industry
2.1. Genetic Regulation of Biofilm Formation
2.2. Horizontal Gene Transfer and AMR
2.3. Multi-Species Biofilms
2.4. Role of Environmental Factors
2.4.1. Temperature
2.4.2. Humidity
2.4.3. Nutrient Availability
2.5. Detection and Monitoring Techniques
Method | Principle | Advantages | Limitations | Application Example | Reference |
---|---|---|---|---|---|
Microscopy (e.g., CLSM, SEM) | Direct visualization of cells and matrix structure | High spatial resolution, biofilm morphology analysis | Expensive equipment, sample prep required, time consuming | Biofilm structure on stainless steel in dairy tanks | [66]. |
PCR (conventional or qPCR) | Detects biofilm-forming genes or microbial DNA | High sensitivity and specificity, fast | Requires DNA extraction, cannot differentiate live/dead cells | Detection of L. monocytogenes in food contact surfaces | [63]. |
Fluorescence staining | Uses dyes (e.g., SYTO9, PI) to label viable/dead cells | Differentiates between live and dead cells, visual feedback | Requires fluorescence microscopy, limited field applicability | Biofilm viability in meat slicers | [64] |
ATP Bioluminescence | Measures microbial ATP as indicator of contamination | Rapid, user-friendly, widely used in industry | Cannot distinguish between planktonic and biofilm-associated cells | Hygiene audits in food production lines | [57] |
Biosensors | Detects metabolites or signaling molecules (e.g., AI-2) | Real-time monitoring potential, can be integrated into production systems | Still under development, specificity and robustness vary | Online biofilm detection in water pipelines | [65] |
Culture-based methods | Plate counting after surface swabbing | Simple, inexpensive, allows strain isolation | Time-consuming, misses viable but non-culturable (VBNC) cells | Routine swabbing in meat or produce facilities | [7] |
Spectroscopy (e.g., FT-IR, Raman) | Analyzes chemical composition of biofilms | Non-destructive, biochemical fingerprinting | Requires specialized instruments, data interpretation complexity | Material characterization in beverage equipment | [67] |
3. Control and Prevention Strategies
3.1. Disinfection Limitations in Mixed Biofilms
3.2. Regulatory and Compliance Considerations
4. Biofilms in Specific Food-Processing Environments
4.1. Dairy-Processing Facilities
4.2. Meat-Processing Facilities
4.3. Seafood-Processing Facilities
4.4. Beverage Industry
4.5. Bakery and Ready-to-Eat Foods
4.6. Fresh Produce Handling
5. Economic Impact Analysis
5.1. Impact on Food Safety and Quality
5.2. Consumer Health Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Rosario, L.L.D.; Mohan, H.; Fedin, F.A.; Dev, S.S. Biofilms in Food Processing: A Comprehensive Review of Understanding Formation, Challenges, and Future Directions. Bioscan 2024, 19, 400–408. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Hu, X.; Du, X.; Lv, C.; Yuk, H.-G. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: The case of Salmonella spp. Food Sci. Biotechnol. 2023, 32, 1703–1718. [Google Scholar] [CrossRef] [PubMed]
- Popa, S.A.; Herman, V.; Tîrziu, E.; Morar, A.; Ban-Cucerzan, A.; Imre, M.; Pătrînjan, R.-T.; Imre, K. Public Health Risk of Campylobacter spp. Isolated from Slaughterhouse and Retail Poultry Meat: Prevalence and Antimicrobial Resistance Profiles. Pathogens 2025, 14, 316. [Google Scholar] [CrossRef] [PubMed]
- Bucur, I.-M.; Moza, A.C.; Pop, M.; Nichita, I.; Gaspar, C.M.; Cojocaru, R.; Gros, R.-V.; Boldea, M.V.; Tîrziu, A.; Tîrziu, E. Hunting Dynamics and Identification of Potentially Pathogenic Bacteria in European Fallow Deer (Dama dama) across Three Hunting Reserves in Western Romania. Microorganisms 2024, 12, 1236. [Google Scholar] [CrossRef]
- Bridier, A.; Briandet, R.; Thomas, V.; Dubois-Brissonnet, F. Resistance of Bacterial Biofilms to Disinfectants: A Review. Biofouling 2011, 27, 1017–1032. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef]
- Burmølle, M.; Thomsen, T.R.; Fazli, M.; Dige, I.; Christensen, L.; Homøe, P.; Tvede, M.; Nyvad, B.; Tolker-Nielsen, T.; Givskov, M.; et al. Biofilms in Chronic Infections—A Matter of Opportunity: Monospecies Biofilms in Multispecies Infections. FEMS Immunol. Med. Microbiol. 2010, 59, 324–336. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Bucur, I.-M.; Herman, V.; Moza, A.; Nichita, I.; Obiștoiu, D.; Gros, R.V.; Hotea, I.; Tîrziu, A.; Tîrziu, E. Research on the Isolation and Identification of Some Bacteria from Food Products of Animal Origin. Rev. Rom. Med. Vet. 2023, 33, 70–74. Available online: https://agmv.ro/wp-content/uploads/2023/09/70_74_Bucur_5-min.pdf (accessed on 20 April 2025).
- ISO 22000:2018; Food Safety Management Systems—Requirements for Any Organization in the Food Chain. International Organization for Standardization: Geneva, Switzerland, 2018.
- Prashanth, K.; Sawant, A.R.; Panda, L. Genetic basis of biofilm formation and their role in antibiotic resistance, adhesion, and persistent infections in ESKAPE pathogens. In Understanding Microbial Biofilms: Fundamentals to Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 395–414. [Google Scholar] [CrossRef]
- Fazeli-Nasab, B.; Sayyed, R.Z.; Mojahed, L.S.; Rahmani, A.F.; Ghafari, M.; Antonius, S. Biofilm production: A strategic mechanism for survival of microbes under stress conditions. Biocatal. Agric. Biotechnol. 2022, 42, 102337. [Google Scholar] [CrossRef]
- Akter, S.; Rahman, M.A.; Ashrafudoulla, M.; Ha, S.D. Biofilm formation and analysis of EPS architecture comprising polysaccharides and lipids by Pseudomonas aeruginosa and Escherichia coli on food processing surfaces. Food Res. Int. 2025, 209, 116274. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Hu, J.; Liu, C.; Ning, Y.; Lu, F. Current strategies for monitoring and controlling bacterial biofilm formation on medical surfaces. Ecotoxicol. Environ. Saf. 2024, 282, 116709. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.I.; Aggarwal, S. Matrix matters: How extracellular substances shape biofilm structure and mechanical properties. Colloids Surf. B Biointerfaces 2025, 246, 114341. [Google Scholar] [CrossRef] [PubMed]
- Seviour, T.; Derlon, N.; Dueholm, M.S.; Flemming, H.C.; Girbal-Neuhauser, E.; Horn, H.; Lin, Y. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Res. 2019, 151, 1–7. [Google Scholar] [CrossRef]
- Saharan, B.S.; Beniwal, N.; Duhan, J.S. From formulation to function: A detailed review of microbial biofilms and their polymer-based extracellular substances. Microbe 2024, 5, 100194. [Google Scholar] [CrossRef]
- Solano, C.; Echeverz, M.; Lasa, I. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 2014, 18, 96–104. [Google Scholar] [CrossRef]
- Li, L.-L.; Malone, J.E.; Iglewski, B.H. Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J. Bacteriol. 2007, 189, 4367–4374. [Google Scholar] [CrossRef]
- Kong, K.-F.; Vuong, C.; Otto, M. Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol. 2006, 296, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.; Silva, L.R.; Giaouris, E.D.; Melo, L.F.; Simões, M. Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res. Int. 2020, 127, 108754. [Google Scholar] [CrossRef]
- Wang, L.-L.; Malone, J.E.; Iglewski, B.H. Regulatory mechanisms of the LuxS/AI-2 quorum-sensing system and bacterial resistance. Antimicrob. Agents Chemother. 2019, 63, e01186-19. [Google Scholar] [CrossRef]
- Fong, J.; Zhang, C.; Yang, R.; Boo, Z.Z.; Tan, S.K.; Nielsen, T.E.; Givskov, M.; Liu, X.; Bin Weng, L.; Yang, L. Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Sci. Rep. 2018, 8, 1155. [Google Scholar] [CrossRef]
- Uroz, S.; Chhabra, S.R.; Camara, M.; Williams, P.; Oger, P.; Dessaux, Y. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 2005, 151, 3313–3322. [Google Scholar] [CrossRef] [PubMed]
- Packiavathy, I.A.S.V.; Sasikumar, P.; Pandian, S.K.; Ravi, A.V. Prevention of Quorum-Sensing-Mediated Biofilm Development and Virulence Factors Production in Vibrio spp. by Curcumin. Appl. Microbiol. Biotechnol. 2013, 97, 10177–10187. [Google Scholar] [CrossRef]
- Naga, N.G.; El-Badan, D.E.; Ghanem, K.M.; El-Badan, N.G. It Is the Time for Quorum Sensing Inhibition as Alternative Strategy of Antimicrobial Therapy. Cell Commun. Signal. 2023, 21, 133. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, M.; Di Stefano, A.; Marinelli, L.; Cacciatore, I.; Di Biase, G. RNAIII Inhibiting Peptide (RIP) and Derivatives as Potential Tools for the Treatment of S. aureus Biofilm Infections. Curr. Top. Med. Chem. 2018, 18, 2068–2079. [Google Scholar] [CrossRef]
- Vinayamohan, P.G.; Pellissery, A.J.; Venkitanarayanan, K. Role of Horizontal Gene Transfer in the Dissemination of Antimicrobial Resistance in Food Animal Production. Curr. Opin. Food Sci. 2022, 47, 100882. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Panlilio, H.; Rice, C.V. The Role of Extracellular DNA in the Formation, Architecture, Stability, and Treatment of Bacterial Biofilms. Biotechnol. Bioeng. 2021, 118, 2129–2141. [Google Scholar] [CrossRef]
- Claverys, J.-P.; Martin, B.; Polard, P. The Genetic Transformation Machinery: Composition, Localization, and Mechanism. FEMS Microbiol. Rev. 2009, 33, 643–656. [Google Scholar] [CrossRef]
- Winter, M.; Buckling, A.; Harms, K.; Johnsen, P.J.; Vos, M. Antimicrobial Resistance Acquisition via Natural Transformation: Context Is Everything. Curr. Opin. Microbiol. 2021, 64, 133–138. [Google Scholar] [CrossRef]
- Pan, J.; Singh, A.; Hanning, K.; Zhao, X.; Xu, D.; Li, M.; Wang, Y. A Role for the ATP-Dependent DNA Ligase LigE of Neisseria gonorrhoeae in Biofilm Formation. BMC Microbiol. 2024, 24, 29. [Google Scholar] [CrossRef]
- Madsen, J.S.; Burmølle, M.; Hansen, L.H.; Sørensen, S.J. The Interconnection Between Biofilm Formation and Horizontal Gene Transfer. FEMS Immunol. Med. Microbiol. 2012, 65, 183–195. [Google Scholar] [CrossRef]
- Liu, F.; Luo, Y.; Xu, T.; Lin, H.; Qiu, Y.; Li, B. Current Examining Methods and Mathematical Models of Horizontal Transfer of Antibiotic Resistance Genes in the Environment. Front. Microbiol. 2024, 15, 1371388. [Google Scholar] [CrossRef] [PubMed]
- Nesse, L.L.; Simm, R. Biofilm: A Hotspot for Emerging Bacterial Genotypes. In Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2018; Volume 103, pp. 223–246. [Google Scholar]
- Humphrey, S.; Fillol-Salom, A.; Quiles-Puchalt, N.; Ibarra-Chávez, R.; Chen, J.; Penadés, J.R. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat. Commun. 2021, 12, 6509. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, F.; De Reu, K.; Burmølle, M.; Maes, S.; Heyndrickx, M. Synergistic Interactions in Multispecies Biofilm Combinations of Bacterial Isolates Recovered from Diverse Food Processing Industries. Front. Microbiol. 2023, 14, 1159434. [Google Scholar] [CrossRef]
- Kim, U.; Lee, S.Y.; Oh, S.W. A review of mechanism analysis methods in multi-species biofilm of foodborne pathogens. Food Sci. Biotechnol. 2023, 32, 1665–1677. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Oliver, J.; Alam, M.; Ali, A.; Waldor, M.; Qadri, F.; Martínez-Urtaza, J. Vibrio spp. Infections. Nat. Rev. Dis. Primers 2018, 4, 1–19. [Google Scholar] [CrossRef]
- Brumfield, K.; Usmani, M.; Chen, K.; Gangwar, M.; Jutla, A.; Huq, A.; Colwell, R. Environmental Parameters Associated with Incidence and Transmission of Pathogenic Vibrio spp. Environ. Microbiol. 2021, 23, 7314–7340. [Google Scholar] [CrossRef]
- Peng, F.; Jiang, Y.; Feng, J.; Forsythe, S.J.; Li, R.; Zhou, Y.; Man, C. Antibiotic and Desiccation Resistance of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and Processing Environments. Front. Microbiol. 2017, 8, 316. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, A.; Kyratsa, A.; Ioannidou, V.; Bersimis, S.; Chatzipanagiotou, S. Detection of Biofilm Production of Yersinia enterocolitica Strains Isolated from Infected Children and Comparative Antimicrobial Susceptibility of Biofilm Versus Planktonic Forms. Mol. Diagn. Ther. 2014, 18, 309–314. [Google Scholar] [CrossRef]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2015, 13, 3991. [Google Scholar] [CrossRef]
- Karampoula, F.; Doulgeraki, A.I.; Fotiadis, C.; Tampakaki, A.; Nychas, G.E. Monitoring Biofilm Formation and Microbial Interactions That May Occur During a Salmonella Contamination Incident across the Network of a Water Bottling Plant. Microorganisms 2019, 7, 236. [Google Scholar] [CrossRef]
- Halbedel, S.; Wilking, H.; Holzer, A.; Kleta, S.; Fischer, M.A.; Lüth, S.; Flieger, A. Large Nationwide Outbreak of Invasive Listeriosis Associated with Blood Sausage, Germany, 2018–2019. Emerg. Infect. Dis. 2020, 26, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Campos, D.; Rodríguez-Melcón, C.; Alonso-Calleja, C.; Capita, R. Persistent Listeria monocytogenes Isolates from a Poultry-Processing Facility Form More Biofilm but Do Not Have a Greater Resistance to Disinfectants than Sporadic Strains. Pathogens 2019, 8, 250. [Google Scholar] [CrossRef]
- Russini, V.; Spaziante, M.; Zottola, T.; Fermani, A.G.; Di Giampietro, G.; Blanco, G.; Fabietti, P.; Marrone, R.; Parisella, R.; Parrocchia, S.; et al. A Nosocomial Outbreak of Invasive Listeriosis in an Italian Hospital: Epidemiological and Genomic Features. Pathogens 2021, 10, 591. [Google Scholar] [CrossRef]
- Papanikou, S.; Sideroglou, T.; Chrysostomou, A.; Kyritsi, M.A.; Spaniolas, S.; Bouboulis, D.; Mellou, K. A Point Source Gastroenteritis Outbreak in a High School Putatively Due to Clostridium perfringens: Timely Investigation Is Everything. Foodborne Pathog. Dis. 2023, 20, 41–46. [Google Scholar] [CrossRef]
- Kowalska, J.; Maćkiw, E.; Stasiak, M.; Kucharek, K.; Postupolski, J. Biofilm-Forming Ability of Pathogenic Bacteria Isolated from Retail Food in Poland. J. Food Prot. 2020, 83, 2032–2040. [Google Scholar] [CrossRef]
- Burman, E.; Bengtsson Palme, J. Microbial Community Interactions Are Sensitive to Small Changes in Temperature. Front. Microbiol. 2021, 12, 672910. [Google Scholar] [CrossRef]
- Pan, Y.; Breidt, F.; Kathariou, S. Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing Environment. Appl. Envir. Microbiol. 2006, 72, 7711–7717. [Google Scholar] [CrossRef]
- Zeng, B.; Wang, C.; Zhang, P.; Guo, Z.; Chen, L.; Duan, K. Heat Shock Protein DnaJ in Pseudomonas aeruginosa Affects Biofilm Formation via Pyocyanin Production. Microorganisms 2020, 8, 395. [Google Scholar] [CrossRef]
- Srey, S.; Jahid, I.K.; Ha, S.D. Biofilm Formation in Food Industries: A Food Safety Concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Dourou, D.; Beauchamp, C.S.; Yoon, Y.; Geornaras, I.; Belk, K.E.; Smith, G.C.; Sofos, J.N. Attachment and Biofilm Formation by Escherichia coli O157 at Different Temperatures on Various Food-Contact Surfaces Encountered in Beef Processing. Int. J. Food Microbiol. 2011, 149, 262–268. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; Yousef, A.E. Collateral Adaptive Responses Induced by Desiccation Stress in Salmonella enterica. LWT 2020, 133, 110089. [Google Scholar] [CrossRef]
- Vestby, L.K.; Møretrø, T.; Langsrud, S.; Heir, E.; Nesse, L.L. Biofilm Forming Abilities of Salmonella Are Correlated with Persistence in Fish Meal-and Feed Factories. BMC Vet. Res. 2009, 5, 20. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Wang, X.; Zhang, Y.; Liu, Z. The Effect of Carbon Source and Temperature on the Formation and Characteristics of Bacillus licheniformis and Bacillus cereus Biofilms in Milk Powder Production Facilities. J. Dairy Sci. 2024, 107, 23–34. [Google Scholar] [CrossRef]
- Shree, P.; Singh, C.; Sodhi, K.; Surya, J.; Singh, D. Biofilms: Understanding the Structure and Contribution Towards Bacterial Resistance in Antibiotics. Med. Microecol. 2023, 15, 100084. [Google Scholar] [CrossRef]
- Tuytschaever, T.; Raes, K.; Sampers, I. Biofilm Detection in the Food Industry: Challenges in Identifying Biofilm EPS Markers and Analytical Techniques with Insights for Listeria monocytogenes. Int. J. Food Microbiol. 2025, 432, 111091. [Google Scholar] [CrossRef]
- Mayer, P.; Smith, A.C.; Hurlow, J.; Morrow, B.R.; Bohn, G.A.; Bowler, P.G. Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods. Diagnostics 2024, 14, 2116. [Google Scholar] [CrossRef]
- McGlennen, M.; Dieser, M.; Foreman, C.M.; Warnat, S. Monitoring Biofilm Growth and Dispersal in Real Time with Impedance Biosensors. J. Ind. Microbiol. Biotechnol. 2023, 50, kuad022. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.A.; Verran, J. Formation, Architecture and Functionality of Microbial Biofilms in the Food Industry. Curr. Opin. Food Sci. 2015, 2, 84–91. [Google Scholar] [CrossRef]
- Gieroba, B.; Krysa, M.; Wojtowicz, K.; Wiater, A.; Pleszczyńska, M.; Tomczyk, M.; Sroka-Bartnicka, A. The FT-IR and Raman Spectroscopies as Tools for Biofilm Characterization Created by Cariogenic Streptococci. Int. J. Mol. Sci. 2020, 21, 3811. [Google Scholar] [CrossRef] [PubMed]
- Grudlewska-Buda, K.; Skowron, K.; Gospodarek-Komkowska, E. Comparison of the Intensity of Biofilm Formation by Listeria monocytogenes Using Classical Culture-Based Method and Digital Droplet PCR. AMB Expr. 2020, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Funari, R.; Shen, A.Q. Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors. ACS Sens. 2022, 7, 347–357. [Google Scholar] [CrossRef]
- Oliveira, A.; Cunha, M.d.L.R. Comparison of Methods for the Detection of Biofilm Production in Coagulase-Negative Staphylococci. BMC Res. Notes 2010, 3, 260. [Google Scholar] [CrossRef]
- Wang, X.; Xue, J.; Zhu, H.; Chen, S.; Wang, Y.; Xiao, Z.; Luo, Y. Advances in Biofilm Characterization: Utilizing Rheology and Atomic Force Microscopy in Foods and Related Fields. Adv. Compos. Hybrid. Mater. 2024, 7, 143. [Google Scholar] [CrossRef]
- Chowdhury, M.A.H.; Reem, C.S.A.; Ashrafudoulla, M.; Rahman, M.A.; Shaila, S.; Ha, A.J.W.; Ha, S.D. Role of Advanced Cleaning and Sanitation Techniques in Biofilm Prevention on Dairy Equipment. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70176. [Google Scholar] [CrossRef]
- Stiefel, P.; Mauerhofer, S.; Schneider, J.; Maniura-Weber, K.; Rosenberg, U.; Ren, Q. Enzymes Enhance Biofilm Removal Efficiency of Cleaners. Antimicrob. Agents Chemother. 2016, 60, 3647–3652. [Google Scholar] [CrossRef]
- Meireles, A.; Borges, A.; Giaouris, E.; Simões, M. The Current Knowledge on the Application of Anti-Biofilm Enzymes in the Food Industry. Food Res. Int. 2016, 86, 140–146. [Google Scholar] [CrossRef]
- Jiménez Pichardo, R.; Hernández Martínez, I.; Regalado González, C.; Santos Cruz, J.; Meas Vong, Y.; Wacher Rodarte, M.C.; Carrillo Reyes, J.; Sánchez Ortega, I.; García Almendárez, B.E. Innovative Control of Biofilms on Stainless Steel Surfaces Using Electrolyzed Water in the Dairy Industry. Foods 2021, 10, 103. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, X.; Wang, H. Recent Advances of Bacteriophage-Derived Strategies for Biofilm Control in the Food Industry. Food Biosci. 2023, 54, 102819. [Google Scholar] [CrossRef]
- Lu, J.; Hu, X.; Ren, L. Biofilm Control Strategies in Food Industry: Inhibition and Utilization. Trends Food Sci. Technol. 2022, 123, 103–113. [Google Scholar] [CrossRef]
- Dallagi, H.; Jha, P.K.; Faille, C.; Le Bail, A.; Rawson, A.; Benezech, T. Removal of Biocontamination in the Food Industry Using Physical Methods: An Overview. Food Control 2023, 151, 109645. [Google Scholar] [CrossRef]
- Yushina, Y.; Zaiko, E.; Grudistova, M.; Semenova, A.; Makhova, A.A.; Bataeva, D.S.; Demkina, E.V.; Nikolaev, Y.A. Patterns of Biofilm Formation by Members of Listeria, Salmonella, and Pseudomonas at Various Temperatures and the Role of Their Synergistic Interactions in the Formation of Biofilm Communities. Microbiology 2024, 93, 598–609. [Google Scholar] [CrossRef]
- Brooks, J.D.; Flint, S.H. Biofilms in the Food Industry: Problems and Potential Solutions. Int. J. Food Sci. Technol. 2008, 43, 2163–2176. [Google Scholar] [CrossRef]
- Giaouris, E.; Chorianopoulos, N.; Nychas, G.J.E. Co-Culture with Listeria monocytogenes within Dual-Species Biofilms Dramatically Enhances Resistance of Pseudomonas putida to Benzalkonium Chloride. PLoS ONE 2013, 8, e77276. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.Y.; Yang, Y.S.; Yuk, H.G. Biofilm Formation and Disinfectant Resistance of Salmonella sp. in Mono- and Dual-Species with Pseudomonas aeruginosa. J. Appl. Microbiol. 2017, 123, 651–660. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Wang, Q.; Yang, J.; Zhong, Q. The Mixed Biofilm Formed by Listeria monocytogenes and Other Bacteria: Formation, Interaction and Control Strategies. Crit. Rev. Food Sci. Nutr. 2024, 64, 8570–8586. [Google Scholar] [CrossRef]
- Lee, E.; Oh, M.; Kim, J. Inhibitory Effects of Combinations of Chemicals on Escherichia coli, Bacillus cereus, and Staphylococcus aureus Biofilms during the Clean-in-Place at an Experimental Dairy Plant. J. Food Prot. 2020, 83, 878–885. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Rodríguez Rubio, L.; Martínez, B.; Rodríguez, A.; García, P. Bacteriophage Derived Antimicrobials: Strategies Beyond Lytic Phage. Front. Microbiol. 2016, 7, 829. [Google Scholar] [CrossRef]
- Simões, M.; Simões, L.C.; Pereira, M.O. Biofilm Prevention and Control by Surface Modification. Biofilm 2020, 2, 100034. [Google Scholar] [CrossRef]
- FAO/WHO. Codex Alimentarius: International Food Standards, Guidelines and Codes of Practice; FAO/WHO: Rome, Italy, 2025; Available online: https://www.fao.org/fao-who-codexalimentarius/en/ (accessed on 15 April 2025).
- U.S. Food and Drug Administration. Food Safety Modernization Act (FSMA); FDA: Silver Spring, MD, USA, 2025. Available online: https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/food-safety-modernization-act-fsma (accessed on 15 April 2025).
- Coughlan, L.M.; Cotter, P.D.; Hill, C.; Alvarez-Ordóñez, A. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)Control of Bacterial Biofilms in the Food Industry. Front. Microbiol. 2016, 7, 1641. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yao, H.; Zhao, X.; Ge, C. Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023, 28, 2432. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.; Ladero, V.; Del Río, B.; Redruello, B.; Fernández, M.; Martín, M.; Álvarez, M. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products. Front. Microbiol. 2016, 7, 591. [Google Scholar] [CrossRef] [PubMed]
- Diarra, C.; Goetz, C.; Gagnon, M.; Roy, D.; Jean, J. Biofilm Formation by Heat-Resistant Dairy Bacteria: Multispecies Biofilm Model under Static and Dynamic Conditions. Appl. Environ. Microbiol. 2023, 89, e00713–e00723. [Google Scholar] [CrossRef]
- Catania, A.; Di Ciccio, P.; Ferrocino, I.; Civera, T.; Cannizzo, F.; Dalmasso, A. Evaluation of the Biofilm-Forming Ability and Molecular Characterization of Dairy Bacillus spp. Isolates. Front. Cell. Infect. Microbiol. 2023, 13, 1229460. [Google Scholar] [CrossRef]
- Briega, I.; Garde, S.; Sánchez, C.; Rodríguez-Mínguez, E.; Picon, A.; Ávila, M. Evaluation of Biofilm Production and Antibiotic Resistance/Susceptibility Profiles of Pseudomonas spp. Isolated from Milk and Dairy Products. Foods 2025, 14, 1105. [Google Scholar] [CrossRef]
- Borucki, M.K.; Peppin, J.D.; White, D.; Loge, F.; Call, D.R. Variation in Biofilm Formation among Strains of Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7336–7342. [Google Scholar] [CrossRef]
- Desmousseaux, C.; Guilbaud, M.; Jard, G.; Tormo, H.; Oulahal, N.; Hanin, A.; Laithier, C. Biofilms in the Milking Machine, from Laboratory Scale to On-Farm Results. J. Dairy Sci. 2025, 108, 8120–8140. [Google Scholar] [CrossRef]
- Savaşan, S.; Sezener, M. The Determination of Antibiotic Resistance and Biofilm Properties in Pseudomonas aeruginosa Isolates from Raw Milk Samples. J. Anatol. Environ. Anim. Sci. 2022, 7, 21–26. [Google Scholar] [CrossRef]
- Meng, L.; Liu, H.; Lan, T.; Dong, L.; Hu, H.; Zhao, S.; Zhang, Y.; Zheng, N.; Wang, J. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from Raw Milk Revealed by Whole Genome Sequencing. Front. Microbiol. 2020, 11, 1005. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Caputo, L. Antibiotic Resistant Pseudomonas spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019, 8, 372. [Google Scholar] [CrossRef]
- LaPointe, G.; Wilson, T.; Tarrah, A.; Gagnon, M.; Roy, D. Microbial Community Tracking from Dairy Farm to Factory: Insights on Biofilm Management for Enhanced Food Safety and Quality. J. Dairy Sci. 2025, 108, 8101–8119. [Google Scholar] [CrossRef]
- Flint, S.; Palmer, J.; Bloemen, K.; Brooks, J.; Crawford, R. The Growth of Bacillus stearothermophilus on Stainless Steel. J. Appl. Microbiol. 2001, 90, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Medina, C.; Manriquez, D.; Gonzalez-Córdova, B.; Pacha, P.; Vidal, J.; Oliva, R.; Latorre, A. Biofilm Forming Ability of Staphylococcus aureus on Materials Commonly Found in Milking Equipment Surfaces. J. Dairy Sci. 2025, 108, 3382–3389. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Novoa, M.; Solís-Velázquez, O.; Guerrero-Medina, P.; González-Gómez, J.; González-Torres, B.; Velázquez-Suárez, N.Y.; Martínez-Chávez, L.; Martínez-Gonzáles, N.E.; De la Cruz-Color, L.; Ibarra-Velázquez, L.M.; et al. Genetic and Compositional Analysis of Biofilm Formed by Staphylococcus aureus Isolated from Food Contact Surfaces. Front. Microbiol. 2022, 13, 1001700. [Google Scholar] [CrossRef]
- Ban-Cucerzan, A.; Morar, A.; Tîrziu, E.; Imre, K. Evaluation of Antimicrobial Resistance Profiles of Bacteria Isolated from Biofilm in Meat Processing Units. Antibiotics 2023, 12, 1408. [Google Scholar] [CrossRef]
- Calhoun, C.; Geornaras, I.; Zhang, P. Pseudomonas in Meat Processing Environments. Foods 2025, 14, 1615. [Google Scholar] [CrossRef]
- Sterniša, M.; Centa, U.; Drnovšek, A.; Remškar, M.; Možina, S. Pseudomonas fragi biofilm on stainless steel (at low temperatures) affects the survival of Campylobacter jejuni and Listeria monocytogenes and their control by a polymer molybdenum oxide nanocomposite coating. Int. J. Food Microbiol. 2023, 394, 110159. [Google Scholar] [CrossRef]
- Teh, A.; Lee, S.; Dykes, G. Association of Some Campylobacter jejuni with Pseudomonas aeruginosa Biofilms Increases Attachment under Conditions Mimicking Those in the Environment. PLoS ONE 2019, 14, e0215275. [Google Scholar] [CrossRef]
- Hilbert, F.; Scherwitzel, M.; Paulsen, P.; Szostak, M. Survival of Campylobacter jejuni under Conditions of Atmospheric Oxygen Tension with the Support of Pseudomonas spp. Appl. Environ. Microbiol. 2010, 76, 5911–5917. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.S.; Pham, V.D.; Yang, X.; Gänzle, M.G. High-Throughput Analysis of Microbiomes in a Meat Processing Facility: Are Food Processing Facilities an Establishment Niche for Persisting Bacterial Communities? Microbiome 2025, 13, 25. [Google Scholar] [CrossRef]
- Wang, R.; Guragain, M.; Chitlapilly Dass, S.; Palanisamy, V.; Bosilevac, J.M. Impact of Intense Sanitization on Environmental Biofilm Communities and the Survival of Salmonella enterica at a Beef Processing Plant. Front. Microbiol. 2024, 15, 1338600. [Google Scholar] [CrossRef] [PubMed]
- Chitlapilly Dass, S.; Bosilevac, J.M.; Weinroth, M.; Kalchayanand, N.; Arthur, T.M.; Wheeler, T.L.; Schmidt, J.W. Impact of Mixed Biofilm Formation with Environmental Microorganisms on E. coli O157:H7 Survival Against Sanitization. NPJ Sci. Food 2020, 4, 16. [Google Scholar] [CrossRef]
- Burdová, A.; Véghová, A.; Minarovičová, J.; Drahovská, H.; Kaclíková, E. The Relationship Between Biofilm Phenotypes and Biofilm-Associated Genes in Food-Related Listeria monocytogenes Strains. Microorganisms 2024, 12, 1297. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.; Pracser, N.; Thalguter, S.; Fischel, K.; Rammer, N.; Pospíšilová, L.; Alispahic, M.; Wagner, M.; Rychli, K. Identification of Biofilm Hotspots in a Meat Processing Environment: Detection of Spoilage Bacteria in Multi-Species Biofilms. Int. J. Food Microbiol. 2020, 328, 108668. [Google Scholar] [CrossRef]
- Rossi, D.A.; Dumont, C.F.; Santos, A.C.S.; Vaz, M.E.L.; Prado, R.R.; Monteiro, G.P.; Melo, C.B.d.S.; Stamoulis, V.J.; dos Santos, J.P.; de Melo, R.T. Antibiotic Resistance in the Alternative Lifestyles of Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2021, 11, 535757. [Google Scholar] [CrossRef]
- Manafi, L.; Aliakbarlu, J.; Saei, H. Antibiotic Resistance and Biofilm Formation Ability of Salmonella Serotypes Isolated from Beef, Mutton, and Meat Contact Surfaces at Retail. J. Food Sci. 2020, 85, 15335. [Google Scholar] [CrossRef]
- Romeo, M.; Lasagabaster, A.; Lavilla, M.; Amárita, F. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance in Listeria monocytogenes Isolated from Meat-Processing Plants. Foods 2025, 14, 1580. [Google Scholar] [CrossRef]
- Chitlapilly Dass, S.; Wang, R. Biofilm Through the Looking Glass: A Microbial Food Safety Perspective. Pathogens 2022, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Vezzulli, L.; Pezzati, E.; Moreno, M.; Fabiano, M.; Pane, L.; Pruzzo, C.; VibrioSea Consortium. Benthic Ecology of Vibrio spp. and Pathogenic Vibrio Species in a Coastal Mediterranean Environment (La Spezia Gulf, Italy). Microb. Ecol. 2009, 58, 808–818. [Google Scholar] [CrossRef]
- Roy, P.K.; Mizan, M.F.R.; Hossain, M.I.; Han, N.; Nahar, S.; Ashrafudoulla, M.; Toushik, S.H.; Shim, W.-B.; Kim, Y.-M.; Ha, S.-D. Elimination of Vibrio parahaemolyticus Biofilms on Crab and Shrimp Surfaces Using Ultraviolet C Irradiation Coupled with Sodium Hypochlorite and Slightly Acidic Electrolyzed Water. Food Control 2021, 128, 108179. [Google Scholar] [CrossRef]
- Wang, D.; Palmer, J.S.; Fletcher, G.C.; On, S.L.W.; Gagic, D.; Flint, S.H. Efficacy of Commercial Peroxyacetic Acid on Vibrio parahaemolyticus Planktonic Cells and Biofilms on Stainless Steel and Greenshell™ Mussel (Perna canaliculus) Surfaces. Int. J. Food Microbiol. 2023, 405, 110372. [Google Scholar] [CrossRef]
- Qian, H.; Li, W.; Guo, L.; Tan, L.; Liu, H.; Wang, J.; Pan, Y.; Zhao, Y. Stress Response of Vibrio parahaemolyticus and Listeria monocytogenes Biofilms to Different Modified Atmospheres. Front. Microbiol. 2020, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Mitsuwan, W.; Boripun, R.; Saengsawang, P.; Intongead, S.; Boonplu, S.; Chanpakdee, R.; Morita, Y.; Boonmar, S.; Rojanakun, N.; Suksriroj, N.; et al. Multidrug Resistance, Biofilm-Forming Ability, and Molecular Characterization of Vibrio Species Isolated from Foods in Thailand. Antibiotics 2025, 14, 235. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, P.; Qu, M.; Wang, T.; Li, F.; Wang, L.; Yao, L. Effects of luxS Gene on Growth Characteristics, Biofilm Formation and Antimicrobial Resistance of Multi-Antimicrobial Resistant Vibrio parahaemolyticus Vp2015094 Isolated from Shellfish. J. Appl. Microbiol. 2023, 134, lxad172. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Truong, P.; Thi, H.; Ho, X.; Van Nguyen, P. Prevalence, multidrug resistance, and biofilm formation of Vibrio parahaemolyticus isolated from fish mariculture environments in Cat Ba Island, Vietnam. Osong Public Health Res. Perspect. 2024, 15, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Manna, T.; Guchhait, K.; Jana, D.; Dey, S.; Karmakar, M.; Hazra, S.; Manna, M.; Jana, P.; Panda, A.; Ghosh, C. Wastewater-Based Surveillance of Vibrio cholerae: Molecular Insights on Biofilm Regulatory Diguanylate Cyclases, Virulence Factors and Antibiotic Resistance Patterns. Microb. Pathog. 2024, 196, 106995. [Google Scholar] [CrossRef]
- Storgårds, E.; Salo, S.; Wirtanen, G. Microbial Attachment and Biofilm Formation in Brewery Bottling Plants. J. Inst. Brew. 2006, 112, 232–240. [Google Scholar] [CrossRef]
- Bose, N.; Auvil, D.P.; Moore, E.L.; Moore, S.D. Microbial Communities in Retail Draft Beers and the Biofilms They Produce. Microbiol. Spectr. 2021, 9, e01404–e01421. [Google Scholar] [CrossRef]
- Quain, D.E. Draught beer hygiene: Cleaning of dispense tap nozzles. J. Inst. Brew. 2016, 122, 388–396. [Google Scholar] [CrossRef]
- Miller, L.A.; Buckingham-Meyer, K.; Goeres, D.M. Simulated Aging of Draught Beer Line Tubing Increases Biofilm Contamination. Int. J. Food Microbiol. 2024, 415, 110630. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, N.; Wang, X.; Guo, Z.; Liang, X.; Yang, J.; Liu, T. Adhesion and Corrosion Effects of Biofilms on Steel Surface Mediated by Hydrophilic Exopolysaccharide Colanic Acid. Corros. Sci. 2024, 229, 111876. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, X. Biofilm Formation and Food Safety in Food Industries. Trends Food Sci. Technol. 2009, 20, 407–413. [Google Scholar] [CrossRef]
- Maćkiw, E.; Korsak, D.; Kowalska, J.; Félix, B.; Stasiak, M.; Kucharek, K.; Antoszewska, A.; Postupolski, J. Genetic diversity of Listeria monocytogenes isolated from ready-to-eat food products in retail in Poland. Int. J. Food Microbiol. 2021, 358, 109397. [Google Scholar] [CrossRef]
- European Commission. Rapid Alert System for Food and Feed (RASFF)—Notification 2021.499377: Listeria monocytogenes in Deep-Frozen Bakery Products from Ukraine; European Commission: Brussels, Belgium, 2021; Available online: https://webgate.ec.europa.eu/rasff-window/screen/notification/499377 (accessed on 19 July 2025).
- Uhitil, S.; Jakšić, S.; Petrak, T.; Medić, H.; Gumhalter-Karolyi, L. Prevalence of Listeria monocytogenes and the other Listeria spp. in cakes in Croatia. Food Control 2004, 15, 213–216. [Google Scholar] [CrossRef]
- Farber, J.M.; Zwietering, M.; Wiedmann, M.; Schaffner, D.; Hedberg, C.W.; Harrison, M.A.; Hartnett, E.; Chapman, B.; Donnelly, C.W.; Goodburn, K.E.; et al. Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control 2021, 123, 107601. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Listeria monocytogenes: Biofilm formation and persistence in food-processing environments. Biofilms 2004, 1, 107–121. [Google Scholar] [CrossRef]
- Ribeiro, E.; Clérigo, A. Assessment of Staphylococcus aureus colonization in bakery workers: A case study. In Vertentes e Desafios da Segurança 2017; Corticeiro Neves, M., Camarada, M.A., Leal, Â., Marques da Silva, M., Morgado, H., Álvaro, J., Castelão, A., Morgado, R., Ramos, I., Ferreira, N., et al., Eds.; ASVDS—Associação Vertentes e Desafios da Segurança: Leiria, Portugal, 2017; pp. 113–118. Available online: http://hdl.handle.net/10400.21/8575 (accessed on 19 July 2025).
- Hait, J.; Tallent, S.; Melka, D.; Keys, C.; Bennett, R. Staphylococcus aureus outbreak investigation of an Illinois bakery. J. Food Saf. 2012, 32, 435–444. [Google Scholar] [CrossRef]
- Necidová, L.; Bursová, Š.; Haruštiaková, D.; Bogdanovičová, K. Evaluation of Staphylococcus aureus Growth and Staphylococcal Enterotoxin Production in Delicatessen and Fine Bakery Products. Acta Vet. Brno 2022, 91, 417–425. [Google Scholar] [CrossRef]
- DeFlorio, W.; Liu, S.; White, A.; Taylor, T.; Cisneros-Zevallos, L.; Min, Y.; Scholar, E. Recent Developments in Antimicrobial and Antifouling Coatings to Reduce or Prevent Contamination and Cross-Contamination of Food Contact Surfaces by Bacteria. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3093–3134. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Effects of Materials Containing Antimicrobial Compounds on Food Hygiene. J. Food Prot. 2011, 74, 1200–1211. [Google Scholar] [CrossRef]
- Riga, E.; Vöhringer, M.; Widyaya, V.; Lienkamp, K. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications. Macromol. Rapid Commun. 2017, 38, 1700216. [Google Scholar] [CrossRef]
- Song, B.; Zhang, E.; Han, X.; Zhu, H.; Shi, Y.; Cao, Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS Appl. Mater. Interfaces 2020, 12, 21330–21341. [Google Scholar] [CrossRef]
- Zhu, Q.; Gooneratne, R.; Hussain, M. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Jahid, I.; Ha, S. A Review of Microbial Biofilms of Produce: Future Challenge to Food Safety. Food Sci. Biotechnol. 2012, 21, 299–316. [Google Scholar] [CrossRef]
- Yuhana, N.; Ruzelan, N.; Mubarak, A.; Lani, M.; Abdullah, W. A Review of Microbial Safety and Bacterial Biofilm Formation of Fresh Vegetables. UMT J. Undergrad. Res. 2024, 6, 54–61. [Google Scholar] [CrossRef]
- Aiyedun, S.O.; Onarinde, B.A.; Swainson, M.; Dixon, R.A. Foodborne Outbreaks of Microbial Infection from Fresh Produce in Europe and North America: A Systematic Review of Data from This Millennium. Int. J. Food Sci. Technol. 2021, 56, 2215–2223. [Google Scholar] [CrossRef]
- Söderström, A.; Österberg, P.; Lindqvist, A.; Jönsson, B.; Lindberg, A.; Blide Ulander, S.; Andersson, Y. A Large Escherichia coli O157 Outbreak in Sweden Associated with Locally Produced Lettuce. Foodborne Pathog. Dis. 2008, 5, 339–349. [Google Scholar] [CrossRef]
- Patel, J.; Singh, M.; Macarisin, D.; Sharma, M.; Shelton, D. Differences in Biofilm Formation of Produce and Poultry Salmonella enterica Isolates and Their Persistence on Spinach Plants. Food Microbiol. 2013, 36, 388–394. [Google Scholar] [CrossRef]
- Chhetri, V.S.; Janes, M.E.; King, J.M.; Doerrler, W.; Adhikari, A. Effect of Residual Chlorine and Organic Acids on Survival and Attachment of Escherichia coli O157:H7 and Listeria monocytogenes on Spinach Leaves during Storage. LWT 2019, 105, 298–305. [Google Scholar] [CrossRef]
- Kowalska, B. Fresh Vegetables and Fruit as a Source of Salmonella Bacteria. Ann. Agric. Environ. Med. 2023, 30, 9–14. [Google Scholar] [CrossRef]
- Park, S.H.; Kang, D.H. Effect of Temperature on Chlorine Dioxide Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on Spinach, Tomatoes, Stainless Steel, and Glass Surfaces. Int. J. Food Microbiol. 2018, 275, 39–45. [Google Scholar] [CrossRef]
- Álvarez-Ordoñez, A.; Coughlan, L.; Briandet, R.; Cotter, P. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu. Rev. Food Sci. Technol. 2019, 10, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, R. Biofilms and Meat Safety: A Mini-Review. J. Food Prot. 2019, 82, 120–127. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, C.C.C.R. Marine Biofilms: A Successful Microbial Strategy with Economic Implications. Front. Mar. Sci. 2018, 5, 126. [Google Scholar] [CrossRef]
- Sharan, M.; Vijay, D.; Dhaka, P.; Bedi, J.; Gill, J. Biofilms as a Microbial Hazard in the Food Industry: A Scoping Review. J. Appl. Microbiol. 2022, 133, 2210–2234. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry—A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- Cámara, M.; Green, W.; MacPhee, C.E.; Rakowska, P.D.; Raval, R.; Richardson, M.C.; Slater-Jefferies, J.; Steventon, K.; Webb, J.S. Economic Significance of Biofilms: A Multidisciplinary and Cross-Sectoral Challenge. NPJ Biofilms Microbiomes 2022, 8, 42. [Google Scholar] [CrossRef]
- Speranza, B.; Corbo, M.R. The Impact of Biofilms on Food Spoilage. In The Microbiological Quality of Food; Woodhead Publishing: Cambridge, UK, 2017; pp. 259–282. [Google Scholar] [CrossRef]
- Dawan, J.; Zhang, S.; Ahn, J. Recent Advances in Biofilm Control Technologies for the Food Industry. Antibiotics 2025, 14, 254. [Google Scholar] [CrossRef]
- Guerrero-Navarro, A.E.; Ríos-Castillo, A.G.; Ripolles-Avila, C.; Zamora, A.; Hascoët, A.S.; Felipe, X.; Castillo, M.; Rodríguez-Jerez, J.J. Effectiveness of Enzymatic Treatment for Reducing Dairy Fouling at Pilot-Plant Scale under Real Cleaning Conditions. LWT 2022, 154, 112634. [Google Scholar] [CrossRef]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Sillankorva, S.M.; Oliveira, H.; Azeredo, J. Bacteriophages and Their Role in Food Safety. Int. J. Microbiol. 2012, 2012, 863945. [Google Scholar] [CrossRef]
- Hoffmann, S.; Scallan Walter, E. Economic Burden of Foodborne Illnesses Acquired in the United States circa 2023: A comprehensive estimate of $75 billion in losses. Foodborne Pathog. Dis. 2024, 21, 231–239. [Google Scholar] [CrossRef]
- Hofer, U. The Cost of Biofilms. Nat. Rev. Microbiol. 2022, 20, 445. [Google Scholar] [CrossRef]
- Scharff, R.L. Economic burden from health losses due to foodborne illness in the United States. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef]
- Scharff, R.L. Food Attribution and Economic Cost Estimates for Meat and Poultry Related Illnesses. J. Food Prot. 2020, 83, 1430–1437. [Google Scholar] [CrossRef]
- Yang, X.; Scharff, R.L. Foodborne Illnesses from Leafy Greens in the United States: Attribution, Burden, and Cost. J. Food Prot. 2024, 87, 100275. [Google Scholar] [CrossRef]
- Minor, T.; Lasher, A.; Klontz, K.; Brown, B.; Nardinelli, C.; Zorn, D. The Per Case and Total Annual Costs of Foodborne Illness in the United States. Risk Anal. 2015, 35, 1125–1139. [Google Scholar] [CrossRef]
- Grace, D. Burden of foodborne disease in low-income and middle-income countries and opportunities for scaling food safety interventions. Food Secur. 2023, 15, 1475–1488. [Google Scholar] [CrossRef]
- Newman, K.L.; León, J.S.; Rebolledo, P.A.; Scallan, E. The impact of socioeconomic status on foodborne illness in high-income countries: A systematic review. Epidemiol. Infect. 2015, 143, 2473–2485. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. WHO Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef]
- Kipper, D.; Mascitti, A.K.; De Carli, S.; Carneiro, A.M.; Streck, A.F.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet. Sci. 2022, 9, 405. [Google Scholar] [CrossRef]
- Thomas, M.K.; Vriezen, R.; Farber, J.M.; Currie, A.; Schlech, W.; Fazil, A. Economic Cost of a Listeria monocytogenes Outbreak in Canada, 2008. Foodborne Pathog. Dis. 2015, 12, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Glass, K.; McLure, A.; Bourke, S.; Cribb, D.M.; Kirk, M.D.; March, J.; Daughtry, B.; Smiljanic, S.; Lancsar, E. The Cost of Foodborne Illness and Its Sequelae in Australia Circa 2019. Foodborne Pathog. Dis. 2023, 20, 419–426. [Google Scholar] [CrossRef] [PubMed]
- U.S. Government Accountability Office. Foodborne Illnesses: Updated Cost Estimate Is Needed for Better Allocation of Federal Food Safety Funding. GAO 25-107606. 2024. Available online: https://www.gao.gov/assets/gao-25-107606.pdf (accessed on 11 May 2025).
- Food Safety Information Council; Food Standards Australia New Zealand; Australian National University. Annual Cost of Foodborne Illness in Australia. Final Report. 2022. Available online: https://www.foodstandards.gov.au/sites/default/files/2024-09/ANU%20Foodborne%20Disease%20Attribution%20Final%20Report.pdf (accessed on 11 May 2025).
- NSW Food Authority. Food Poisoning in Australia. 2023. Available online: https://www.foodauthority.nsw.gov.au/consumer/food-poisoning (accessed on 11 May 2025).
- U.S. Department of Agriculture, Economic Research Service (ERS). Updating Economic Burden of Foodborne Diseases Estimates for Inflation and Income Growth. ERR 297. 2021. Available online: https://www.ers.usda.gov/publications/pub-details?pubid=102639 (accessed on 11 May 2025).
- U.S. Department of Agriculture, Economic Research Service (ERS). Cost Estimates of Foodborne Illnesses. Data Adjusted to 2023 USD. 2018. Available online: https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses (accessed on 11 May 2025).
- Majowicz, S.E.; McNab, W.B.; Sockett, P.; Henson, S.; Doré, K.; Edge, V.L.; Wilson, J.B. Burden and cost of gastroenteritis in a Canadian community. J. Food Prot. 2006, 69, 651–660. [Google Scholar] [CrossRef]
- Manipis, K.; Cronin, P.; Street, D.; Church, J.; Viney, R.; Goodall, S. Examination of methods to estimate productivity losses in an economic evaluation: Using foodborne illness as a case study. Pharmacoeconomics 2025, 43, 453–467. [Google Scholar] [CrossRef]
- World Bank Group. Foodborne Illnesses in Low- and Middle-Income Countries Cause Productivity and Medical Costs of ~US $110 B/Year. World Bank Press Release. 2018. Available online: https://www.worldbank.org/en/news/press-release/2018/10/23/food-borne-illnesses-cost-us-110-billion-per-year-in-low-and-middle-income-countries (accessed on 11 May 2025).
- CGIAR/SNV. County-Level Study Estimated Foodborne Disease Economic Cost. 2019. Available online: https://cgspace.cgiar.org/server/api/core/bitstreams/d861c8cd-401b-4dcc-9cff-ab78b3d20a9d/content (accessed on 11 May 2025).
- China CDC Weekly. Bacterial foodborne outbreaks in China: Surveillance data 2023. China CDC Wkly. 2023, 5, 591–599. [Google Scholar] [CrossRef]
- EFSA. Multi country outbreak of Listeria monocytogenes ST6 linked to frozen vegetables, 2015–2018. EFSA Support. Publ. 2018, 15, 1448. [Google Scholar] [CrossRef]
- CDC. Multistate Outbreak of Listeriosis Linked to Blue Bell Creameries Products. Final Update: 10 June 2015. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/listeria/outbreaks/ice-cream-03-15/index.html (accessed on 11 May 2025).
- Teklemariam, A.D.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Alghamdi, M.A.; Filimban, A.A.R.; Al Mutiri, A.S.; Al-Alyani, A.M.; Alseghayer, M.S.; Almaneea, A.M.; et al. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023, 12, 1756. [Google Scholar] [CrossRef] [PubMed]
- Muzembo, B.A.; Kitahara, K.; Mitra, D.; Ohno, A.; Khatiwada, J.; Dutta, S.; Miyoshi, S.I. Shigellosis in Southeast Asia: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2023, 52, 102554. [Google Scholar] [CrossRef] [PubMed]
- Mutua, F.K.; Masanja, H.; Chacha, J.; Kang’ethe, E.K.; Kuboka, M.; Grace, D. A Rapid Review of Foodborne Fisease Hazards in East Africa. CGIAR Report. 2021. Available online: https://cgspace.cgiar.org/server/api/core/bitstreams/b862cb5c-eabb-4112-8014-93276dda57cd/content (accessed on 11 May 2025).
- Olanya, O.M.; Hoshide, A.K.; Ijabadeniyi, O.A.; Ukuku, D.O.; Mukhopadhyay, S.; Niemira, B.A.; Ayeni, O. Cost estimation of listeriosis (Listeria monocytogenes) occurrence in South Africa in 2017 and its food safety implications. Food Control 2019, 102, 231–239. [Google Scholar] [CrossRef]
- Khandaker, S.A.; Alauddin, M. Economic analysis of food-borne diseases control program in Australia. Int. J. Soc. Econ. 2005, 32, 767–782. [Google Scholar] [CrossRef]
- Rabiee, P.; Faraz, A.; Ajlouni, S.; Hussain, M.A. Microbial Contamination and Disease Outbreaks Associated with Rockmelons (Cucumis melo): Implications for Public Health Protection. Foods 2024, 13, 2198. [Google Scholar] [CrossRef]
- Finn, L.; Onyeaka, H.; O’Neill, S. Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma. Foods 2023, 12, 3339. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Wang, X.; Ji, C.; Upadhyay, A.; Xiao, Z.; Luo, Y. A Short Review on Salmonella spp. Involved Mixed-Species Biofilm on Food Processing Surface: Interactions, Disinfectant Resistance and Its Biocontrol. J. Agric. Food Res. 2025, 19, 101660. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli Biofilm: Development and Therapeutic Strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Partnership for Food Safety Education. Fight BAC!®—Home Food Safety Resources. Available online: https://www.fightbac.org/ (accessed on 13 March 2025).
- Food and Agriculture Organization of the United Nations (FAO). Public Education and Communication. Food Safety and Quality: Capacity Development. 2024. Available online: https://www.fao.org/food/food-safety-quality/capacity-development/public-education-communication/en/ (accessed on 25 April 2025).
Pathogen | Health Implication | Severity | At-Risk Group | Biofilm Relevance | Reference |
---|---|---|---|---|---|
Pseudomonas aeruginosa | Opportunistic infections | Severe in vulnerable | Immunocompromised | Highly resistant to disinfectants | [1] |
Bacillus cereus | Vomiting, diarrhea | Mild to moderate | General population | Spore-former; survives cooking | [1] |
Vibrio spp. | Cholera, gastroenteritis | Severe | Coastal communities, travelers | Survives in marine biofilms | [43,44] |
Cronobacter sakazakii | Sepsis, meningitis | Severe | Infants (neonates) | Survives in powdered infant formula | [45] |
Yersinia enterocolitica | Enteritis | Moderate | Children | Cold-tolerant biofilms | [46] |
Listeria monocytogenes | Listeriosis | Severe | General population | Biofilm protects bacteria; persists on surfaces | [1] |
Salmonella spp. | Salmonellosis | Moderate to severe | General population | Forms resistant biofilms on various surfaces | [1] |
Escherichia coli O157:H7 | Hemorrhagic colitis | Severe | General population | Biofilms enhance survival on meat and produce | [1] |
Staphylococcus aureus | Food poisoning | Mild to moderate | General population | Biofilms increase cleaning resistance | [1] |
Campylobacter spp. | Gastroenteritis | Moderate | General population | Biofilms promote persistence in food/water | [1] |
Country | Year | Product | Bacteria | Setting | People Affected | Control Measure | Reference |
---|---|---|---|---|---|---|---|
France | 2013 | Bottled mineral water | Salmonella enterica | Bottling plant | Multiple cases | Plant sanitation | [47,48] |
Germany | 2018 | Blood sausage | Listeria monocytogenes | Processing plant | 47 cases | Recall | [49] |
Spain | 2019 | Chilled pork products | Listeria monocytogenes | Meat-processing facility | >200 cases, 3 deaths | Recall | [50] |
Italy | 2020 | Hospital-prepared meals | Listeria monocytogenes | Hospital kitchen | 4 patients | Equipment sanitation | [51] |
Greece | 2021 | School meals | Clostridium perfringens Bacillus cereus | Catering service | 30 students | Improved hygiene | [52] |
Poland | 2022 | Various food samples | Listeria monocytogenes Salmonella spp. Escherichia coli, Bacillus cereus | Retail food samples | Not specified | Surveillance | [53] |
Continent | Key Food Sectors Affected | Estimated Annual Losses | Most Common Biofilm-Forming Pathogens | Typical Control Challenges | Notable Outbreaks/Case Studies |
---|---|---|---|---|---|
Europe | Dairy, Meat, Seafood, Fresh Produce | EUR 5–6 billion | Listeria monocytogenes, Salmonella spp. | Multi-species resistance, outdated equipment | 2018 frozen vegetable outbreak (EU-wide, Hungary origin) [188] |
North America | Meat, Ready-to-Eat, Dairy | USD 7–8 billion | Listeria spp., E. coli O157:H7, S. aureus | Compliance variation across processors | Blue Bell Creameries recall (USA, 2015) [165,189] |
South America | Poultry, Produce, Seafood | USD 1.5–2 billion | Salmonella spp., Pseudomonas spp. | Tropical climate favors rapid growth, sanitation variability | Poultry-linked Salmonella spp. outbreaks (Brazil) [175] |
Asia | Seafood, Fresh Produce, Street Foods | USD 3–4 billion | Vibrio spp., Salmonella spp., Shigella spp. | Water sanitation, informal processing sectors | Street food outbreaks (India, Southeast Asia) [190] |
Africa | Dairy, Poultry, RTE foods | >USD 1 billion | E. coli, Listeria spp., Campylobacter | Resource-limited monitoring, limited traceability | Milk-related outbreaks in East Africa [192,193] |
Australia New Zealand | Meat, Dairy, Fresh Produce | ~USD 800 million | Listeria monocytogenes, Salmonella enterica | Long distribution chains, refrigeration gaps in remote areas | Listeria spp. in cantaloupe (Australia, 2018) [195] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban-Cucerzan, A.; Imre, K.; Morar, A.; Marcu, A.; Hotea, I.; Popa, S.-A.; Pătrînjan, R.-T.; Bucur, I.-M.; Gașpar, C.; Plotuna, A.-M.; et al. Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments. Microorganisms 2025, 13, 1805. https://doi.org/10.3390/microorganisms13081805
Ban-Cucerzan A, Imre K, Morar A, Marcu A, Hotea I, Popa S-A, Pătrînjan R-T, Bucur I-M, Gașpar C, Plotuna A-M, et al. Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments. Microorganisms. 2025; 13(8):1805. https://doi.org/10.3390/microorganisms13081805
Chicago/Turabian StyleBan-Cucerzan, Alexandra, Kálmán Imre, Adriana Morar, Adela Marcu, Ionela Hotea, Sebastian-Alexandru Popa, Răzvan-Tudor Pătrînjan, Iulia-Maria Bucur, Cristina Gașpar, Ana-Maria Plotuna, and et al. 2025. "Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments" Microorganisms 13, no. 8: 1805. https://doi.org/10.3390/microorganisms13081805
APA StyleBan-Cucerzan, A., Imre, K., Morar, A., Marcu, A., Hotea, I., Popa, S.-A., Pătrînjan, R.-T., Bucur, I.-M., Gașpar, C., Plotuna, A.-M., & Ban, S.-C. (2025). Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments. Microorganisms, 13(8), 1805. https://doi.org/10.3390/microorganisms13081805