Virological Insights from ARC-520 siRNA and Entecavir Treated Chronically HBV-Infected Patients and Chimpanzees
Abstract
1. Background
2. Details of the Previous Studies
2.1. Materials
2.2. Chimpanzee Study
2.3. cccDNA Measurement
3. Summarized Observations
3.1. Transcriptional Silencing of cccDNA
3.2. Extended Entecavir Treatment to Consolidate the Benefits of siRNA Treatment
3.3. Change in HBV Transcription During HBeAg-Seroconversion of Chimpanzees
3.4. cccDNA Versus HBV Transcripts in siRNA-Treated HBeAg-Negative Patients
3.5. HBx Transcripts Produced from Integrated HBV in Patients
3.6. HBx Transcripts in High-Viremia HBeAg-Positive Chimpanzees
3.7. HBV Transcripts in Chimpanzees That Appear to Result from dslDNA Dimers
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polaris Observatory, C. Global prevalence, cascade of care, and prophylaxis coverage of hepatitis B in 2022: A modelling study. Lancet Gastroenterol. Hepatol. 2023, 8, 879–907. [Google Scholar] [CrossRef] [PubMed]
- Iannacone, M.; Guidotti, L.G. Immunobiology and pathogenesis of hepatitis B virus infection. Nat. Rev. Immunol. 2022, 22, 19–32. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Hepatitis Report 2024: Action for Access in Low- and Middle-Income Countries; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Gerlich, W.H. Medical virology of hepatitis B: How it began and where we are now. Virol. J. 2013, 10, 239. [Google Scholar] [CrossRef]
- Ghany, M.G.; Lok, A.S. Functional cure of hepatitis B requires silencing covalently closed circular and integrated hepatitis B virus DNA. J. Clin. Investig. 2022, 132, e163175. [Google Scholar] [CrossRef]
- Lam, A.M.; Ren, S.; Espiritu, C.; Kelly, M.; Lau, V.; Zheng, L.; Hartman, G.D.; Flores, O.A.; Klumpp, K. Hepatitis B Virus Capsid Assembly Modulators, but Not Nucleoside Analogs, Inhibit the Production of Extracellular Pregenomic RNA and Spliced RNA Variants. Antimicrob. Agents Chemother. 2017, 61, e00680-17. [Google Scholar] [CrossRef]
- Wooddell, C.I.; Yuen, M.F.; Chan, H.L.; Gish, R.G.; Locarnini, S.A.; Chavez, D.; Ferrari, C.; Given, B.D.; Hamilton, J.; Kanner, S.B.; et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl. Med. 2017, 9, eaan0241. [Google Scholar] [CrossRef]
- Freitas, N.; Lukash, T.; Gunewardena, S.; Chappell, B.; Slagle, B.L.; Gudima, S.O. Relative Abundance of Integrant-Derived Viral RNAs in Infected Tissues Harvested from Chronic Hepatitis B Virus Carriers. J. Virol. 2018, 92, e02221-17. [Google Scholar] [CrossRef]
- Meier, M.A.; Calabrese, D.; Suslov, A.; Terracciano, L.M.; Heim, M.H.; Wieland, S. Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J. Hepatol. 2021, 75, 840–847. [Google Scholar] [CrossRef]
- Staprans, S.; Loeb, D.D.; Ganem, D. Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA. J. Virol. 1991, 65, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Hilger, C.; Velhagen, I.; Zentgraf, H.; Schroder, C.H. Diversity of hepatitis B virus X gene-related transcripts in hepatocellular carcinoma: A novel polyadenylation site on viral DNA. J. Virol. 1991, 65, 4284–4291. [Google Scholar] [CrossRef]
- Wooddell, C.I.; Sanders, D.; Xu, Z.; Mak, L.Y.; Schluep, T.; Seto, W.K.; Given, B.D.; Yuen, M.F. Characterization of Hepatitis B Virus Transcripts in Chronically HBV-Infected Chimpanzees and Patients Treated with ARC-520 siRNA Demonstrates Transcriptional Silencing of cccDNA. Viruses 2024, 16, 1943. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.K.; Yuen, M.F.; Yuan, H.; Sum, S.S.; Hui, C.K.; Hall, J.; Lai, C.L. Quantitation of covalently closed circular hepatitis B virus DNA in chronic hepatitis B patients. Hepatology 2004, 40, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Fowler, M.J.; Greenfield, C.; Chu, C.M.; Karayiannis, P.; Dunk, A.; Lok, A.S.; Lai, C.L.; Yeoh, E.K.; Monjardino, J.P.; Wankya, B.M.; et al. Integration of HBV-DNA may not be a prerequisite for the maintenance of the state of malignant transformation. An analysis of 110 liver biopsies. J. Hepatol. 1986, 2, 218–229. [Google Scholar] [CrossRef]
- Grudda, T.; Hwang, H.S.; Taddese, M.; Quinn, J.; Sulkowski, M.S.; Sterling, R.K.; Balagopal, A.; Thio, C.L. Integrated hepatitis B virus DNA maintains surface antigen production during antiviral treatment. J. Clin. Investig. 2022, 132, e161818. [Google Scholar] [CrossRef]
- Iannacone, M.; Beccaria, C.G.; Allweiss, L.; Lucifora, J.; Tavis, J.E.; Gehring, A.J.; Dandri, M. Targeting HBV with RNA interference: Paths to cure. Sci. Transl. Med. 2025, 17, eadv3678. [Google Scholar] [CrossRef]
- Schluep, T.; Lickliter, J.; Hamilton, J.; Lewis, D.L.; Lai, C.L.; Lau, J.Y.; Locarnini, S.A.; Gish, R.G.; Given, B.D. Safety, Tolerability, and Pharmacokinetics of ARC-520 Injection, an RNA Interference-Based Therapeutic for the Treatment of Chronic Hepatitis B Virus Infection, in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2017, 6, 350–362. [Google Scholar] [CrossRef]
- Yuen, M.F.; Wong, D.K.; Schluep, T.; Lai, C.L.; Ferrari, C.; Locarnini, S.; Lo, R.C.; Gish, R.G.; Hamilton, J.; Wooddell, C.I.; et al. Long-term serological, virological and histological responses to RNA inhibition by ARC-520 in Chinese chronic hepatitis B patients on entecavir treatment. Gut 2022, 71, 789–797. [Google Scholar] [CrossRef]
- Wooddell, C.I.; Gehring, A.J.; Yuen, M.F.; Given, B.D. RNA Interference Therapy for Chronic Hepatitis B Predicts the Importance of Addressing Viral Integration When Developing Novel Cure Strategies. Viruses 2021, 13, 581. [Google Scholar] [CrossRef]
- Mak, L.Y.; Wooddell, C.I.; Lenz, O.; Schluep, T.; Hamilton, J.; Davis, H.L.; Mao, X.; Seto, W.K.; Biermer, M.; Yuen, M.F. Long-term hepatitis B surface antigen response after finite treatment of ARC-520 or JNJ-3989. Gut 2025, 74, 440–450. [Google Scholar] [CrossRef]
- Wooddell, C.I.; Rozema, D.B.; Hossbach, M.; John, M.; Hamilton, H.L.; Chu, Q.; Hegge, J.O.; Klein, J.J.; Wakefield, D.H.; Oropeza, C.E.; et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 2013, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Werle-Lapostolle, B.; Bowden, S.; Locarnini, S.; Wursthorn, K.; Petersen, J.; Lau, G.; Trepo, C.; Marcellin, P.; Goodman, Z.; Delaney, W.E.; et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 2004, 126, 1750–1758. [Google Scholar] [CrossRef]
- Wong, D.K.; Seto, W.K.; Fung, J.; Ip, P.; Huang, F.Y.; Lai, C.L.; Yuen, M.F. Reduction of hepatitis B surface antigen and covalently closed circular DNA by nucleos(t)ide analogues of different potency. Clin. Gastroenterol. Hepatol. 2013, 11, 1004–1010.e1. [Google Scholar] [CrossRef]
- Lai, C.L.; Wong, D.; Ip, P.; Kopaniszen, M.; Seto, W.K.; Fung, J.; Huang, F.Y.; Lee, B.; Cullaro, G.; Chong, C.K.; et al. Reduction of covalently closed circular DNA with long-term nucleos(t)ide analogue treatment in chronic hepatitis B. J. Hepatol. 2017, 66, 275–281. [Google Scholar] [CrossRef]
- Piovesan, A.; Pelleri, M.C.; Antonaros, F.; Strippoli, P.; Caracausi, M.; Vitale, L. On the length, weight and GC content of the human genome. BMC Res. Notes 2019, 12, 106. [Google Scholar] [CrossRef]
- Riviere, L.; Quioc-Salomon, B.; Fallot, G.; Halgand, B.; Feray, C.; Buendia, M.A.; Neuveut, C. Hepatitis B virus replicating in hepatocellular carcinoma encodes HBx variants with preserved ability to antagonize restriction by Smc5/6. Antivir. Res. 2019, 172, 104618. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hamadalnil, Y.; Tu, T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024, 16, 1361. [Google Scholar] [CrossRef] [PubMed]
- Lucifora, J.; Arzberger, S.; Durantel, D.; Belloni, L.; Strubin, M.; Levrero, M.; Zoulim, F.; Hantz, O.; Protzer, U. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 2011, 55, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Treinin, M.; Laub, O. Identification of a promoter element located upstream from the hepatitis B virus X gene. Mol. Cell. Biol. 1987, 7, 545–548. [Google Scholar]
- Stadelmayer, B.; Diederichs, A.; Chapus, F.; Rivoire, M.; Neveu, G.; Alam, A.; Fraisse, L.; Carter, K.; Testoni, B.; Zoulim, F. Full-length 5′RACE identifies all major HBV transcripts in HBV-infected hepatocytes and patient serum. J. Hepatol. 2020, 73, 40–51. [Google Scholar] [CrossRef]
- Guo, W.T.; Wang, J.; Tam, G.; Yen, T.S.; Ou, J.S. Leaky transcription termination produces larger and smaller than genome size hepatitis B virus X gene transcripts. Virology 1991, 181, 630–636. [Google Scholar] [CrossRef]
- Garcia-Garcia, S.; Caballero-Garralda, A.; Tabernero, D.; Cortese, M.F.; Gregori, J.; Rodriguez-Algarra, F.; Quer, J.; Riveiro-Barciela, M.; Homs, M.; Rando-Segura, A.; et al. Hepatitis B Virus Variants with Multiple Insertions and/or Deletions in the X Open Reading Frame 3′ End: Common Members of Viral Quasispecies in Chronic Hepatitis B Patients. Biomedicines 2022, 10, 1194. [Google Scholar] [CrossRef]
- Yuen, M.F.; Locarnini, S.; Lim, T.H.; Strasser, S.I.; Sievert, W.; Cheng, W.; Thompson, A.J.; Given, B.D.; Schluep, T.; Hamilton, J.; et al. Combination treatments including the small-interfering RNA JNJ-3989 induce rapid and sometimes prolonged viral responses in patients with CHB. J. Hepatol. 2022, 77, 1287–1298. [Google Scholar] [CrossRef]
- Yuen, M.F.; Asselah, T.; Jacobson, I.M.; Brunetto, M.R.; Janssen, H.L.A.; Takehara, T.; Hou, J.L.; Kakuda, T.N.; Lambrecht, T.; Beumont, M.; et al. Efficacy and safety of the siRNA JNJ-73763989 and the capsid assembly modulator JNJ-56136379 (bersacapavir) with nucleos(t)ide analogues for the treatment of chronic hepatitis B virus infection (REEF-1): A multicentre, double-blind, active-controlled, randomised, phase 2b trial. Lancet Gastroenterol. Hepatol. 2023, 8, 790–802. [Google Scholar] [PubMed]
- Allweiss, L.; Giersch, K.; Pirosu, A.; Volz, T.; Muench, R.C.; Beran, R.K.; Urban, S.; Javanbakht, H.; Fletcher, S.P.; Lutgehetmann, M.; et al. Therapeutic shutdown of HBV transcripts promotes reappearance of the SMC5/6 complex and silencing of the viral genome In Vivo. Gut 2022, 71, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Balagopal, A.; Grudda, T.; Ribeiro, R.M.; Saad, Y.S.; Hwang, H.S.; Quinn, J.; Murphy, M.; Ward, K.; Sterling, R.K.; Zhang, Y.; et al. Single hepatocytes show persistence and transcriptional inactivity of hepatitis B. JCI Insight 2020, 5, e140584. [Google Scholar] [CrossRef]
- Hodgson, A.J.; Hyser, J.M.; Keasler, V.V.; Cang, Y.; Slagle, B.L. Hepatitis B virus regulatory HBx protein binding to DDB1 is required but is not sufficient for maximal HBV replication. Virology 2012, 426, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Bergametti, F.; Sitterlin, D.; Transy, C. Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex. J. Virol. 2002, 76, 6495–6501. [Google Scholar] [CrossRef]
- Aggarwal, A.; Odorizzi, P.M.; Brodbeck, J.; van Buuren, N.; Moon, C.; Chang, S.; Adona, M.; Suthram, S.; Suri, V.; Trowe, T.; et al. Intrahepatic quantification of HBV antigens in chronic hepatitis B reveals heterogeneity and treatment-mediated reductions in HBV core-positive cells. JHEP Rep. 2023, 5, 100664. [Google Scholar] [CrossRef]
- Kennedy, P.T.; Sandalova, E.; Jo, J.; Gill, U.; Ushiro-Lumb, I.; Tan, A.T.; Naik, S.; Foster, G.R.; Bertoletti, A. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology 2012, 143, 637–645. [Google Scholar] [CrossRef]
- Ganchua, S.; Paratala, B.; Iott, C.; Gane, E.; Yuen, M.-F.; Eley, T.; Sims, K.; Gray, K.; Antoniello, D.; Lam, A.; et al. Reduction of hepatitis B surface antigen mediated by RNA interference therapeutic AB-729 in chronic hepatitis B patients is associated with T cell activation and a decline in exhausted CD8 T cells. J. Hepatol. 2022, 77, S851. [Google Scholar] [CrossRef]
- Ganchua, S.C.; Paratala, B.; Iott, C.; Yuen, M.-F.; Gane, E.; Eley, T.; Sims, K.; Gray, K.; Antoniello, D.; Lam, A.M.; et al. Inhibition of hepatitis B surface antigen by RNA interference therapeutic AB-729 is associated with increased cytokine signatures in HBV DNA+ chronic hepatitis B patients. J. Hepatol. 2022, 77, S850. [Google Scholar] [CrossRef]
- Hui, R.W.; Mak, L.Y.; Seto, W.K.; Yuen, M.F. RNA interference as a novel treatment strategy for chronic hepatitis B infection. Clin. Mol. Hepatol. 2022, 28, 408–424. [Google Scholar] [CrossRef] [PubMed]
Patient/ HBeAg | HBsAg (IU/mL) | HBV DNA (log10 IU/mL) | HBeAg (PEI U/mL) | cccDNA (Copies/Cell) | HBV Transcripts at LFU | |||
---|---|---|---|---|---|---|---|---|
Baseline | LFU | Baseline | LFU | LFU | LFU | cccDNA-Derived | iDNA-Derived | |
708/Pos | 34,388 | <LLOQ | 8.54 | TND | <LLOQ | N/A | N/A | N/A |
710/Pos | 80,918 | 25.8 | 8.85 | <LLOQ | <LLOQ | 3.425 | 7 | 44 |
711/Pos | 64,167 | 1113 | 8.69 | 1.79 | 6.57 | N/A | N/A | N/A |
701/Neg | 6.87 | 1.92 | 3.41 | TND | <LLOQ | 0.382 | TND | TND |
705/Neg | 4085 | 2677 | 5.16 | TND | <LLOQ | 1.025 | 8 | 104 |
706/Neg | 1256 | 425 | 4.26 | <LLOQ | <LLOQ | N/A | N/A | N/A |
709/Neg | 10 | <LLOQ | 3.76 | <LLOQ | <LLOQ | 0.263 | TND | TND |
712/Neg | 2016 | 1018 | 4.37 | TND | <LLOQ | 1.085 | 0 | 57 |
Chimpanzee/ HBeAg | HBsAg (µg/mL) | HBV DNA (log10 Copies/mL) | HBeAg (ng/mL) | cccDNA (Copies/Cell) | HBV Transcripts Prior to SiRNA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | LFU | Baseline | LFU | LFU | ETV Lead-in | SiRNA + ETV | Post-siRNA No ETV | cccDNA-Derived | iDNA-Derived | |
A2A004/Pos | 3188 | 6770 | 8.6 | 8.2 | 17,858 | 1.92 | 0.39 | 9.06 | 2206 | 31 |
A3A006/Pos | 2104 | 2053 | 8.3 | 8.3 | 8518 | 1.22 | 0.71 | 9.57 | 1831 | 32 |
A4A014/Pos | 253 | 4.8 | 7.7 | <LLOQ | <LLOQ | 0.226 | 0.011 | 0.032 | 449 | 32 |
89A009/Pos | 245 | 183 | 8.6 | 8.4 | <LLOQ | 0.072 | 0.012 | 0.033 | 373 | 208 |
88A010/Neg | 199 | 251 | <LLOQ | 3.1 | <LLOQ | 0.0009 | 0.0007 | 0.0023 | 71 | 267 |
95A010/Neg | 86 | 74 | 3.5 | 4.0 | <LLOQ | 0.0051 | 0.0013 | 0.0124 | 5 | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wooddell, C.I.; Mak, L.Y.; Seto, W.-K.; Given, B.D.; Yuen, M.-F. Virological Insights from ARC-520 siRNA and Entecavir Treated Chronically HBV-Infected Patients and Chimpanzees. Microorganisms 2025, 13, 1787. https://doi.org/10.3390/microorganisms13081787
Wooddell CI, Mak LY, Seto W-K, Given BD, Yuen M-F. Virological Insights from ARC-520 siRNA and Entecavir Treated Chronically HBV-Infected Patients and Chimpanzees. Microorganisms. 2025; 13(8):1787. https://doi.org/10.3390/microorganisms13081787
Chicago/Turabian StyleWooddell, Christine I., Lung Yi Mak, Wai-Kay Seto, Bruce D. Given, and Man-Fung Yuen. 2025. "Virological Insights from ARC-520 siRNA and Entecavir Treated Chronically HBV-Infected Patients and Chimpanzees" Microorganisms 13, no. 8: 1787. https://doi.org/10.3390/microorganisms13081787
APA StyleWooddell, C. I., Mak, L. Y., Seto, W.-K., Given, B. D., & Yuen, M.-F. (2025). Virological Insights from ARC-520 siRNA and Entecavir Treated Chronically HBV-Infected Patients and Chimpanzees. Microorganisms, 13(8), 1787. https://doi.org/10.3390/microorganisms13081787