Effects of Natural Ingredient Xanthohumol on the Intestinal Microbiota, Metabolic Profiles and Disease Resistance to Streptococcus agalactiae in Tilapia Oreochromis niloticus
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish, Bacteria and Chemicals
2.2. SA Quantification
2.3. Experimental Design and Sampling
2.4. DNA Extraction and Absolute Quantification of the Copy Numbers of SA Genomic DNA
2.5. 16S rRNA Gene Sequencing for the Intestinal Microbiota Analysis
2.6. LC-MS Conditions for Metabolomics Analysis
2.7. 16S rRNA Data Analysis
2.8. Metabolomics Data Processing
2.9. Statistical Analysis
3. Results
3.1. Xanthohumol Inhibits SA Replication in Tilapia
3.2. Xanthohumol Improves the Survival Rate of SA-Infected Tilapia
3.3. Effects of Xanthohumol on the Intestinal Microbial Diversity
3.4. Effects of Xanthohumol on Intestinal Microbial Composition
3.5. Identification of Potential Intestinal Microbial Biomarkers
3.6. Effect of Xanthohumol on Metabolomic Alterations
3.7. Differential Metabolic Pathways and Differential Metabolites
3.8. Association Between the Intestinal Microbiota and Metabolites
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Li, L.-P.; Wang, R.; Liang, W.-W.; Huang, Y.; Li, J.; Lei, A.-Y.; Huang, W.-Y.; Gan, X. PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Vet. Microbiol. 2012, 159, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, L.; Xu, N.; Zhou, S.; Song, Y.; Yang, Q.; Liu, Y.; Yang, Y.; Ai, X. Rutin reduces the pathogenicity of Streptococcus agalactiae to tilapia by inhibiting the activity of sortase A. Aquaculture 2021, 530, 735743. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Z.; Ren, Y.; Wang, Y.; Pan, H.; Liang, D.; Bei, W.; Chang, O.; Wang, Q.; Shi, C. Epidemiological characteristics of Streptococcus agalactiae in tilapia in China from 2006 to 2020. Aquaculture 2022, 549, 737724. [Google Scholar] [CrossRef]
- Ding, Z.-H.; Hong, J.-M.; Guo, W.-L.; Li, G.-H.; Zhao, Z.-C.; Zhou, Y.; Wang, S.-F.; Sun, Y.; Li, J.-L.; Zhang, D.-D.; et al. The screen herbal immunopotentiator and research on its effect on the innate immune system and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Aquaculture 2021, 541, 736778. [Google Scholar] [CrossRef]
- Guo, W.-L.; Deng, H.-W.; Wang, F.; Wang, S.-F.; Zhong, Z.-H.; Sun, Y.; Chen, X.-F.; Wang, J.-H.; Zhou, Y.-C. In vitro and in vivo screening of herbal extracts against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 503, 412–421. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Yang, L.; He, W.-H.; Xie, L.-J.; Yang, F.; Wang, Y.-H.; Huang, A.-G. In vivo antibacterial activity of medicinal plant Sophora flavescens against Streptococcus agalactiae infection. J. Fish Dis. 2023, 46, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Kamble, M.T.; Chaiyapechara, S.; Salin, K.R.; Bunphimpapha, P.; Chavan, B.R.; Bhujel, R.C.; Medhe, S.V.; Kettawan, A.; Thiyajai, P.; Thompson, K.D.; et al. Guava and Star gooseberry leaf extracts improve growth performance, innate immunity, intestinal microbial community, and disease resistance in Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Aquac. Rep. 2024, 35, 101947. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, C.-Y.; Lu, H.-Y.; Liou, C.-H.; Ho, Y.-N.; Huang, C.-W.; Zhang, Z.-F.; Kao, C.-H.; Yang, W.-C.; Gong, H.-Y. Transcriptomics and gut microbiome analysis of the edible herb Bidens pilosa as a functional feed additive to promote growth and metabolism in tilapia (Oreochromis spp.). BMC Genom. 2024, 25, 785. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xian, X.-R.; Guo, W.-L.; Zhong, Z.-H.; Wang, S.-F.; Cai, Y.; Sun, Y.; Chen, X.-f.; Wang, Y.-q.; Zhou, Y.-C. Baicalin attenuates Streptococcus agalactiae virulence and protects tilapia (Oreochromis niloticus) from group B streptococcal infection. Aquaculture 2020, 516, 734645. [Google Scholar] [CrossRef]
- Kasica, N.; Kaleczyc, J. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L.) exerts multidirectional pro-healing properties towards damaged zebrafish hair cells by regulating the innate immune response. Toxicol. Appl. Pharmacol. 2024, 483, 116809. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-G.; Su, L.-J.; He, W.-H.; Zhang, F.-L.; Wei, C.-S.; Wang, Y.-H. Natural component plumbagin as a potential antibacterial agent against Streptococcus agalactiae infection. J. Fish Dis. 2022, 45, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-G.; He, W.-H.; Su, L.-J.; Zhang, F.-L.; Wang, Y.-H. Identification of a camelid-derived nanobody as a potential therapeutic agent against Streptococcus agalactiae infection. Aquaculture 2022, 561, 738725. [Google Scholar] [CrossRef]
- Wang, D.; Calabrese, E.J.; Lian, B.; Lin, Z.; Calabrese, V. Hormesis as a mechanistic approach to understanding herbal treatments in traditional Chinese medicine. Pharmacol. Ther. 2018, 184, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.O.; Oliveira, R.; Johansson, B.; Guido, L.F. Dose-Dependent Protective and Inductive Effects of Xanthohumol on Oxidative DNA Damage in Saccharomyces cerevisiae. Food Technol. Biotechnol. 2016, 54, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, H.; Gatesoupe, F.-J.; She, R.; Lin, Q.; Yan, X.; Li, J.; Li, X. Bacterial Signatures of “Red-Operculum” Disease in the Gut of Crucian Carp (Carassius auratus). Microb. Ecol. 2017, 74, 510–521. [Google Scholar] [CrossRef] [PubMed]
- She, R.; Li, T.-T.; Luo, D.; Li, J.-B.; Yin, L.-Y.; Li, H.; Liu, Y.-M.; Li, X.-Z.; Yan, Q.-g. Changes in the Intestinal Microbiota of Gibel Carp (Carassius gibelio) Associated with Cyprinid herpesvirus 2 (CyHV-2) Infection. Curr. Microbiol. 2017, 74, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-L.; Li, H.-W.; Wu, W.; Zhang, M.; Guo, J.; Deng, X.-Y.; Wang, F.; Lin, L.-B. The Response of Microbiota Community to Streptococcus agalactiae Infection in Zebrafish Intestine. Front. Microbiol. 2019, 10, 2848. [Google Scholar] [CrossRef] [PubMed]
- Fargione, J.E.; Tilman, D. Diversity decreases invasion via both sampling and complementarity effects. Ecol. Lett. 2005, 8, 604–611. [Google Scholar] [CrossRef]
- Donoso, F.; Egerton, S.; Bastiaanssen, T.F.S.; Fitzgerald, P.; Gite, S.; Fouhy, F.; Ross, R.P.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the rat. Psychoneuroendocrinology 2020, 116, 104673. [Google Scholar] [CrossRef] [PubMed]
- Logan, I.E.; Shulzhenko, N.; Sharpton, T.J.; Bobe, G.; Liu, K.; Nuss, S.; Jones, M.L.; Miranda, C.L.; Vasquez-Perez, S.; Pennington, J.M.; et al. Xanthohumol Requires the Intestinal Microbiota to Improve Glucose Metabolism in Diet-Induced Obese Mice. Mol. Nutr. Food Res. 2021, 65, e2100389. [Google Scholar] [CrossRef] [PubMed]
- Foysal, M.J.; Alam, M.; Momtaz, F.; Chaklader, M.R.; Siddik, M.A.B.; Cole, A.; Fotedar, R.; Rahman, M.M. Dietary supplementation of garlic (Allium sativum) modulates gut microbiota and health status of tilapia (Oreochromis niloticus) against Streptococcus iniae infection. Aquac. Res. 2019, 50, 2107–2116. [Google Scholar] [CrossRef]
- Li, M.; Ma, C.-X.; Li, J.-B.; Lei, A.-Y.; Li, L.-P.; Li, D.-L.; Chen, F.-Y.; Chen, M. Effects of Streptococcus agalactiae on intestinal flora of tilapia. J. South. Agric. 2019, 50, 1647–1656. [Google Scholar]
- Zhao, Z.; Zou, Q.; Han, S.; Shi, J.; Yan, H.; Hu, D.; Yi, Y. Omics analysis revealed the possible mechanism of streptococcus disease outbreak in tilapia under high temperature. Fish Shellfish. Immunol. 2023, 134, 108639. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.M.; Stine, C.B.; Baya, A.M.; Kent, M.L. A review of mycobacteriosis in marine fish. J. Fish Dis. 2009, 32, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Davidovich, N.; Morick, D.; Carella, F. Mycobacteriosis in Aquatic Invertebrates: A Review of Its Emergence. Microorganisms 2020, 8, 1249. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, C.; Sakata, T.; Sugita, H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett. Appl. Microbiol. 2008, 46, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, Y.; Zhang, Y.; Luo, F.; Song, K.; Wang, G.; Ling, F. Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome 2023, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Shan, J.; Feng, J.; Wang, J.; Qin, C.; Nie, G.; Ding, C. Effects of dietary Radix Rehmanniae Preparata polysaccharides on the digestive enzymes, morphology, microbial communities and mucosal barrier function of the intestine of Luciobarbus capito. Aquac. Res. 2020, 51, 1026–1037. [Google Scholar] [CrossRef]
- Ma, X.; Yu, M.; Yang, M.; Zhang, S.; Gao, M.; Wu, C.; Wang, Q. Effect of liquid digestate recirculation on the ethanol-type two-phase semicontinuous anaerobic digestion system of food waste. Bioresour. Technol. 2020, 313, 123534. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Qiang, J.; Li, Q.; Nie, Z.; Gao, J.; Sun, Y.; Xu, G. Multi-kingdom microbiota and functions changes associated with culture mode in genetically improved farmed tilapia (Oreochromis niloticus). Front. Physiol. 2022, 13, 974398. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Geng, D.; Tao, J.; Wang, J.; Liu, S.; Wang, Q.; Xu, F.; Xiao, S.; Wang, R. Synergistic Antibacterial Effect and Mechanism of Allicin and an Enterobacter cloacae Bacteriophage. Microbiol. Spectr. 2023, 11, e0315522. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-l.; Han, Y.; Ren, S.-t.; Ma, Y.-m.; Li, H.; Peng, X.-x. L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature. Fish Shellfish. Immunol. 2015, 44, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.-y.; Yang, M.-j.; Yang, L.-f.; Chen, Z.-g.; Jiang, M.; Peng, B. Metabolic modulation of redox state confounds fish survival against Vibrio alginolyticus infection. Microb. Biotechnol. 2020, 13, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Nurdalila, A.w.A.; Natnan, M.E.; Baharum, S.N. The effects of amino acids and fatty acids on the disease resistance of Epinephelus fuscoguttatus in response to Vibrio vulnificus infection. 3 Biotech 2020, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, Y.; Wang, L.; Chen, H.; Zhu, L.; Li, L.; Kong, X. Aspartate induces metabolic changes and improves the host’s ability to fight against Aeromonas hydrophila infection in Cyprinus carpio. Aquac. Res. 2022, 53, 1050–1061. [Google Scholar] [CrossRef]
- Yang, D.-X.; Yang, M.-J.; Yin, Y.; Kou, T.-S.; Peng, L.-T.; Chen, Z.-G.; Zheng, J.; Peng, B. Serine Metabolism Tunes Immune Responses To Promote Oreochromis niloticus Survival upon Edwardsiella tarda Infection. Msystems 2021, 6, e0042621. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chen, Z.-g.; Zheng, J.; Peng, B. Metabolites-Enabled Survival of Crucian Carps Infected by Edwardsiella tarda in High Water Temperature. Front. Immunol. 2019, 10, 01991. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Li, M.-y.; Li, H. Aspartate metabolic flux promotes nitric oxide to eliminate both antibiotic-sensitive and -resistant Edwardsiella tarda in zebrafish. Front. Immunol. 2023, 14, 1277281. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, X.; Liu, B.; Xia, Y.; Xin, Z.; Deng, B.; He, L.; Deng, J.; Ren, W. Aspartate Metabolism Facilitates IL-1β Production in Inflammatory Macrophages. Front. Immunol. 2021, 12, 753092. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Mirghaed, A.T.; Hoseini, S.M.; Rajabiesterabadi, H.; Hoseinifar, S.H.; Van Doan, H. Effects of Dietary Glycine Supplementation on Growth Performance, Immunological, and Erythrocyte Antioxidant Parameters in Common Carp, Cyprinus carpio. Animals 2023, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- Galley, J.D.; Chen, H.J.; Antonson, A.M.; Gur, T.L. Prenatal stress-induced disruptions in microbial and host tryptophan metabolism and transport. Behav. Brain Res. 2021, 414, 113471. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, S.; Zhang, Q.; Hao, J.; Lin, Y.; Zhang, J.; Li, A. Assessing the intestinal bacterial community of farmed Nile tilapia (Oreochromis niloticus) by high-throughput absolute abundance quantification. Aquaculture 2020, 529, 735688. [Google Scholar] [CrossRef]
Index | CG | CP | MX |
---|---|---|---|
ACE | 430.88 ± 17.10 | 473.79 ± 25.22 | 464.80 ± 15.92 |
Coverage | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
Simpson | 0.26 ± 0.02 a | 0.18 ± 0.01 b | 0.15 ± 0.01 c |
Chao1 | 265.63 ± 14.25 b | 321.63 ± 21.47 a | 346.20 ± 10.85 a |
Shannon_e | 2.08 ± 0.08 b | 2.40 ± 0.07 ab | 2.55 ± 0.06 a |
Group | Biomarker ID | LDA | p-Value | |
---|---|---|---|---|
CG vs. CP | CG | g. Allorhizobium | 3.654 | 0.0495 |
g. Streptococcus | 3.552 | 0.0495 | ||
g. Brevinema | 3.219 | 0.0495 | ||
CP | g. Iamia | 3.789 | 0.0495 | |
g. Clostridium_sensu_stricto_1 | 3.424 | 0.0495 | ||
g. Romboutsia | 3.207 | 0.0495 | ||
g. Anaerobacterium | 3.092 | 0.0463 | ||
CG vs. MX | CG | g. Deinococcus | 3.990 | 0.0369 |
g. Anoxybacillus | 3.879 | 0.0463 | ||
g. Methylobacterium | 3.388 | 0.0495 | ||
g. Mycobacterium | 3.042 | 0.0369 | ||
g. Xanthobacter | 3.004 | 0.0463 | ||
MX | g. Cetobacterium | 4.806 | 0.0495 | |
g. Clostridium_sensu_stricto_1 | 4.129 | 0.0495 | ||
g. Lachnoclostridium | 4.090 | 0.0369 | ||
g. Massilia | 3.961 | 0.0369 | ||
g. Clostridium_sensu_stricto_2 | 3.895 | 0.0463 | ||
g. Ruminococcaceae_UCG | 3.762 | 0.0495 | ||
g. Caproiciproducens | 3.650 | 0.0369 | ||
g. Clostridium_sensu_stricto_12 | 3.646 | 0.0495 | ||
g. Akkermansia | 3.422 | 0.0495 | ||
g. Cellulosilyticum | 3.401 | 0.0369 | ||
g. Romboutsia | 3.396 | 0.0495 | ||
g. Anaerobacterium | 3.333 | 0.0463 | ||
g. Clostridium_sensu_stricto_7 | 3.295 | 0.0463 | ||
g. Clostridium_sensu_stricto_13 | 3.270 | 0.0495 | ||
g. Epulopiscium | 3.215 | 0.0495 | ||
g. Clostridium_sensu_stricto_18 | 3.164 | 0.0463 | ||
g. Iamia | 3.144 | 0.0495 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, A.; Wei, Y.; Huang, J.; Luo, S.; Wei, T.; Guo, J.; Zhang, F.; Wang, Y. Effects of Natural Ingredient Xanthohumol on the Intestinal Microbiota, Metabolic Profiles and Disease Resistance to Streptococcus agalactiae in Tilapia Oreochromis niloticus. Microorganisms 2025, 13, 1699. https://doi.org/10.3390/microorganisms13071699
Huang A, Wei Y, Huang J, Luo S, Wei T, Guo J, Zhang F, Wang Y. Effects of Natural Ingredient Xanthohumol on the Intestinal Microbiota, Metabolic Profiles and Disease Resistance to Streptococcus agalactiae in Tilapia Oreochromis niloticus. Microorganisms. 2025; 13(7):1699. https://doi.org/10.3390/microorganisms13071699
Chicago/Turabian StyleHuang, Aiguo, Yanqin Wei, Jialong Huang, Songlin Luo, Tingyu Wei, Jing Guo, Fali Zhang, and Yinghui Wang. 2025. "Effects of Natural Ingredient Xanthohumol on the Intestinal Microbiota, Metabolic Profiles and Disease Resistance to Streptococcus agalactiae in Tilapia Oreochromis niloticus" Microorganisms 13, no. 7: 1699. https://doi.org/10.3390/microorganisms13071699
APA StyleHuang, A., Wei, Y., Huang, J., Luo, S., Wei, T., Guo, J., Zhang, F., & Wang, Y. (2025). Effects of Natural Ingredient Xanthohumol on the Intestinal Microbiota, Metabolic Profiles and Disease Resistance to Streptococcus agalactiae in Tilapia Oreochromis niloticus. Microorganisms, 13(7), 1699. https://doi.org/10.3390/microorganisms13071699