Impact of Co-Fermentation on the Soluble Pentosan, Total Phenol, Antioxidant Activity, and Flavor Properties of Wheat Bran
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, and Strains
2.2. Preparation of Microorganism Inoculum
2.3. Solid-State Fermentation of Wheat Bran
2.4. Determination of Soluble Pentosan Content and Total Phenol Content
2.5. Determination of Antioxidant Activity
2.6. Solid Phase Microextraction and GC-MS Analysis of Fermented Wheat Bran
2.7. Statistical Analysis
3. Results
3.1. Changes in Soluble Pentosan Content During Fermentation
3.2. Changes in the TPC of Wheat Bran During Fermentation
3.3. Selection of the Optimal Fermentation Time
3.4. Antioxidant Activity of Wheat Bran
3.5. Determination of Volatile Substances in Fermented Wheat Bran
4. Discussion
4.1. Changes in Soluble Pentosan Content During Fermentation
4.2. Changes in the TPC and Antioxidant Activity of Wheat Bran During Fermentation
4.3. Determination of Volatile Substances in Fermented Wheat Bran
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WB | Wheat bran |
WEAX | Soluble pentosan (Water-soluble Arabinoxylan) |
TPC | Total phenol content |
DPPH | 1, 1-diphenyl-2-picry-hydrazyl |
ABTS | 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) |
GC-MS | Gas Chromatography–Mass Spectrometry |
PCA | Principal component analysis |
Appendix A
RT.(min) | CAS No. | Component | Relative Content (%) | |||
---|---|---|---|---|---|---|
C-WB | L-WB | M-WB | LM-WB | |||
Alcohols | 8.62 | 5.13 | 26.27 | 27.99 | ||
1.485 | 76-39-1 | 2-methyl-2-nitro-1-propanol | -- | -- | 10.97 | 11.27 |
1.823 | 78-83-1 | Isobutanol | 0.76 | -- | 0.87 | 1.18 |
2.091 | 4516-90-9 | 2-methyl-3-butene-1-ol | -- | -- | -- | 12.96 |
2.093 | 39161-19-8 | 3-Penten-1-ol | -- | -- | 13.09 | -- |
3.318 | 590-86-3 | Isopentanol | -- | 0.42 | -- | -- |
3.657 | 71-41-0 | 1-pentanol | 4.18 | -- | 0.83 | 1.71 |
4.547 | 6290-03-5 | 1,3-Butanediol | -- | 1.29 | -- | 0.40 |
4.657 | 513-85-9 | 2,3-butanediol | -- | 3.42 | 0.16 | -- |
4.781 | 543-49-7 | 2-Heptylol | -- | -- | -- | 0.19 |
4.965 | 625-31-0 | 4-penten-2-ol | -- | -- | 0.06 | -- |
6.476 | 111-27-3 | 1-Hexanol | 3.04 | -- | -- | -- |
10.145 | 111-70-6 | 1-Heptylol | 0.14 | -- | -- | -- |
10.443 | 3391-86-4 | 1-octen-3-ol | 0.42 | -- | 0.13 | -- |
13.939 | 111-87-5 | 1-Octanol | 0.08 | -- | -- | -- |
20.704 | 499-44-5 | Hinokitiol | -- | -- | 0.16 | 0.28 |
Ketones | 13.46 | 4.7 | 28.85 | 2.51 | ||
1.622 | 2371-19-9 | 3-methyl-2-heptanone | 6.63 | -- | -- | 0.27 |
2.643 | 431-3-8 | 2,3-butanedione | -- | 0.57 | -- | -- |
2.787 | 116-09-6 | acetone peroxide | 0.65 | -- | -- | -- |
2.92 | 72189-24-3 | 3-methyl-4-hexen-2-one | -- | -- | 0.26 | -- |
3.25 | 589-38-8 | 3-Hexanone | 0.14 | -- | -- | -- |
4.09 | 591-78-6 | 2-Hexanone | 0.63 | -- | -- | 0.36 |
4.128 | 513-86-0 | 3-hydroxy-2-butanone | -- | 4.13 | -- | -- |
4.563 | 3188-00-9 | 2-methyltetrahydrofuran-3-one | -- | -- | 0.30 | -- |
7.066 | 110-43-0 | 2-heptanone | 4.44 | -- | -- | -- |
7.067 | 693-54-9 | 2-decanone | 0.18 | -- | 28.01 | 1.31 |
7.731 | 1192-62-7 | 1- (2-furanyl) ethanone | -- | -- | -- | 0.07 |
7.867 | 497-23-4 | 2 (5H)–Furanone | -- | -- | 0.16 | 0.11 |
9.277 | 20907-04-4 | 1-(2-furanyl)-3-methyl-2-butanone | -- | -- | 0.04 | -- |
9.281 | 585-25-1 | 2,3-octanedione | 0.5 | -- | -- | 0.04 |
10.199 | 930-68-7 | 2-Cyclohexene-1-one | -- | -- | 0.04 | -- |
10.459 | 130930-47-1 | 2-tert-butyl-5-methyl [1,3] dioxolan-4-one | -- | -- | -- | 0.22 |
10.55 | 585-25-1 | 2,3-octanedione | -- | -- | 0.04 | -- |
10.589 | 923-28-4 | 2-methyl-3-octanone | -- | -- | -- | 0.04 |
12.274 | 1122-62-9 | 1-(2-pyridyl) ethanone | -- | -- | -- | 0.04 |
12.605 | 1669-44-9 | 3-octen-2-one | 0.1 | -- | -- | -- |
14.594 | 821-55-6 | 2-Nonanone | 0.19 | -- | -- | -- |
21.827 | 112-12-9 | 2-undecanone | -- | -- | -- | 0.04 |
Acids | 9.22 | 13.1 | 15.08 | 29.88 | ||
2.225 | 64-19-7 | acetic acid | 7.16 | 12.19 | 0.01 | -- |
2.363 | 141-82-2 | Malonic acid | -- | -- | 2.93 | 7.78 |
4.028 | 156564-41-9 | 2-methylpropionic acid | -- | -- | -- | 5.57 |
7.213 | 503-74-2 | 3-Methylbutanoic acid | -- | -- | 3.62 | 13.62 |
7.464 | 116-53-0 | 2-methylbutyric acid | -- | -- | 8.52 | 2.92 |
7.951 | 88-9-5 | 2-ethylbutyric acid | -- | 0.08 | -- | -- |
10.977 | 142-62-1 | Hexanoic acid | 2.06 | 0.83 | -- | -- |
Esters | 0.25 | 5.81 | 0.05 | 0.10 | ||
4.465 | 17639-74-6 | Isopropyl acetate | -- | -- | -- | 0.01 |
8.06 | 96-48-0 | Butyrolactone | 0.04 | -- | -- | -- |
9.784 | 141-32-2 | Butyl Acrylate | -- | 3.82 | -- | -- |
10.264 | 590-1-2 | Butyl propionate | -- | 1.11 | -- | -- |
12.48 | 547-65-9 | 2-methylvinylbutyrolactone | -- | -- | 0.05 | -- |
13.127 | 695-06-7 | Gamma Caprolactone | 0.21 | -- | -- | -- |
13.668 | 109-21-7 | Butyl butyrate ester | -- | 0.88 | -- | -- |
14.217 | 17747-43-2 | 3-hydroxypyridine monoacetate | -- | -- | -- | 0.09 |
Aldehyde | 59.46 | 15.87 | 11.89 | 6.70 | ||
1.486 | 123-72-8 | Butyraldehyde | 14.81 | -- | -- | -- |
2.014 | 590-86-3 | Isovaleraldehyde | 24.89 | -- | -- | 1.97 |
2.432 | 111-71-7 | Heptanal | -- | -- | 9.34 | -- |
3.237 | 123-15-9 | 2-methylpentanal | -- | -- | 0.63 | 0.86 |
4.334 | 66-25-1 | Hexanal | 16.57 | 7.93 | -- | 1.50 |
5.191 | 35796 | furfural | 0.38 | -- | 1.37 | 1.53 |
5.935 | 18829-56-6 | Trans-2-nonanal | 0.02 | -- | -- | -- |
7.485 | 111-71-7 | Heptanal | 0.93 | -- | -- | 0.16 |
7.734 | 5497-67-6 | 2,2-dimethyl-4-pentenal | 0.08 | -- | -- | -- |
9.551 | 100-52-7 | Benzoin aldehyde | 0.69 | 0.28 | 0.29 | 0.27 |
11.152 | 1192-58-1 | 1-Methyl-1H-pyrrole-2-formaldehyde | -- | -- | -- | 0.14 |
11.245 | 124-13-0 | Octanal aldehyde | 0.39 | -- | -- | -- |
12.66 | 122-78-1 | Phenylacetaldehyde | 0.16 | -- | 0.22 | 0.18 |
13.332 | 2548-87-0 | Trans-2-octenal | 0.05 | -- | -- | -- |
15.086 | 124-19-6 | Nonanal | 0.49 | 4.77 | 0.04 | 0.08 |
19.95 | 18829-56-6 | Trans-2-nonenal | -- | 2.89 | -- | -- |
Hydrocarbons | 1 | 29.04 | 0.06 | 10.85 | ||
2.009 | 22418-49-1 | 3-methoxy-2-methyl-1-propene | -- | -- | -- | 10.01 |
3.541 | 108-88-3 | toluene | 0.24 | 1.02 | 0.43 | 0.36 |
5.032 | 1002-33-1 | 1,3-Octadiene | 0.06 | -- | -- | -- |
5.515 | 858291 | 1,2,5,5-Tetramethyl-1,3-Cyclopentadiene | -- | -- | -- | 0.11 |
6.31 | 95-47-6 | O-xylene | 0.08 | -- | -- | -- |
7.01 | 100-42-5 | styrene | 0.15 | -- | -- | 0.11 |
8.478 | 100-41-4 | ethylbenzene | -- | 0.31 | -- | -- |
8.802 | 106-42-3 | P-xylene | -- | 0.59 | -- | -- |
12.69 | 5911-4-6 | 3-methylnonane | -- | 0.17 | -- | -- |
15.188 | 31295-56-4 | 2,6,11-trimethyldodecane | -- | 0.23 | -- | -- |
15.652 | 1120-21-4 | Undecane | -- | 2.93 | 0.03 | -- |
16.034 | 13151-35-4 | 5-methyldecane | -- | 0.37 | -- | -- |
16.172 | 2847-72-5 | 4-methyldecane | -- | 0.88 | -- | -- |
16.345 | 6975-98-0 | 2-methyldecane | -- | 1.12 | -- | -- |
18.002 | 19883-29-5 | (E,E)-1, 3,5-Denticene | -- | -- | 0.03 | -- |
18.155 | 17301-23-4 | 2,6-dimethylundecane | -- | 0.31 | -- | -- |
18.504 | 31295-56-4 | 2,6,11-trimethyldodecane | -- | 0.45 | -- | -- |
18.648 | 112-40-3 | Dodecane | 0.29 | 6.07 | 0.11 | 0.14 |
20.334 | 629-50-5 | Tridecane | -- | 5.2 | -- | -- |
23.231 | 17301-22-3 | 2,5-dimethylundecane | -- | 0.89 | -- | -- |
23.888 | 17312-57-1 | 3-methyldodecane | -- | 0.76 | -- | -- |
24.184 | 6380-23-0 | 4-vinyl-1,2-dimethoxybenzene | -- | -- | -- | 0.07 |
25.434 | 629-59-4 | Tetradecane | 0.18 | -- | -- | 0.05 |
26.567 | 629-62-9 | Pentadecane | -- | 1.14 | -- | -- |
26.663 | 1560-97-0 | 2-methyldodecane | -- | 0.98 | -- | -- |
30.092 | 544-76-3 | Hexadecane | -- | 1.85 | -- | -- |
32.977 | 13151-83-2 | 3-cyclohexyldecane | -- | 3.77 | -- | -- |
Phenols | 0.1 | 0 | 1.11 | 1.13 | ||
8.018 | 123-07-9 | 4-Ethylphenol | 0.10 | -- | -- | -- |
18.495 | 14938-35-3 | 4-Pentylphenol | -- | -- | 0.06 | 0.07 |
22.312 | 7786-61-0 | 2-methoxy-4-vinylpheno | -- | -- | 1.05 | 1.07 |
Pyrazines | 0.32 | 26.32 | 3.59 | 6.36 | ||
5.047 | 109-08-0 | Methyl pyrazine | 0.11 | -- | 0.83 | 1.06 |
7.962 | 13925-00-3 | Ethylpyrazine | -- | -- | -- | 1.78 |
8.104 | 123-32-0 | 2,5-dimethylpyrazine | 0.21 | -- | 0.47 | 0.67 |
8.149 | 5910-89-4 | 2,3-dimethylpyrazine | -- | -- | 0.21 | 0.09 |
11.071 | 13925-03-6 | 2-ethyl-6-methylpyrazine | -- | -- | 0.59 | 0.78 |
11.26 | 13360-64-0 | 2-ethyl-5-methylpyrazine | -- | -- | 0.67 | 0.84 |
11.756 | 13925-09-2 | 2-vinyl-6-methylpyrazine | -- | -- | -- | 0.02 |
11.071 | 13925-03-6 | 2-ethyl-6-methylpyrazine | -- | -- | 0.59 | 0.78 |
11.26 | 13360-64-0 | 2-ethyl-5-methylpyrazine | -- | -- | 0.67 | 0.84 |
11.756 | 13925-09-2 | 2-vinyl-6-methylpyrazine | -- | 0.1 | -- | 0.02 |
11.071 | 13925-03-6 | 2-ethyl-6-methylpyrazine | -- | -- | 0.59 | 0.78 |
11.26 | 13360-64-0 | 2-ethyl-5-methylpyrazine | -- | -- | 0.67 | 0.84 |
11.756 | 13925-09-2 | 2-vinyl-6-methylpyrazine | -- | -- | -- | 0.02 |
13.92 | 38713-41-6 | (1-methylvinyl) pyrazine | -- | -- | 0.04 | 0.03 |
14.077 | 13067-27-1 | 2,6-diethylpyrazine | -- | -- | 0.22 | 0.43 |
14.35 | 13360-65-1 | 3-Ethyl-2,5-dimethylpyrazine | -- | 0.1 | 0.04 | -- |
14.351 | 13925-07-0 | 2-ethyl-3,5-dimethylpyrazine | -- | -- | -- | 0.05 |
14.408 | 15707-34-3 | 2,3-dimethyl-5-ethylpyrazine | -- | -- | 0.23 | 0.29 |
14.582 | 13238-84-1 | 2,5-diethylpyrazine | -- | -- | 0.22 | 0.24 |
14.79 | 55138-62-0 | 2-methyl-3-(2-propenyl) pyrazine | -- | -- | 0.06 | 0.06 |
16.97 | 18138-05-1 | 3,5-diethyl-2-methylpyrazine | -- | -- | 0.02 | 0.04 |
17.157 | 1124-11-4 | Tetramethylpyrazine | -- | 26.12 | -- | -- |
Other compounds | 7.56 | 0 | 13.09 | 14.48 | ||
1.643 | 534-22-5 | 2-methylfuran | -- | -- | 9.5 | 8.22 |
2.749 | 1487-18-9 | 2-vinylfuran | -- | -- | -- | 0.59 |
4.055 | 4229-91-8 | 2-propylfuran | 0.18 | -- | -- | -- |
6.878 | 3194-15-8 | 2-Propionylfuran | 0.11 | -- | -- | -- |
7.725 | 1192-62-7 | 2-acetylfuran | -- | -- | 0.11 | -- |
9.711 | 3658-80-8 | Dimethyl trisulfide | -- | -- | 0.16 | -- |
10.718 | 3777-69-3 | 2-Pentylfuran | 7.27 | -- | 2.22 | 1.88 |
12.84 | 2167-14-8 | Tea pyrrole | -- | -- | 0.06 | 0.05 |
17.688 | 1438-94-4 | 1-(2-furanmethyl)-1H pyrrole | -- | -- | 0.06 | 0.07 |
References
- Wu, X.; Li, F.; Wu, W. Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein. LWT 2020, 120, 108943. [Google Scholar] [CrossRef]
- Shin, H.Y.; Kim, S.M.; Lee, J.H.; Lim, S.T. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 2019, 272, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Fu, X.; Wang, L.; Xu, J.; Gao, X. Impact of Monascus purpureus fermentation on antioxidant activity, free amino acid profiles and flavor properties of kelp (Saccharina japonica). Food Chem. 2023, 400, 133990. [Google Scholar] [CrossRef] [PubMed]
- Janarny, G.; Gunathilake, K.D.P.P. Changes in rice bran bioactives, their bioactivity, bioaccessibility and bioavailability with solid-state fermentation by Rhizopus oryzae. Biocatal. Agric. Biotechnol. 2020, 23, 101510. [Google Scholar] [CrossRef]
- Bedő, S.; Antal, B.; Rozbach, M.; Fehér, A.; Fehér, C. Optimised fractionation of wheat bran for arabinose biopurification and xylitol fermentation by Ogataea zsoltii within a biorefinery process. Ind. Crops Prod. 2019, 139, 111504. [Google Scholar] [CrossRef]
- Wang, M.; Lei, M.; Samina, N.; Chen, L.L.; Yi, C.P. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chem. 2020, 330, 127156. [Google Scholar] [CrossRef]
- Zhao, X.; Qian, Y.; Li, G.; Yi, R.; Park, K.Y.; Song, J.L. Lactobacillus plantarum YS2 (yak yogurt Lactobacillus) exhibited an activity to attenuate activated carbon-induced constipation in male Kunming mice. J. Dairy Sci. 2019, 102, 26–36. [Google Scholar] [CrossRef]
- Ferreira, I.; de Sousa Melo, D.; Menezes, A.G.T.; Fonseca, H.C.; de Assis, B.B.T.; Ramos, C.L.; Magnani, M.; Dias, D.R.; Schwan, R.F. Evaluation of potentially probiotic yeasts and Lactiplantibacillus plantarum in co-culture for the elaboration of a functional plant-based fermented beverage. Food Res. Int. 2022, 160, 111697. [Google Scholar] [CrossRef]
- Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M.A.; Erten, H.; Moschetti, G.; Settanni, L. Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiol. 2016, 54, 40–51. [Google Scholar] [CrossRef]
- Zhao, H.-M.; Guo, X.-N.; Zhu, K.-X. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem. 2017, 217, 28–36. [Google Scholar] [CrossRef]
- Du, Y.; Shim, S.M.; Wang, L.; Gao, X.; Fu, X. Impact of Monascus purpureus combined with Lactobacillus plantarum and Saccharomyces cerevisiae fermentation on nutritional and flavor characteristics of Pyropia yezoensis. Food Chem. 2025, 472, 142973. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiong, T.; Peng, Z.; Liu, C.; Huang, T.; Yu, H.; Xie, M. Correlation between microbiota and flavours in fermentation of Chinese Sichuan Paocai. Food Res Int. 2018, 114, 123–132. [Google Scholar] [CrossRef]
- Roye, C.; Henrion, M.; Chanvrier, H.; Roeck, K.D.; Bondt, Y.D.; Liberloo, I.; King, R.; Courtin, C.M. Extrusion-Cooking Modifies Physicochemical and Nutrition-Related Properties of Wheat Bran. Foods 2020, 6, 738. [Google Scholar] [CrossRef]
- Hashimoto, S.; Shogren, M.D.; Pomeranz, Y. Cereal pentosans: Their estimation and significance. I. Pentosans in wheat and milled wheat products. Cereal Chem. 1987, 64, 30–34. [Google Scholar]
- Bei, Q.; Liu, Y.; Wang, L.; Chen, G.; Wu, Z. Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. J. Funct. Foods 2017, 32, 185–194. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Liao, A.M.; Thakur, K.; Huang, J.H.; Zhang, J.G.; Wei, Z.J. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution. Food Chem. 2019, 297, 124983. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chang, S. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2010, 72, S159–S166. [Google Scholar] [CrossRef] [PubMed]
- Re, R. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1264–1284. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, J.; Chen, H.; Geng, F.; Nie, S. Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chem. 2022, 371, 131106. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, X.; Qian, T.; Sun, G.; Guo, Y.; Chang, F.; Zhou, S.; Sun, X. Antitumor and immunomodulatory activity of arabinoxylans: A major constituent of wheat bran. Int. J. Biol. Macromol. 2011, 48, 160–164. [Google Scholar] [CrossRef]
- Manini, F.; Brasca, M.; Plumed-Ferrer, C.; Morandi, S.; Erba, D.; Casiraghi, M.C. Study of the Chemical Changes and Evolution of Microbiota During Sourdoughlike Fermentation of Wheat Bran. Cereal Chem. 2014, 91, 342–349. [Google Scholar] [CrossRef]
- Katina, K.; Juvonen, R.; Laitila, A.; Flander, L.; Nordlund, E.; Kariluoto, S.; Piironen, V.; Poutanen, K. Fermented Wheat Bran as a Functional Ingredient in Baking. Cereal Chem. 2012, 89, 126–134. [Google Scholar] [CrossRef]
- Yang, Y.L. Yongping. Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. LWT-Food Sci. Technol. 2021, 146, 111411. [Google Scholar] [CrossRef]
- Tang, N.; Xing, X.; Li, H.; Suo, B.; Wang, Y.; Ai, Z.; Yang, Y. Co-culture fermentation by Saccharomycopsis fibuligera and lactic acid bacteria improves bioactivity and aroma profile of wheat bran and the bran-containing Chinese steamed bread. Food Res. Int. 2024, 182, 114179. [Google Scholar] [CrossRef]
- Wang, L.; Bei, Q.; Wu, Y.; Liao, W.; Wu, Z. Characterization of soluble and insoluble-bound polyphenols from Psidium guajava L. leaves co-fermented with Monascus anka and Bacillus sp. and their bio-activities. J. Funct. Foods 2017, 32, 149–159. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Zeng, J.; Tian, X.; Bei, Q.; Wu, Z. Enhancing three phenolic fractions of oats (Avena sativa L.) and their antioxidant activities by solid-state fermentation with Monascus anka and Bacillus subtilis. J. Cereal Sci. 2020, 93, 102940. [Google Scholar] [CrossRef]
- Akbari, M.; Razavi, S.H.; Khodaiyan, F.; Blesa, J.; Esteve, M.J. Fermented corn bran: A by-product with improved total phenolic content and antioxidant activity. LWT 2023, 184, 115090. [Google Scholar] [CrossRef]
- Filannino, P.; Cardinali, G.; Rizzello, C.G.; Buchin, S.; De Angelis, M.; Gobbetti, M.; Di Cagno, R. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Appl. Environ. Microbiol. 2014, 80, 2206–2215. [Google Scholar] [CrossRef]
- Goswami, R.P.; Jayaprakasha, G.K.; Shetty, K.; Patil, B.S. Lactobacillus plantarum and natural fermentation-mediated biotransformation of flavor and aromatic compounds in horse gram sprouts. Process Biochem. 2018, 66, 7–18. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, C.; Yan, M.; Huang, D.; McClements, D.J.; Huang, Z.; Cao, C. Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile–ScienceDirect. Food Chem. 2019, 283, 141–147. [Google Scholar] [CrossRef]
- Hu, X.; Fang, C.; Zhang, W.; Lu, L.; Guo, Z.; Li, S.; Chen, M. Change in volatiles, soluble sugars and fatty acids of glutinous rice, japonica rice and indica rice during storage. LWT 2023, 174, 114416. [Google Scholar] [CrossRef]
- Lamothe, L.M.; Cantu-Jungles, T.M.; Chen, T.; Green, S.; Naqib, A.; Srichuwong, S.; Hamaker, B.R. Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing. Food Funct. 2021, 12, 10658–10666. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Wu, W.; Sun, C.; Lei, Z.; Chen, H.; Liu, H.; Chen, W.; Ma, J.; Min, T.; Zhang, M. Comparison of releasing bound phenolic acids from wheat bran by fermentation of three Aspergillus species. Int. J. Food Sci. Technol. 2017, 53, 1120–1130. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Fu, G.; Chen, Y.; Wan, Y.; Deng, M.; Cai, W.; Li, M. Improvement of the flavor of major ethyl ester compounds during Chinese Te-flavor Baijiu brewing by Wickerhamomyces anomalus. Food Biosci. 2022, 50, 102022. [Google Scholar] [CrossRef]
- Hu, M.; Wang, S.; Liu, Q.; Cao, R.; Xue, Y. Flavor Profile of Dried Shrimp at Different Processing Stages. LWT-Food Sci. Technol. 2021, 38, 111403. [Google Scholar] [CrossRef]
- Kivancli, J.; Elmaci, Y. Characterization of Turkish-Style Boiled Coffee Aroma by Gas Chromatography and Mass Spectrometry and Descriptive Analysis Techniques. Int. J. Food Prop. 2016, 19, 1671–1686. [Google Scholar] [CrossRef]
- Liu, X.; Suo, K.; Wang, P.; Li, X.; Hao, L.; Zhu, J.; Yi, J.; Kang, Q.; Huang, J.; Lu, J. Modification of wheat bran insoluble and soluble dietary fibers with snail enzyme. Food Sci. Hum. Wellness 2021, 10, 356–361. [Google Scholar] [CrossRef]
- Liang, W.; Lin, Q.; Zhao, W.; Liu, X.; Ma, R.; Zhang, T.; Zeng, J.; Gao, H.; Li, W. Unraveling the flavor variation mechanism of wheat bran insoluble dietary fibers during different dynamic solid-state fermentation patterns: Identification via E-nose, GC-MS, and GC-IMS combination with fingerprinting. Ind. Crops Prod. 2024, 222, 119836. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, W.; Xu, M.; Gao, S.; Zhao, Y.; Wei, X.; Zhao, G.; Zong, W. Effects of Lactobacillus plantarum and Saccharomyces cerevisiae co-fermentation on the structure and flavor of wheat noodles. J. Sci. Food Agric. 2022, 102, 4697–4706. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, C.; Tristezza, M.; Giordano, L.; Rampino, P.; Perrotta, C.; Baruzzi, F.; Capozzi, V.; Mita, G.; Grieco, F. Exploitation of Prunus mahaleb fruit by fermentation with selected strains of Lactobacillus plantarum and Saccharomyces cerevisiae. Food Microbiol. 2019, 84, 103262. [Google Scholar] [CrossRef] [PubMed]
Increase Rate | 2d | 4d | 6d | 8d |
---|---|---|---|---|
soluble dietary fiber | 12.46 a ± 0.20 | 10.44 b ± 0.18 | 4.54 c ± 0.08 | 1.84 d ± 0.08 |
total phenol | 1.03 d ± 0.02 | 2.12 a ± 0.0.07 | 1.56 b ± 0.01 | 1.16 c ± 0.01 |
Y | 13.49 a ± 0.17 | 12.57 b ± 0.25 | 6.10 c ± 0.08 | 3.00 d ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, L.; Chen, Y.; Wang, H.; Ge, W.; Xue, Z.; Cui, X.; Wang, X.; Liao, A.; Hu, Y.; et al. Impact of Co-Fermentation on the Soluble Pentosan, Total Phenol, Antioxidant Activity, and Flavor Properties of Wheat Bran. Microorganisms 2025, 13, 1546. https://doi.org/10.3390/microorganisms13071546
Chen Y, Zhang L, Chen Y, Wang H, Ge W, Xue Z, Cui X, Wang X, Liao A, Hu Y, et al. Impact of Co-Fermentation on the Soluble Pentosan, Total Phenol, Antioxidant Activity, and Flavor Properties of Wheat Bran. Microorganisms. 2025; 13(7):1546. https://doi.org/10.3390/microorganisms13071546
Chicago/Turabian StyleChen, Yan, Li Zhang, Yifan Chen, Hongling Wang, Wenpei Ge, Zhanying Xue, Xinran Cui, Xin Wang, Aimei Liao, Yuansen Hu, and et al. 2025. "Impact of Co-Fermentation on the Soluble Pentosan, Total Phenol, Antioxidant Activity, and Flavor Properties of Wheat Bran" Microorganisms 13, no. 7: 1546. https://doi.org/10.3390/microorganisms13071546
APA StyleChen, Y., Zhang, L., Chen, Y., Wang, H., Ge, W., Xue, Z., Cui, X., Wang, X., Liao, A., Hu, Y., & Liu, N. (2025). Impact of Co-Fermentation on the Soluble Pentosan, Total Phenol, Antioxidant Activity, and Flavor Properties of Wheat Bran. Microorganisms, 13(7), 1546. https://doi.org/10.3390/microorganisms13071546