Valorization of Low-Nitrogen, High-Organic-Load Shrimp Aquaculture Wastewater by Dunaliella salina: Pollutant Removal and High-Value-Biomass Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalgae Collection and Molecular Identification
2.2. Aquaculture Wastewater Collection
2.3. Experimental Desing
2.4. Determination of Dunaliella salina Growth
2.5. Nitrogen and Chemical Oxygen Demand Removal
2.6. Biochemical Biomass Composition
2.7. Fatty Acid Profile Determination
2.8. Antioxidant Enzyme
2.9. Statistical Analysis
3. Results
3.1. Microalgal Growth
3.2. Nitrogen Removal and Chemical Oxygen Demand Reduction
3.3. Biochemical Biomass Composition and Antioxidant Enzyme System of Dunaliella salina
4. Discussion
4.1. Dunaliella salina Growth in Shrimp Aquaculture Wastewater
4.2. Pollutant Removal
4.3. Biochemical Composition of Dunaliella salina Biomass
4.4. Fatty Acid Composition of Dunaliella salina Cultivated in Shrimp Aquaculture Wastewater
Fatty Acid | This Study’s SAW * | Dunaliella sp. [51] | Dunaliella sp. [79] | Dunaliella tertiolecta [59] | Dunaliella salina [81] |
---|---|---|---|---|---|
SFA | |||||
C10:0 | 0.71 | ||||
C12:0 | 1.58 | 0.17 | |||
C14:0 | 1.77 | 0.9 | 1.25 | 1.17 | 4.21 |
C15:0 | 1.57 | 0.89 | 0.58 | ||
C16:0 | 18.07 | 31.6 | 40.55 | 30.24 | 33.59 |
C17:0 | 1.23 | 1.37 | 0.36 | ||
C18:0 | 2.36 | 3.8 | 2.61 | 4.15 | 1.29 |
C20:0 | 2.06 | 0.71 | 1.53 | ||
C22:0 | 2.31 | 2.9 | 0.1 | ||
MUFA | |||||
C14:1 | 1.79 | 1.9 | 2.955 | 0.42 | 0.5 |
C16:1 | 1.79 | 4.7 | 5.86 | 5.12 | |
C18:1 | 17.63 | 17 | 7.215 | 23.48 | 10.33 |
C20:1 | 1.67 | 2.9 | 0.04 | ||
C22:1 | 0.25 | ||||
C24:1 | 6.98 | 0.06 | |||
PUFA | |||||
C18:2 | 7.51 | 5.5 | 2.46 | 11.60 | 11.24 |
C18:3n3 | 12.03 | 13 | 1 | 7.62 | 3.9 |
C20:3n3 | 1.58 | 1.635 | |||
C20:5 | 4.6 | 10.93 | 0.1 | ||
C22:2 | 0.05 | ||||
C22:6 | 3.275 | ||||
ΣSFA | 32.88 | 36.3 | 54.79 | 37.51 | 40.47 |
ΣMUFA | 26.79 | 32 | 25.91 | 43.12 | 28.31 |
ΣPUFA | 34.45 | 29.2 | 19.3 | 18.86 | 22.6 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Iber, B.T.; Kasan, N.A. Recent Advances in Shrimp Aquaculture Wastewater Management. Heliyon 2021, 7, e08283. [Google Scholar] [CrossRef] [PubMed]
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.D.N.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Vo, T.S.; Tran-Nguyen, P.L.; Nguyen, M.N.; Pham, V.H.; Matsuhashi, R.; Kim, K.; Vo, T.T.B.C. A Comprehensive Review of Aeration and Wastewater Treatment. Aquaculture 2024, 591, 741113. [Google Scholar] [CrossRef]
- Goto, G.M.; Corwin, E.; Farthing, A.; Lubis, A.R.; Klinger, D.H. A Nature-Based Solutions Approach to Managing Shrimp Aquaculture Effluent. PLoS Sustain. Transform. 2023, 2, e0000076. [Google Scholar] [CrossRef]
- Paena, M.; Taukhid, I.; Mustafa, A.; Tarunamulia; Asaf, R.; Athirah, A.; Kamariah; Ratnawati, E. Analysis of the Impact of Organic Waste on Water Quality to Support the Superintensive Technology Vaname Shrimp Cultivation Expansion Program. Int. J. Environ. Sci. Technol. 2024, 21, 5603–5616. [Google Scholar] [CrossRef]
- Nam, T.S.; Thao, H.V.; Luan, N.T.; Duy, N.P.; Cong, N.V. Optimizing Hydraulic Retention Time and Area of Biological Settling Ponds for Super-Intensive Shrimp Wastewater Treatment Systems. Water 2022, 14, 932. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Mohammadi, A.; Emerenciano, M.G.C. Water Quality in Biofloc Technology (BFT): An Applied Review for an Evolving Aquaculture. Aquac. Int. 2024, 32, 9321–9374. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, X.; Wu, X.; Yu, Y.; Zhang, Y.; Yang, L.; Zhang, Y. Pilot-Scale Investigation of an Advanced Biofloc Technology for Treating Pacific White Shrimp Effluent: Performance and Insight Mechanisms. Aquaculture 2025, 595, 741552. [Google Scholar] [CrossRef]
- Krasaesueb, N.; Incharoensakdi, A.; Khetkorn, W. Utilization of Shrimp Wastewater for Poly-β-Hydroxybutyrate Production by Synechocystis sp. PCC 6803 Strain ΔSphU Cultivated in Photobioreactor. Biotechnol. Rep. 2019, 23, e00345. [Google Scholar] [CrossRef]
- Wang, D.; Xie, X.; Tang, W.; Pan, H.; Luo, J. Suitability of Nansha Mangrove Wetland for High Nitrogen Shrimp Pond Wastewater Treatment. Bull. Environ. Contam. Toxicol. 2021, 106, 349–354. [Google Scholar] [CrossRef]
- Sebök, S.; Hanelt, D. Cultivation of the Brackish-Water Macroalga Ulva Lactuca in Wastewater from Land-Based Fish and Shrimp Aquacultures in Germany. Aquaculture 2023, 571, 739463. [Google Scholar] [CrossRef]
- Nasir, N.M.; Jusoh, A.; Harun, R.; Ibrahim, N.N.L.N.; Rasit, N.; Ghani, W.A.W.A.K.; Kurniawan, S.B. Nutrient Consumption of Green Microalgae, Chlorella sp. during the Bioremediation of Shrimp Aquaculture Wastewater. Algal Res. 2023, 72, 103110. [Google Scholar] [CrossRef]
- Ansari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal Cultivation Using Aquaculture Wastewater: Integrated Biomass Generation and Nutrient Remediation. Algal Res. 2017, 21, 169–177. [Google Scholar] [CrossRef]
- Nie, X.; Mubashar, M.; Zhang, S.; Qin, Y.; Zhang, X. Current Progress, Challenges and Perspectives in Microalgae-Based Nutrient Removal for Aquaculture Waste: A Comprehensive Review. J. Clean. Prod. 2020, 277, 124209. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Duarte, J.H.; Costa, J.A.V.; De Jesus Assis, D.; Lemos, P.V.F.; Druzian, J.I.; De Souza, C.O.; Nunes, I.L.; Chinalia, F.A. Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel. BioEnergy Res. 2021, 14, 254–264. [Google Scholar] [CrossRef]
- Dinesh Kumar, S.; Nanthini Devi, K.; Krishnaveni, N.; Gowthami, A.; Gunabal, S.; Sathiyaraj, G.; Sinduja, S.; Sridhar, P.; Santhanam, P.; Perumal, P.; et al. Production and Use of Wastewater-Cultured Tetraselmis Suecica for Rearing Chanos Chanos: An Assessment on the Advantages of Chemical Flocculate Algal Pastes on the Growth, Survival, and Proximate Composition of Milkfish Larvae. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- de Souza Celente, G.; de Cassia de Souza Schneider, R.; Medianeira Rizzetti, T.; Lobo, E.A.; Sui, Y. Using Wastewater as a Cultivation Alternative for Microalga Dunaliella Salina: Potentials and Challenges. Sci. Total Environ. 2024, 911, 168812. [Google Scholar] [CrossRef]
- Sacristán de Alva, M.; Luna Pabello, V.M.; Orta Ledesma, M.T.; Cruz Gómez, M.J. Carbon, Nitrogen, and Phosphorus Removal, and Lipid Production by Three Saline Microalgae Grown in Synthetic Wastewater Irradiated with Different Photon Fluxes. Algal Res. 2018, 34, 97–103. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, J.; Feng, J.; Liu, Q.; Nan, F.; Xie, S. Treatment of Real Aquaculture Wastewater from a Fishery Utilizing Phytoremediation with Microalgae. J. Chem. Technol. Biotechnol. 2019, 94, 900–910. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms: I. cyclotella nana hustedt, and detonula confervacea (cleve) gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Dellaporta, S.L.; Wood, J.; Hicks, J.B. A Plant DNA Minipreparation: Version II. Plant Mol. Biol. Report. 1983, 1, 19–21. [Google Scholar] [CrossRef]
- Olmos, J.; Paniagua, J.; Contreras, R. Molecular Identification of Dunaliella sp. Utilizing the 18S rDNA Gene. Lett. Appl. Microbiol. 2000, 30, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Mandoli, A.; Jha, B. Physiological Characterization and Stress-Induced Metabolic Responses of Dunaliella Salina Isolated from Salt Pan. J. Ind. Microbiol. Biotechnol. 2008, 35, 1093–1101. [Google Scholar] [CrossRef]
- Magaña-Gallegos, E.; González-Zúñiga, R.; Arevalo, M.; Cuzon, G.; Chan-Vivas, E.; López-Aguiar, K.; Noreña-Barroso, E.; Pacheco, E.; Valenzuela, M.; Maldonado, C.; et al. Biofloc and Food Contribution to Grow-out and Broodstock of Farfantepenaeus Brasiliensis (Latreille, 1817) Determined by Stable Isotopes and Fatty Acids. Aquac. Res. 2018, 49, 1782–1794. [Google Scholar] [CrossRef]
- Miguez, F.; Archontoulis, S.; Dokoohaki, H. Nonlinear Regression Models and Applications. In Applied Statistics in Agricultural, Biological, and Environmental Sciences; ASA: Madison, WI, USA, 2018. [Google Scholar]
- Pinheiro, J.; Bates, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 10 January 2025).
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 10 January 2025).
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Paine, C.E.T.; Marthews, T.R.; Vogt, D.R.; Purves, D.; Rees, M.; Hector, A.; Turnbull, L.A. How to Fit Nonlinear Plant Growth Models and Calculate Growth Rates: An Update for Ecologists. Methods Ecol. Evol. 2012, 3, 245–256. [Google Scholar] [CrossRef]
- Schnetger, B.; Lehners, C. Determination of Nitrate plus Nitrite in Small Volume Marine Water Samples Using Vanadium(III)Chloride as a Reduction Agent. Mar. Chem. 2014, 160, 91–98. [Google Scholar] [CrossRef]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. Determination of Nutrients. In Methods of Seawater Analysis; WILEY-VCH Verlag GmbH: Weinheim, Germany, 1999; pp. 159–191. ISBN 978-3-527-61398-4. [Google Scholar]
- Vyrides, I.; Stuckey, D.C. A Modified Method for the Determination of Chemical Oxygen Demand (COD) for Samples with High Salinity and Low Organics. Bioresour. Technol. 2009, 100, 979–982. [Google Scholar] [CrossRef]
- Dubber, D.; Gray, N.F. Replacement of Chemical Oxygen Demand (COD) with Total Organic Carbon (TOC) for Monitoring Wastewater Treatment Performance to Minimize Disposal of Toxic Analytical Waste. J. Environ. Sci. Health Part A 2010, 45, 1595–1600. [Google Scholar] [CrossRef]
- Itzhaki, R.F.; Gill, D.M. A Micro-Biuret Method for Estimating Proteins. Anal. Biochem. 1964, 9, 401–410. [Google Scholar] [CrossRef]
- Chen, Y.; Vaidyanathan, S. Simultaneous Assay of Pigments, Carbohydrates, Proteins and Lipids in Microalgae. Anal. Chim. Acta 2013, 776, 31–40. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Sacristán de Alva, M.; Luna Pabello, V.M. Phycoremediation by Simulating Marine Aquaculture Effluent Using Tetraselmis sp. and the Potential Use of the Resulting Biomass. J. Water Process Eng. 2021, 41, 102071. [Google Scholar] [CrossRef]
- Humphrey, G.F. Photosynthetic Characteristics of Algae Grown under Constant Illumination and Light-Dark Regimes. J. Exp. Mar. Biol. Ecol. 1979, 40, 63–70. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- Wychen, S.V.; Sowell, A.; Ramirez, K.; Laurens, L.M.L.; Ramirez, K. Determination of Total Lipids as Fatty Acid Methyl Esters: Laboratory Analytical Procedure (LAP); Laboratory Analytical Procedure; National Renewable Energy Laboratory: Golden, CO, USA, 2023. [Google Scholar]
- Flohé, L.; Ötting, F. Superoxide Dismutase Assays. Methods in Enzymology. Methods Enzymol. 1984, 105, 93–104. [Google Scholar] [PubMed]
- Valentine, W.N.; Pagalia, D.E. Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Marie, B.; Genard, B.; Rees, J.F.; Zal, F. Effect of Ambient Oxygen Concentration on Activities of Enzymatic Antioxidant Defences and Aerobic Metabolism in the Hydrothermal Vent Worm, Paralvinella Grasslei. Mar. Biol. 2006, 150, 273–284. [Google Scholar] [CrossRef]
- Hadwan, M.H.; Abed, H.N. Data Supporting the Spectrophotometric Method for the Estimation of Catalase Activity. Data Brief 2016, 6, 194–199. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 10 January 2025).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online 2017, 13, 1–15. [Google Scholar] [CrossRef]
- Lugo, L.A.; Thorarinsdottir, R.I.; Bjornsson, S.; Palsson, O.P.; Skulason, H.; Johannsson, S.; Brynjolfsson, S. Remediation of Aquaculture Wastewater Using the Microalga Chlorella Sorokiniana. Water Switz. 2020, 12, 3144. [Google Scholar] [CrossRef]
- Daneshvar, E.; Antikainen, L.; Koutra, E.; Kornaros, M.; Bhatnagar, A. Investigation on the Feasibility of Chlorella Vulgaris Cultivation in a Mixture of Pulp and Aquaculture Effluents: Treatment of Wastewater and Lipid Extraction. Bioresour. Technol. 2018, 255, 104–110. [Google Scholar] [CrossRef]
- Malibari, R.; Sayegh, F.; Elazzazy, A.M.; Baeshen, M.N.; Dourou, M.; Aggelis, G. Reuse of Shrimp Farm Wastewater as Growth Medium for Marine Microalgae Isolated from Red Sea—Jeddah. J. Clean. Prod. 2018, 198, 160–169. [Google Scholar] [CrossRef]
- Panigrahi, A.; Das, R.R.; Sivakumar, M.R.; Saravanan, A.; Saranya, C.; Sudheer, N.S.; Kumaraguru Vasagam, K.P.; Mahalakshmi, P.; Kannappan, S.; Gopikrishna, G. Bio-Augmentation of Heterotrophic Bacteria in Biofloc System Improves Growth, Survival, and Immunity of Indian White Shrimp Penaeus Indicus. Fish Shellfish Immunol. 2020, 98, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.S.; Santos, D.; Schmachtl, F.; Machado, C.; Fernandes, V.; Bögner, M.; Schleder, D.D.; Seiffert, W.Q.; Vieira, F.N. Heterotrophic, Chemoautotrophic and Mature Approaches in Biofloc System for Pacific White Shrimp. Aquaculture 2021, 533, 736099. [Google Scholar] [CrossRef]
- Ray, A.J.; Lotz, J.M. Comparing a Chemoautotrophic-Based Biofloc System and Three Heterotrophic-Based Systems Receiving Different Carbohydrate Sources. Aquac. Eng. 2014, 63, 54–61. [Google Scholar] [CrossRef]
- Gaona, C.A.P.; De Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W. Effect of Different Total Suspended Solids Levels on a Litopenaeus Vannamei (Boone, 1931) BFT Culture System during Biofloc Formation. Aquac. Res. 2017, 48, 1070–1079. [Google Scholar] [CrossRef]
- Gao, F.; Yang, H.-L.; Li, C.; Peng, Y.-Y.; Lu, M.-M.; Jin, W.-H.; Bao, J.-J.; Guo, Y.-M. Effect of Organic Carbon to Nitrogen Ratio in Wastewater on Growth, Nutrient Uptake and Lipid Accumulation of a Mixotrophic Microalgae chlorella sp. Bioresour. Technol. 2019, 282, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Rohit, M.V.; Swamy, Y.V.; Venkata Mohan, S. Regulatory Function of Organic Carbon Supplementation on Biodiesel Production during Growth and Nutrient Stress Phases of Mixotrophic Microalgae Cultivation. Bioresour. Technol. 2014, 165, 279–287. [Google Scholar] [CrossRef]
- Adesanya, V.O.; Davey, M.P.; Scott, S.A.; Smith, A.G. Kinetic Modelling of Growth and Storage Molecule Production in Microalgae under Mixotrophic and Autotrophic Conditions. Bioresour. Technol. 2014, 157, 293–304. [Google Scholar] [CrossRef]
- Wu, K.C.; Ho, K.C.; Tang, C.C.; Yau, Y.-H. hung The Potential of Foodwaste Leachate as a Phycoremediation Substrate for Microalgal CO2 Fixation and Biodiesel Production. Environ. Sci. Pollut. Res. 2021, 28, 40724–40734. [Google Scholar] [CrossRef]
- Padeniya, U.; Davis, D.A.; Wells, D.E.; Bruce, T.J. Microbial Interactions, Growth, and Health of Aquatic Species in Biofloc Systems. Water 2022, 14, 4019. [Google Scholar] [CrossRef]
- Wang, G.; Yu, E.; Xie, J.; Yu, D.; Li, Z.; Luo, W.; Qiu, L.; Zheng, Z. Effect of C/N Ratio on Water Quality in Zero-Water Exchange Tanks and the Biofloc Supplementation in Feed on the Growth Performance of Crucian Carp, Carassius Auratus. Aquaculture 2015, 443, 98–104. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Jiang, F.; Hu, Z.; Zheng, Y. Performance of Platymonas and Microbial Community Analysis under Different C/N Ratio in Biofloc Technology Aquaculture System. J. Water Process Eng. 2021, 43, 102257. [Google Scholar] [CrossRef]
- Mirzaei, M.; Jazini, M.; Aminiershad, G.; Refardt, D. Biodesalination of Saline Aquaculture Wastewater with Simultaneous Nutrient Removal and Biomass Production Using the Microalgae Arthrospira and Dunaliella in a Circular Economy Approach. Desalination 2024, 581, 117564. [Google Scholar] [CrossRef]
- Shiri, M.; Hashemifard, S.A.; Abdi, G. The Potential of Microalgae Dunaliella Salina to Treat Shrimp Pond Wastewater in a PAN/GO Membrane Bioreactor. Chemosphere 2023, 318, 138001. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lan, C.Q. Biomass Production and Nitrogen and Phosphorus Removal by the Green Alga Neochloris Oleoabundans in Simulated Wastewater and Secondary Municipal Wastewater Effluent. Bioresour. Technol. 2011, 102, 5639–5644. [Google Scholar] [CrossRef] [PubMed]
- Sacristán, M.; Noreña-Barroso, E.; Guerra Castro, E.; Palomino-Albarrán, I.G.; Barreto, A.; Gaxiola, G. Fatty Acid Profile and Productivity Variation during the Growth of Dunaliella sp. under Different Photon Flux Densities and Glycerol Concentrations. Lat. Am. J. Aquat. Res. 2022, 50, 236–250. [Google Scholar] [CrossRef]
- Markou, G. Fed-Batch Cultivation of Arthrospira and Chlorella in Ammonia-Rich Wastewater: Optimization of Nutrient Removal and Biomass Production. Bioresour. Technol. 2015, 193, 35–41. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Sun, S.; Zhao, Y.; Hu, C. Effects of Influent C/N Ratios and Treatment Technologies on Integral Biogas Upgrading and Pollutants Removal from Synthetic Domestic Sewage. Sci. Rep. 2017, 7, 10897. [Google Scholar] [CrossRef]
- Redfield, A.C. The Biological Control of Chemical Factors in the Environment. Am. Sci. 1958, 46, 230A, 205–221. [Google Scholar]
- Fabregas, J.; Abalde, J.; Cabezas, B.; Herrero, C. Changes in Protein, Carbohydrates and Gross Energy in the Marine Microalga Dunaliella Tertiolecta (Butcher) by Nitrogen Concentrations as Nitrate, Nitrite and Urea. Aquac. Eng. 1989, 8, 223–239. [Google Scholar] [CrossRef]
- Sui, Y.; Muys, M.; Van de Waal, D.B.; D’Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. Enhancement of Co-Production of Nutritional Protein and Carotenoids in Dunaliella Salina Using a Two-Phase Cultivation Assisted by Nitrogen Level and Light Intensity. Bioresour. Technol. 2019, 287, 121398. [Google Scholar] [CrossRef]
- Liang, M.H.; Qv, X.Y.; Chen, H.; Wang, Q.; Jiang, J.G. Effects of Salt Concentrations and Nitrogen and Phosphorus Starvations on Neutral Lipid Contents in the Green Microalga Dunaliella Tertiolecta. J. Agric. Food Chem. 2017, 65, 3190–3197. [Google Scholar] [CrossRef]
- Almutairi, A.W. Effects of Nitrogen and Phosphorus Limitations on Fatty Acid Methyl Esters and Fuel Properties of Dunaliella Salina. Environ. Sci. Pollut. Res. 2020, 27, 32296–32303. [Google Scholar] [CrossRef]
- Maltsev, Y.; Kulikovskiy, M.; Maltseva, S. Nitrogen and Phosphorus Stress as a Tool to Induce Lipid Production in Microalgae. Microb. Cell Factories 2023, 22, 239. [Google Scholar] [CrossRef]
- Kiran, B.; Pathak, K.; Kumar, R.; Deshmukh, D.; Rani, N. Influence of Varying Nitrogen Levels on Lipid Accumulation in Chlorella sp. Int. J. Environ. Sci. Technol. 2016, 13, 1823–1832. [Google Scholar] [CrossRef]
- Nagappan, S.; Kumar, G. Investigation of Four Microalgae in Nitrogen Deficient Synthetic Wastewater for Biorefinery Based Biofuel Production. Environ. Technol. Innov. 2021, 23, 101572. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, Y.; Wakisaka, M.; Yang, Z.; Yin, Y.; Fang, W.; Xu, Y.; Omura, T.; Yu, R.; Zheng, A.L.T. Mitigation of Oxidative Stress Damage Caused by Abiotic Stress to Improve Biomass Yield of Microalgae: A Review. Sci. Total Environ. 2023, 896, 165200. [Google Scholar] [CrossRef]
- Coulombier, N.; Nicolau, E.; Le Déan, L.; Barthelemy, V.; Schreiber, N.; Brun, P.; Lebouvier, N.; Jauffrais, T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae nephroselmis sp. Mar. Drugs 2020, 18, 453. [Google Scholar] [CrossRef]
- Fakhri, M.; Astryanti, S.; Arifin, N.B.; Putriani, O.; Zalni, A.; Riyani, E.; Adi, B.; Yuniastutik, T.; Yuniarti, A.; Hariati, A.M. Cultivation of Dunaliella sp. Using Fish Processing Wastewater As a Nutrient Source: Effect on Growth, Biomass Production, and Biochemical Profile. J. Microbiol. Biotechnol. Food Sci. 2024, 13, e10127. [Google Scholar] [CrossRef]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Del Borghi, M. Effect of Temperature and Nitrogen Concentration on the Growth and Lipid Content of Nannochloropsis Oculata and Chlorella Vulgaris for Biodiesel Production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Hadizadeh, Z.; Mehrgan, M.S.; Shekarabi, S.P.H. The Potential Use of Stickwater from a Kilka Fishmeal Plant in Dunaliella Salina Cultivation. Environ. Sci. Pollut. Res. 2020, 27, 2144–2154. [Google Scholar] [CrossRef] [PubMed]
Treatment | A | B | Xmid | Scal |
---|---|---|---|---|
0% | 2.39 | 13.06 b | 2.81 b | 0.40 b |
25% | 2.39 | 10.55 c | 2.70 b | 0.30 b |
50% | 2.39 | 8.39 d | 2.68 b | 0.46 ab |
Reference (GF2CM) | 2.39 | 99.50 a | 4.44 a | 0.60 a |
Variable | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivation System | pH | Salinity (psu) | Total Nitrogen (mg/L) | Nitrate (mg/L) | Nitrite (mg/L) | Total Ammonia Nitrogen (mg/L) | Total Phosphorus (mg/L) | Chemical Oxygen Demand (mg O2/L) | Reference |
Recirculation | 7.28 | 0.26 | 40.67 | 5.52 | 5.32 | 8.82 | 96 | [13] | |
Recirculation | 5.22 | 52 | <0.01 | 12.8 | 11.2 | 64.3 | [49] | ||
Recirculation | 53.15 | 18.83 | 2.6 | 18.25 | 190 | [50] | |||
125.5 | 28.7 | 443 | 5.8 | [51] | |||||
BFT | 8.11 | 29 | 0.83 | 0.12 | 0.25 | 0.5 | 49.11 | [52] | |
BFT | 8.4 | 34.07 | 1.3 | 4.2 | 1.3 | 1.2 | [53] | ||
BFT | 7.74 | 37.23 | 0.3 | 0.3 | 0.7 | 2 | [54] | ||
BFT | 7.7 | 10.3 | 0.38 | 0.73 | 2.54 | 0.51 | [55] | ||
BFT | 7.4 | 36 | 3.1 | 1.7 | 0.6 | 0.8 | 458.1 | This research |
Treatment | ||||
---|---|---|---|---|
Nutrient | Reference | 0% | 25% | 50% |
Nitrate | 99.9 ± 0.0 a | 85.0 ± 2.9 b | 82.4 ± 4.2 b | 85.7 ± 1.9 b |
Nitrite | - | 46.3 ± 3.1 | 48.1 ± 8.3 | 51.9 ± 2.8 |
TAN | 45.3 ± 12.1 b | 81.5 ± 3.8 a | 75.9 ± 7.4 ab | 79.9 ± 4.2 a |
Total nitrogen | 98.7 ± 0.1 a | 76.4 ± 1.4 b | 75.1 ± 4.5 b | 77.2 ± 1.4 b |
COD | 59.6 ± 2.2 b | 80.3 ± 1.9 a | 82.1 ± 0.9 a | 79.4 ± 2.9 a |
Treatment | ||||
---|---|---|---|---|
Biochemical | Reference | 0% | 25% | 50% |
Nutrient | ||||
Protein (%) | 37.38 ± 4.34 a | 24.9 ± 3.57 b | 24.67 ± 3.37 b | 26.33 ± 2.92 b |
Lipid (%) | 19.44 ± 4.18 c | 26.59 ± 3.53 b | 67.1 ± 4.95 a | 58.81 ± 9.42 a |
Pigment | ||||
Chl a (µg/mL) | 13.07 ± 0.98 a | 7.00 ± 1.22 b | 7.78 ± 0.74 b | 5.3 ± 0.25 b |
Chl b (µg/mL) | 3.19 ± 0.55 | 1.84 ± 0.15 | 2.88 ± 0.32 | 2.18 ± 0.37 |
Total carotenoid (µg/mL) | 9.27 ± 0.21 a | 5.71 ± 1.02 b | 5.62 ± 0.53 b | 4.05 ± 0.22 b |
Treatment | ||||
---|---|---|---|---|
Reference | 0% | 25% | 50% | |
SOD (U/mg protein) | 8.34 ± 1.24 | 5.07 ± 0.64 | 6.07 ± 0.9 | 5.67 ± 1.53 |
GPx (µM NADPH/min/mg protein) | 0.16 ± 0.01 | 0.17 ± 0.06 | 0.2 ± 0.03 | 0.11 ± 0.01 |
CAT (U/mg protein) | 0.89 ± 0.21 | 1.33 ± 0.56 | 1.69 ± 0.39 | 0.85 ± 0.15 |
APX (nM ascorbic acid/mg protein/min) | 0.15 ± 0.01 a | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.03 ± 0.00 b |
Treatment | ||||
---|---|---|---|---|
Fatty Acid | Reference | 0% | 25% | 50% |
SFA | ||||
C8:0 | 1.17 ± 0.25 | 1.57 ± 0.04 | ND | ND |
C12:0 | 1.17 ± 0.26 | 1.58 ± 0.04 | ND | ND |
C14:0 | 1.31 ± 0.28 b | 1.77 ± 0.05 b | 2.11 ± 0.23 ab | 2.72 ± 0.04 a |
C15:0 | 1.13 ± 0.28 b | 1.57 ± 0.05 b | ND | 2.54 ± 0.03 a |
C16:0 | 19.19 ± 0.86 | 18.07 ± 0.58 | 20.94 ± 1.46 | 19.21 ± 0.58 |
C17:0 | 1.23 ± 0.25 b | 1.59 ± 0.05 b | 1.92 ± 0.24 ab | 2.59 ± 0 a |
C18:0 | 1.95 ± 0.21 c | 2.36 ± 0.05 bc | 2.74 ± 0.25 ab | 3.23 ± 0.06 a |
C20:0 | 1.98 ± 0.1 b | 2.06 ± 0.04 b | 2.48 ± 0.23 ab | 2.95 ± 0.01 a |
C22:0 | 2.48 ± 0.18 ab | 2.31 ± 0.09 b | 2.76 ± 0.23 ab | 3.04 ± 0 a |
ΣSFA | 31.61 ± 0.76 b | 32.88 ± 0.57 b | 32.95 ± 0.29 b | 36.27 ± 0.47 a |
MUFA | ||||
C14:1 | 1.32 ± 0.24 b | 1.79 ± 0.15 b | 2.05 ± 0.23 ab | 2.67 ± 0.01 a |
C15:1 | 1.18 ± 0.26 | 1.59 ± 0.06 | ND | ND |
C16:1 | 1.83 ± 0.05 b | 1.79 ± 0.04 b | 2.14 ± 0.24 b | 2.81 ± 0.02 a |
C17:1 | 3.02 ± 0.86 | 2.36 ± 0.06 | 2.65 ± 0.24 | 3.00 ± 0.07 |
C18:1n9 | 18.4 ± 0.56 | 17.63 ± 0.29 | 18.32 ± 1.08 | 16.05 ± 0.3 |
C20:1n9 | 1.36 ± 0.17 c | 1.63 ± 0.05 bc | 2.14 ± 0.17 ab | 2.69 ± 0.05 a |
ΣMUFA | 27.11 ± 0.79 | 26.79 ± 0.17 | 27.3 ± 0.29 | 27.21 ± 0.31 |
PUFA | ||||
C18:2n6 | 3.34 ± 0.13 | 7.51 ± 3.95 | 4.15 ± 0.15 | 4.39 ± 0.04 |
C18:3n6 | 16.11 ± 1.23 | 10.16 ± 4.26 | 15.79 ± 0.66 | 12.95 ± 0.24 |
C18:3n3 | 14.14 ± 1.49 a | 12.02 ± 0.36 ab | 12.71 ± 0.21 ab | 9.77 ± 0.48 b |
C20:2n6 | 1.16 ± 0.27 | 1.6 ± 0.05 | ND | ND |
C20:3n3 | 1.15 ± 0.26 | 1.58 ± 0.05 | ND | ND |
C20:4n6 | 1.18 ± 0.26 | 1.58 ± 0.05 | ND | ND |
ΣPUFA | 37.09 ± 1.95 a | 34.45 ± 0.65 a | 32.64 ± 0.53 a | 27.1 ± 0.67 b |
Σn3 | 15.3 ± 1.24 a | 13.6 ± 0.33 a | 12.71 ± 0.21 ab | 9.77 ± 0.48 b |
Σn6 | 20.63 ± 0.96 a | 19.25 ± 0.39 ab | 19.94 ± 0.52 ab | 17.34 ± 0.19 b |
Σn3/Σn6 | 0.74 ± 0.03 a | 0.71 ± 0.01 ab | 0.64 ± 0.02 bc | 0.56 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreto, A.; Luna-Pabello, V.M.; Sacristán de Alva, M.; Palomino Albarrán, I.G.; Arenas, M.; Gaxiola, G. Valorization of Low-Nitrogen, High-Organic-Load Shrimp Aquaculture Wastewater by Dunaliella salina: Pollutant Removal and High-Value-Biomass Production. Microorganisms 2025, 13, 1484. https://doi.org/10.3390/microorganisms13071484
Barreto A, Luna-Pabello VM, Sacristán de Alva M, Palomino Albarrán IG, Arenas M, Gaxiola G. Valorization of Low-Nitrogen, High-Organic-Load Shrimp Aquaculture Wastewater by Dunaliella salina: Pollutant Removal and High-Value-Biomass Production. Microorganisms. 2025; 13(7):1484. https://doi.org/10.3390/microorganisms13071484
Chicago/Turabian StyleBarreto, Alvaro, Victor Manuel Luna-Pabello, Manuel Sacristán de Alva, Iveth Gabriela Palomino Albarrán, Martín Arenas, and Gabriela Gaxiola. 2025. "Valorization of Low-Nitrogen, High-Organic-Load Shrimp Aquaculture Wastewater by Dunaliella salina: Pollutant Removal and High-Value-Biomass Production" Microorganisms 13, no. 7: 1484. https://doi.org/10.3390/microorganisms13071484
APA StyleBarreto, A., Luna-Pabello, V. M., Sacristán de Alva, M., Palomino Albarrán, I. G., Arenas, M., & Gaxiola, G. (2025). Valorization of Low-Nitrogen, High-Organic-Load Shrimp Aquaculture Wastewater by Dunaliella salina: Pollutant Removal and High-Value-Biomass Production. Microorganisms, 13(7), 1484. https://doi.org/10.3390/microorganisms13071484