Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Strain Preparation for Fermentation
2.2. Growth Dynamics During Fermentation
2.3. Total Dietary Fiber (TDF) Content Determination
2.4. Anti-Nutrients
2.4.1. Phytic Acid Determination
2.4.2. Saponin Determination
2.4.3. Tannin Determination
2.4.4. Determination of Trypsin Inhibitor Activity (TIA)
2.5. Antimicrobial Activity
2.5.1. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.5.2. Agar Well Method
2.6. Extraction Procedure of Phenolic Compounds
2.7. In Vitro Gastrointestinal Digestion Simulation
2.8. Determination of Total Phenolic Content
2.9. Determination of Total Antioxidant Capacity
2.10. Statistical Analyses
3. Results
3.1. Viable Cell Count in Fermented Sainfoin
3.2. Total Dietary Fiber Content
3.3. Anti-Nutrient Compounds
3.4. Antimicrobial Activity
3.5. Effects of In Vitro Gastrointestinal Digestion on the Content of Anti-Nutritional Compounds
3.6. Effects of In Vitro Gastrointestinal Digestion on the Content of Phenolic Compounds and Antioxidant Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, K.; Watson, A.W.; Lonnie, M.; Peeters, W.M.; Oonincx, D.; Tsoutsoura, N.; Simon-Miquel, G.; Szepe, K.; Cochetel, N.; Pearson, A.G.; et al. Meeting the global protein supply requirements of a growing and ageing population. Eur. J. Nutr. 2024, 63, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, T.; Zhao, Y.; Jiang, L.; Sui, X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem. 2024, 436, 137712. [Google Scholar] [CrossRef] [PubMed]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef]
- Bhattarai, S.; Coulman, B.; Biligetu, B. Sainfoin (Onobrychis viciifolia Scop.): Renewed interest as a forage legume for Western Canada. Can. J. Plant Sci. 2016, 96, 748–756. [Google Scholar] [CrossRef]
- Carbonero, C.H. Sainfoin (Onobrychis viciifolia), a Forage Legume with Great Potential for Sustainable Agriculture, an Insight on Its Morphological, Agronomical, Cytological and Genetic Characterisation. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2011. [Google Scholar]
- Andaç, A.E.; Yılmaz Tuncel, N.; Tülbek, M.Ç.; Tuncel, N.B. Characterization and effects of heat treatments on antinutritional components and enzyme activities in sainfoin (Onobrychis viciifolia L.) seeds: A high-protein alternative plant-based food source. Food Res. Int. 2025, 199, 115372. [Google Scholar] [CrossRef] [PubMed]
- Ganeshan, S.; Asen, N.; Wang, Y.; Tülbek, M.Ç.; Nickerson, M.T. Sustainable pulse proteins: Physical, chemical and fermentative modifications. Appl. Biosci. 2024, 3, 263–282. [Google Scholar]
- Romero-Espinoza, A.M.; Serna-Saldivar, S.O.; Vintimilla-Alvarez, M.C.; Briones-García, M.; Lazo-Vélez, M.A. Effects of fermentation with probiotics on anti-nutritional factors and proximate composition of lupin (Lupinus mutabilis sweet). LWT—Food Sci. Technol. 2020, 130, 109658. [Google Scholar] [CrossRef]
- Liberal, Â.; Fernandes, Â.; Pires, T.S.P.; Ferreira, I.C.F.R.; Vívar-Quintana, A.M.; Barros, L. Biotechnological approaches for reducing antinutrients and enhancing lentil (Lens culinaris) flours quality. Food Biosci. 2025, 69, 106720. [Google Scholar] [CrossRef]
- Boukid, F.; Ganeshan, S.; Wang, Y.; Tülbek, M.Ç.; Nickerson, M.T. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int. J. Mol. Sci. 2023, 24, 10156. [Google Scholar] [CrossRef]
- de Paula, B.P.; de Souza Lago, H.; Firmino, L.; Fernandes Lemos Júnior, W.J.; Ferreira Dutra Corrêa, M.; Fioravante Guerra, A.; Signori Pereira, K.; Zarur Coelho, M.A. Technological features of Saccharomyces cerevisiae var. boulardii for potential probiotic wheat beer development. LWT—Food Sci. Technol. 2021, 135, 110233. [Google Scholar] [CrossRef]
- de Souza, H.F.; Carosia, M.F.; Pinheiro, C.; de Carvalho, M.V.; de Oliveira, C.A.F.; Kamimura, E.S. On probiotic yeasts in food development: Saccharomyces boulardii, a trend. Food Sci. Technol. 2022, 42, e92321. [Google Scholar] [CrossRef]
- Chan, M.Z.A.; Liu, S.Q. Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Curr. Opin. Food Sci. 2022, 43, 216–224. [Google Scholar] [CrossRef]
- Lazo-Vélez, M.A.; Serna-Saldívar, S.O.; Rosales-Medina, M.F.; Tinoco-Alvear, M.; Briones-García, M. Application of Saccharomyces cerevisiae var. boulardii in food processing: A review. J. Appl. Microbiol. 2018, 125, 943–951. [Google Scholar] [CrossRef]
- Sindhu, S.C.; Khetarpaul, N. Probiotic fermentation of indigenous food mixture: Effect on antinutrients and digestibility of starch and protein. J. Food Compos. Anal. 2001, 14, 601–609. [Google Scholar] [CrossRef]
- Vlassa, M.; Filip, M.; Țăranu, I.; Marin, D.; Untea, A.E.; Ropotă, M.; Dragomir, C.; Sărăcilă, M. The yeast fermentation effect on content of bioactive, nutritional and anti-nutritional factors in rapeseed meal. Foods 2022, 11, 2972. [Google Scholar] [CrossRef]
- Campbell, C.; Nanjundaswamy, A.K.; Njiti, V.; Xia, Q.; Chukwuma, F. Value-added probiotic development by high-solid fermentation of sweet potato with Saccharomyces boulardii. Food Sci. Nutr. 2017, 5, 633–638. [Google Scholar] [CrossRef]
- AACC. Approved Methods of American Association of Cereal Chemists, 10th ed.; American Association of Cereal Chemists Inc.: St. Paul, MN, USA, 2000. [Google Scholar]
- Gao, Y.; Shang, C.; Saghai Maroof, M.A.; Biyashev, R.M.; Grabau, E.A.; Kwanyuen, P.; Burton, J.W.; Buss, G.R. A modified colorimetric method for phytic acid analysis in soybean. Crop Sci. 2007, 47, 1797–1803. [Google Scholar] [CrossRef]
- Antoine, T.; Georgé, S.; Leca, A.; Desmarchelier, C.; Halimi, C.; Gervais, S.; Aupy, F.; Marconot, G.; Reboul, E. Reduction of pulse “antinutritional” content by optimizing pulse canning process is insufficient to improve fat-soluble vitamin bioavailability. Food Chem. 2022, 370, 131021. [Google Scholar] [CrossRef]
- Miedzianka, J.; Drzymała, K.; Nemś, A.; Kita, A. Comparative evaluation of the antioxidant, antimicrobial and nutritive properties of gluten-free flours. Sci. Rep. 2021, 11, 10385. [Google Scholar] [CrossRef]
- Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250. [Google Scholar]
- Özdikmeni Tepeli, S.; Kaya, B.; İpek, D. Evaluation of antibacterial effect of honey on ESBL and biofilm-producing Enterobacterales. Kahramanmaraş Sütçü İmam Üniv. Tarım Doğa Derg. 2022, 25, 54–64. [Google Scholar]
- Capanoglu, E.; Beekwilder, J.; Boyacioglu, D.; Hall, R.; De Vos, R. Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 2008, 56, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical Diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Ryan, E.P.; Heuberger, A.L.; Weir, T.L.; Barnett, B.; Broeckling, C.D.; Prenni, J.E. Rice bran fermented with Saccharomyces boulardii generates novel metabolite profiles with bioactivity. J. Agric. Food Chem. 2011, 59, 1862–1870. [Google Scholar] [CrossRef]
- Ribeiro-Filho, N.; Linforth, R.; Bora, N.; Powell, C.D.; Fisk, I.D. The role of inorganic-phosphate, potassium and magnesium in yeast-flavour formation. Food Res. Int. 2022, 162, 112044. [Google Scholar] [CrossRef]
- Islam, S.; Miah, M.A.S.; Islam, M.F.; Bhuiyan, M.N.I.; Tisa, K.J.; Naim, M.R. Exploring the effects of spontaneous and solid-state fermentation on the physicochemical, functional and structural properties of whole wheat flour (Triticum aestivum L.). Innov. Food Sci. Emerg. Technol. 2024, 97, 103798. [Google Scholar] [CrossRef]
- Naruemon, M.; Romanee, S.; Cheunjit, P.; Xiao, H.; McLandsborough, L.A.; Pawadee, M. Influence of additives on Saccharomyces cerevisiae β-glucan production. Int. Food Res. J. 2013, 20, 1953–1959. [Google Scholar]
- Chawla, R.; Patil, G.R. Soluble dietary fiber. Compr. Rev. Food Sci. Food Saf. 2010, 9, 178–196. [Google Scholar]
- Haraldsson, A.K.; Veide, J.; Andlid, T.; Alminger, M.L.; Sandberg, A.S. Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion. J. Agric. Food Chem. 2005, 53, 5438–5444. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.G.T.; Ramos, C.L.; Cenzi, G.; Melo, D.S.; Dias, D.R.; Schwan, R.F. Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiot. Antimicrob. Proteins 2020, 12, 280–288. [Google Scholar] [CrossRef]
- Andlid, T.A.; Veide, J.; Sandberg, A.S. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. Int. J. Food Microbiol. 2004, 97, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Egounlety, M.; Aworh, O. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J. Food Eng. 2003, 56, 249–254. [Google Scholar]
- Majzoobi, M.; Pashangeh, S.; Farahnaky, A.; Eskandari, M.H.; Jamalian, J. Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran. J. Food Sci. Technol. 2014, 51, 2755–2761. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; McAllister, T.A.; Acharya, S. Condensed tannins in sainfoin: Composition, concentration, and effects on nutritive and feeding value of sainfoin forage. Crop Sci. 2015, 55, 13–22. [Google Scholar] [CrossRef]
- Wijekoon, C.; Acharya, S.N.; Siow, Y.L.; Sura, S.; Thandapilly, S.; Sabra, A. Canadian sainfoin and fenugreek as forage and functional foods. Crop Sci. 2021, 61, 1–20. [Google Scholar] [CrossRef]
- Putri, S.N.A.; Utari, D.P.; Martati, E.; Putri, W.D.R. Study of sorghum (Sorghum bicolor (L.) Moench) grains fermentation with Lactobacillus plantarum ATCC 14977 on tannin content. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012037. [Google Scholar] [CrossRef]
- Salamah, A.; Srihardyastutie, A.; Prasetyawan, S.; Safitri, A. Influence of mixed cultures of Saccharomyces cerevisiae and acetobacter aceti for hydrolysis of tannins in the cabbage fermentation (Brassica oleracea L. var. capitata). IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 062028. [Google Scholar] [CrossRef]
- Aoki, K.; Shinke, R.; Nishira, H. Purification and some properties of yeast tannase. Agric. Biol. Chem. 1976, 40, 79–85. [Google Scholar]
- Nivetha, N. Reduction of phenolics, tannins and cyanogenic glycosides contents in fermented beverage of linseed (Linum usitatissimum). Int. J. Food Ferment. Technol. 2018, 8, 185–190. [Google Scholar] [CrossRef]
- Zhang, X.; Long, J.; Liu, J.; Hua, Y.; Zhang, C.; Li, X. Fermentation characteristics, antinutritional factor level and flavor compounds of soybean whey yogurt. Foods 2024, 13, 330. [Google Scholar] [CrossRef]
- Moré, M.I.; Vandenplas, Y. Saccharomyces boulardii CNCM I-745 improves intestinal enzyme function: A trophic effects review. Clin. Med. Insights Gastroenterol. 2018, 11, 1179552217752679. [Google Scholar] [CrossRef]
- Castagliuolo, I.; Riegler, M.F.; Valenick, L.; LaMont, J.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect. Immun. 1999, 67, 302–307. [Google Scholar] [CrossRef]
- Huang, X.; Schuppan, D.; Tovar, L.E.R.; Zevallos, V.F.; Loponen, J.; Gänzle, M. Sourdough fermentation degrades wheat alpha-amylase/trypsin inhibitor (ATI) and reduces pro-inflammatory activity. Foods 2020, 9, 943. [Google Scholar] [CrossRef] [PubMed]
- Byanju, B.; Hojilla-Evangelista, M.P.; Lamsal, B.P. Fermentation performance and nutritional assessment of physically processed lentil and green pea flour. J. Sci. Food Agric. 2021, 101, 5792–5806. [Google Scholar] [CrossRef]
- Toor, B.S.; Kaur, A.; Sahota, P.P.; Kaur, J. Antioxidant potential, antinutrients, mineral composition and FTIR spectra of legumes fermented with Rhizopus oligosporus. Food Technol. Biotechnol. 2021, 59, 530–542. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, F.Y.; Yeo, M.C.; Popovich, D.G. Fermentation of group b soyasaponins with probiotic lactobacillus rhamnosus. J. Food Biochem. 2012, 36, 179–188. [Google Scholar] [CrossRef]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J. Funct. Foods 2014, 10, 210–222. [Google Scholar] [CrossRef]
- Butkutė, B.; Padarauskas, A.; Cesevičienė, J.; Pavilonis, A.; Taujenis, L.; Lemežienė, N. Perennial legumes as a source of ingredients for healthy food: Proximate, mineral and phytoestrogen composition and antibacterial activity. J. Food Sci. Technol. 2017, 54, 2661–2669. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Hao, Y.Q.; Jin, L.; Xu, Z.J.; McAllister, T.A.; Wang, Y. Anti-Escherichia coli O157:H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules 2013, 18, 2183–2199. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.R.; Tresina, P.S.; Daffodil, E.D. Antinutritional Factors in Legume Seeds: Characteristics and Determination, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9780123849533. [Google Scholar]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: A review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef]
- Mencin, M.; Mikulič Petkovšek, M.; Veberič, R.; Terpinc, P. Simulated gastrointestinal digestion of bioprocessed spelt seeds: Bioaccessibility and bioactivity of phenolics. Antioxidants 2022, 11, 1703. [Google Scholar] [CrossRef]
- Angelino, D.; Cossu, M.; Marti, A.; Zanoletti, M.; Chiavaroli, L.; Brighenti, F.; Del Rio, D.; Martini, D. Bioaccessibility and bioavailability of phenolic compounds in bread: A review. Food Funct. 2017, 8, 2368–2393. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Mulero, M.; Cuevas-Rodríguez, E.O.; Mondor, M.; Arcand, Y.; Hernández-Álvarez, A.J. In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.). Food Funct. 2021, 12, 7358–7378. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Hu, Q.; Li, J.; Chen, J.; Liu, X. Enhancement of nutritional quality of chickpea flour by solid-state fermentation for improvement of in vitro antioxidant activity and protein digestibility. Food Chem. 2025, 468, 142418. [Google Scholar] [CrossRef]
Samples | Insoluble Dietary Fiber (%) | Soluble Dietary Fiber (%) | Total Dietary Fiber (%) |
---|---|---|---|
Non-fermented | 30.82 ± 0.08 | 2.51 ± 0.27 B | 33.32 ± 0.19 B |
0 h fermented | 31.10 ± 0.91 | 5.12 ± 0.34 A | 36.23 ± 0.57 A |
24 h fermented | 33.02 ± 0.88 | 3.26 ± 0.24 B | 36.28 ± 0.64 A |
48 h fermented | 33.06 ± 0.73 | 3.28 ± 0.04 B | 36.33 ± 0.69 A |
72 h fermented | 32.83 ± 0.19 | 4.43 ± 0.02 A | 37.26 ± 0.21 A |
Samples | Phytate (mg/g) | Tannin (mg/g) | TIA (TIU/mg) | Saponin (mg/g) |
---|---|---|---|---|
Non-fermented | 2.50 ± 0.00 A | 77.81 ± 0.83 A | 3.77 ± 0.09 A | 0.05 ± 0.01 D |
0 h fermented | 2.34 ± 0.01 B | 73.06 ± 0.25 B | 3.29 ± 0.34 A | 0.15 ± 0.01 D |
24 h fermented | 2.21 ± 0.03 C | 66.81 ± 0.34 C | 1.90 ± 0.01 B | 0.35 ± 0.04 C |
48 h fermented | 2.18 ± 0.02 C | 65.12 ± 0.12 C | 1.53 ± 0.05 B | 0.98 ± 0.01 B |
72 h fermented | 2.05 ± 0.00 D | 62.58 ± 0.53 D | 0.78 ± 0.04 C | 1.10 ± 0.03 A |
M | MIC (mg/mL) | MBC (mg/mL) | Inhibition Zone (mm) Extract (100 mg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 24 | 48 | 72 | K | 24 | 48 | 72 | C | 24 | 48 | 72 | |
Sc | 25 | 25 | 25 | 25 | 50 | 25 | 25 | 50 | nd | nd | nd | nd |
Bc | 12.5 | 12.5 | 12.5 | 12.5 | 25 | 25 | 25 | 25 | 8.61 ± 0.45 | 7.43 ± 0.49 | 7.37 ± 0.15 | nd |
Ec | 50 | 25 | 25 | 25 | 50 | 50 | 50 | 50 | nd | nd | nd | nd |
Kq | 12.5 | 12.5 | 12.5 | 12.5 | 25 | 25 | 25 | 25 | nd | nd | nd | nd |
Assays | Samples | UD | GD | ID | Bioaccessibility (%) |
---|---|---|---|---|---|
Phytate (mg/g) | Non-fermented | 2.50 ± 0.00 Aa | 0.44 ± 0.01 Bb | 1.61 ± 0.01 Ac | 64.52 ± 0.17 C |
0 h fermented | 2.34 ± 0.01 Ba | 0.45 ± 0.01 Bc | 1.65 ± 0.02 Ab | 70.79 ± 0.83 B | |
24 h fermented | 2.21 ± 0.03 Ca | 0.48 ± 0.02 Bc | 1.62 ± 0.01 Ab | 73.49 ± 0.13 B | |
48 h fermented | 2.18 ± 0.02 Ca | 0.43 ± 0.03 Bc | 1.37 ± 0.02 Bb | 62.89 ± 0.95 C | |
72 h fermented | 2.05 ± 0.00 Da | 0.58 ± 0.01 Ac | 1.65 ± 0.01 Ab | 80.22 ± 0.34 A | |
Tannin (mg/g) | Non-fermented | 77.81 ± 0.83 Aa | 8.89 ± 0.02 Ab | 5.24 ± 0.09 Ac | 6.74 ± 0.11 A |
0 h fermented | 73.06 ± 0.25 Ba | 8.38 ± 0.08 Bb | 4.16 ± 0.13 Bc | 5.70 ± 0.18 AB | |
24 h fermented | 66.81 ± 0.34 Ca | 8.95 ± 0.02 Ab | 3.63 ± 0.17 Bc | 5.44 ± 0.25 B | |
48 h fermented | 65.12 ± 0.12 Ca | 8.84 ± 0.04 Ab | 3.41 ± 0.17 Bc | 5.23 ± 0.26 B | |
72 h fermented | 62.58 ± 0.53 Da | 6.43 ± 0.05 Cb | 2.39 ± 0.24 Cc | 3.82 ± 0.39 C |
Assays | Period (h) | UD | GD | ID | Bioaccessibility (%) |
---|---|---|---|---|---|
TPC (mg GAE/100 g | Non-fermented | 184 ± 6 dC | 526 ± 48 bA | 416 ± 48 cB | 225 ± 26 a |
0 h fermented | 271 ± 27 cC | 431 ± 43 cB | 491 ± 50 bA | 181 ± 18 b | |
24 h fermented | 335 ± 9 bB | 631 ± 68 aA | 336 ± 37 dB | 100 ± 11 d | |
48 h fermented | 392 ± 26 aB | 603 ± 42 abA | 566 ± 59 aA | 144 ± 15 c | |
72 h fermented | 423 ± 16 aC | 532 ± 72 bB | 621 ± 22 aA | 146 ± 5 c | |
CUPRAC (mg TE/100 g) | Non-fermented | 956 ± 79 dC | 2035 ± 153 bA | 1304 ± 115 cB | 137 ± 12 a |
0 h fermented | 1866 ± 114 cA | 1859 ± 62 bcA | 1560 ± 152 abB | 84 ± 8 b | |
24 h fermented | 2144 ± 63 bB | 2676 ± 293 aA | 777 ± 115 dC | 36 ± 5 d | |
48 h fermented | 2541 ± 121 aA | 2419 ± 225 aA | 1458 ± 250 bcB | 57 ± 10 c | |
72 h fermented | 2354 ± 199 abA | 1686 ± 185 cB | 1745 ± 118 aB | 74 ± 5 b | |
DPPH (mg TE/100 g) | Non-fermented | 703 ± 2 cC | 1935 ± 128 aA | 1086 ± 59 aB | 155 ± 8 ab |
0 h fermented | 701 ± 1 cC | 2052 ± 231 aA | 1139 ± 48 aB | 162 ± 7 a | |
24 h fermented | 707 ± 1 b | 2115 ± 73 a | 924 ± 144 b | 131 ± 20 c | |
48 h fermented | 709 ± 2 bC | 2035 ± 196 aA | 1017 ± 145 abB | 144 ± 20 bc | |
72 h fermented | 711 ± 1 aC | 1603 ± 200 bA | 1127 ± 38 aB | 159 ± 5 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polat Kaya, H.; Kaya, B.; Tuncel, N.B.; Ozkan, G.; Capanoglu, E.; Ganeshan, S.; Tulbek, M.C. Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds. Microorganisms 2025, 13, 1421. https://doi.org/10.3390/microorganisms13061421
Polat Kaya H, Kaya B, Tuncel NB, Ozkan G, Capanoglu E, Ganeshan S, Tulbek MC. Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds. Microorganisms. 2025; 13(6):1421. https://doi.org/10.3390/microorganisms13061421
Chicago/Turabian StylePolat Kaya, Havva, Burcu Kaya, Necati Barış Tuncel, Gulay Ozkan, Esra Capanoglu, Seedhabadee Ganeshan, and Mehmet Caglar Tulbek. 2025. "Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds" Microorganisms 13, no. 6: 1421. https://doi.org/10.3390/microorganisms13061421
APA StylePolat Kaya, H., Kaya, B., Tuncel, N. B., Ozkan, G., Capanoglu, E., Ganeshan, S., & Tulbek, M. C. (2025). Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds. Microorganisms, 13(6), 1421. https://doi.org/10.3390/microorganisms13061421