The Potential of Lactic Acid Bacteria and Dairy By-Products in Controlling Campylobacter jejuni in Poultry
Abstract
:1. Introduction
Campylobacter Species | Primary Transmission Routes | Clinical Manifestations in Humans |
---|---|---|
C. jejuni [3,13] | Consumption of undercooked poultry Raw/unpasteurized milk Contaminated water Contact with animals (especially poultry) | Gastroenteritis Abdominal pain and fever Guillain-Barré syndrome |
C. coli [14] | Consumption of contaminated pork Poultry products | Gastroenteritis Bacteremia |
C. lari [3] | Wild birds and seagulls Contaminated water Shellfish | Gastroenteritis Bacteremia (rare) |
C. upsaliensis [3] | Domestic pets (dogs and cats) Person-to-person contact | Gastroenteritis Breast abscess (rare) Bacteremia (rare) |
2. The Role of C. jejuni in Public Health: Prevalence and Impact
2.1. Epidemiology and Burden
2.2. Clinical Significance
2.3. Transmission Pathways and Prevention Strategies
3. Evaluation of Different Poultry Feed Additives in the Reduction of C. jejuni
4. Lactobacillus Strains as Probiotic Inventions
5. Acid Whey: A Dairy By-Product with Antimicrobial Potential in C. jejuni Control in Poultry
6. Challenges in Utilizing Lactic Acid Bacteria and Dairy By-Products for Poultry Safety in C. jejuni
7. Future Directions in Utilizing Lactic Acid and Dairy By-Products
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 2010, 8, 1437. [Google Scholar]
- Cardoso, M.J.; Ferreira, V.; Truninger, M.; Maia, R.; Teixeira, P. Cross-contamination events of Campylobacter spp. in domestic kitchens associated with consumer handling practices of raw poultry. Int. J. Food Microbiol. 2021, 338, 108984. [Google Scholar] [CrossRef]
- Śmiałek, M.; Kowalczyk, J.; Koncicki, A. The use of probiotics in the reduction of Campylobacter spp. prevalence in poultry animals. Animals 2021, 11, 1355. [Google Scholar] [CrossRef]
- Skarp, C.P.A.; Hänninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef]
- Claeys, K.C.; Hopkins, T.L.; Vega, A.D.; Heil, E.L. Fluoroquinolone restriction as an effective antimicrobial stewardship intervention. Curr. Infect. Dis. Rep. 2018, 20, 7. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.A.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-Kott, A.F.; et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef]
- Neal-McKinney, J.M.; Lu, X.; Duong, T.; Larson, C.L.; Call, D.R.; Shah, D.H.; Konkel, M.E. Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS ONE 2012, 7, e43928. [Google Scholar] [CrossRef]
- Kobierecka, P.A.; Wyszynska, A.K.; Aleksandrzak-Piekarczyk, T.; Kuczkowski, M.; Tuzimek, A.; Piotrowska, W.; Górecki, A.; Adamska, I.; Bardowski, J.; Jagusztyn-Krynicka, E.K.; et al. In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. Microbiol. Open 2017, 6, e00512. [Google Scholar] [CrossRef]
- Pranckute, R.; Kaunietis, A.; Kuisiene, N.; Citavicius, D. Development of synbiotics with inulin, palatinose, α-cyclodextrin and probiotic bacteria. Pol. J. Microbiol. 2014, 63, 33–41. [Google Scholar] [CrossRef]
- Silvan, J.M.; Martinez-Rodriguez, A.J. Food by-products as natural sources of bioactive compounds against Campylobacter. Mod. Food Sci. 2019, 1, 336–350. [Google Scholar] [CrossRef]
- Simoyi, M.F.; Milimu, M.; Russell, R.W.; Peterson, R.A.; Kenney, P.B. Effect of dietary lactose on the productive performance of young turkeys. J. Appl. Poult. Res. 2006, 15, 20–27. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Campylobacter. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter (accessed on 1 May 2020).
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef]
- Endtz, H.P. Campylobacter infections. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 507–511. [Google Scholar] [CrossRef]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef]
- Gölz, G.; Rosner, B.; Hofreuter, D.; Josenhans, C.; Kreienbrock, L.; Löwenstein, A.; Schielke, A.; Stark, K.; Suerbaum, S.; Wieler, L.H.; et al. Relevance of Campylobacter to public health—The need for a One Health approach. Int. J. Med. Microbiol. 2014, 304, 817–823. [Google Scholar] [CrossRef]
- Boelaert, F.; Stoicescu, A.; Amore, G.; Messens, W.; Hempen, M.; Rizzi, V.; Antoniou, S.E.; Baldinelli, F.; Dorbek-Kolin, E.; Van der Stede, Y.; et al. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Al Hakeem, W.G.; Fathima, S.; Shanmugasundaram, R.; Selvaraj, R.K. Campylobacter jejuni in poultry: Pathogenesis and control strategies. Microorganisms 2022, 10, 2134. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Campylobacter in broiler meat production: Control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 2011, 9, 2105. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, e07209. [Google Scholar]
- Sahin, O.; Morishita, T.Y.; Zhang, Q. Campylobacter colonization in poultry: Sources of infection and modes of transmission. Anim. Health Res. Rev. 2002, 3, 95–105. [Google Scholar] [CrossRef]
- Ramabu, S.S.; Boxall, N.S.; Madie, P.; Fenwick, S.G. Some potential sources for transmission of Campylobacter jejuni to broiler chickens. Lett. Appl. Microbiol. 2004, 39, 252–256. [Google Scholar] [CrossRef]
- Shane, S.M. The significance of Campylobacter jejuni infection in poultry: A review. Avian Pathol. 1992, 21, 189–213. [Google Scholar] [CrossRef]
- Alter, T. Prevention and mitigation strategies for Campylobacter with focus on poultry production. In Campylobacter; Academic Press: Cambridge, MA, USA, 2017; pp. 111–129. [Google Scholar] [CrossRef]
- Hansson, I.; Sandberg, M.; Habib, I.; Lowman, R.; Engvall, E.O. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound. Emerg. Dis. 2018, 65, 30–48. [Google Scholar] [CrossRef]
- Taha-Abdelaziz, K.; Singh, M.; Sharif, S.; Sharma, S.; Kulkarni, R.R.; Alizadeh, M.; Yitbarek, A.; Helmy, Y.A. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023, 11, 113. [Google Scholar] [CrossRef]
- World Health Organization. Measures for the Control of Campylobacter spp. in Chicken Meat: Meeting Report; Food & Agriculture Org: Rome, Italy, 2024. [Google Scholar]
- Si, W.; Gong, J.; Tsao, R.; Zhou, T.; Yu, H.; Tsao, R.; Han, Y.; Chambers, J.R. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 2006, 100, 296–305. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials’ role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Birk, T.; Grønlund, A.C.; Christensen, B.B.; Knøchel, S.; Lohse, K.; Rosenquist, H. Effect of organic acids and marination ingredients on the survival of Campylobacter jejuni on meat. J. Food Prot. 2010, 73, 258–265. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Ożarowski, M. Plant organic acids as natural inhibitors of foodborne pathogens. Appl. Sci. 2024, 14, 6340. [Google Scholar] [CrossRef]
- Orimaye, O.E.; Ekunseitan, D.A.; Omaliko, P.C.; Fasina, Y.O. Mitigation potential of herbal extracts and constituent bioactive compounds on Salmonella in meat-type poultry. Animals 2024, 14, 1087. [Google Scholar] [CrossRef]
- Navarro, M.; Stanley, R.; Cusack, A.; Sultanbawa, Y. Combinations of plant-derived compounds against Campylobacter in vitro. J. Appl. Poult. Res. 2015, 24, 352–363. [Google Scholar] [CrossRef]
- Micciche, A.; Rothrock, M.J., Jr.; Yang, Y.; Ricke, S.C. Essential oils as an intervention strategy to reduce Campylobacter in poultry production: A review. Front. Microbiol. 2019, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Bosscher, D.; Van Loo, J.; Franck, A. Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr. Res. Rev. 2006, 19, 216–226. [Google Scholar] [CrossRef]
- Kim, S.A.; Jang, M.J.; Kim, S.Y.; Yang, Y.; Pavlidis, H.O.; Ricke, S.C. Potential for prebiotics as feed additives to limit foodborne Campylobacter establishment in the poultry gastrointestinal tract. Front. Microbiol. 2019, 10, 91. [Google Scholar] [CrossRef]
- Schoeni, J.L.; Wong, A.C. Inhibition of Campylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Appl. Environ. Microbiol. 1994, 60, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Çenesiz, A.A.; Çiftci, I. Modulatory effects of medium-chain fatty acids in poultry nutrition and health. World’s Poult. Sci. J. 2020, 76, 234–248. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Rose, S.P.; Ivanova, S. Feed additives in poultry nutrition. Bulg. J. Agric. Sci. 2019, 25, 8–11. [Google Scholar]
- Van Deun, K.; Haesebrouck, F.; Van Immerseel, F.; Ducatelle, R.; Pasmans, F. Short-chain fatty acids and lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian Pathol. 2008, 37, 379–383. [Google Scholar] [CrossRef]
- Peh, E.; Kittler, S.; Reich, F.; Kehrenberg, C. Antimicrobial activity of organic acids against Campylobacter spp. and development of combinations—A synergistic effect? PLoS ONE 2020, 15, e0239312. [Google Scholar] [CrossRef]
- Hwang, S.; Yun, J.; Kim, K.P.; Heu, S.; Lee, S.; Ryu, S. Isolation and characterization of bacteriophages specific for Campylobacter jejuni. Microbiol. Immunol. 2009, 53, 559–566. [Google Scholar] [CrossRef]
- Wyszyńska, A.K.; Godlewska, R. Lactic acid bacteria—A promising tool for controlling chicken Campylobacter infection. Front. Microbial. 2021, 12, 703441. [Google Scholar] [CrossRef] [PubMed]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef]
- Taheri, H.R.; Moravej, H.; Tabandeh, F.; Zaghari, M.; Shivazad, M. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poult. Sci. 2009, 88, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Ohimain, E.I.; Ofongo, R.T. The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: A review. Int. J. Anim. Vet. Adv. 2012, 4, 135–143. [Google Scholar]
- Cean, A.; Stef, L.; Simiz, E.; Julean, C.; Dumitrescu, G.; Vasile, A.; Pet, E.; Drinceanu, D.; Corcionivoschi, N. Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Foodborne Pathog. Dis. 2015, 12, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Mañes-Lázaro, R.; Van Diemen, P.M.; Pin, C.; Mayer, M.J.; Stevens, M.P.; Narbad, A. Administration of Lactobacillus johnsonii FI9785 to chickens affects colonisation by Campylobacter jejuni and the intestinal microbiota. Br. Poult. Sci. 2017, 58, 373–381. [Google Scholar] [CrossRef]
- Dec, M.; Nowaczek, A.; Urban-Chmiel, R.; Stępień-Pyśniak, D.; Wernicki, A. Probiotic potential of lactobacillus isolates of chicken origin with anti-campylobacter activity. J. Vet. Med. Sci. 2018, 80, 1195–1203. [Google Scholar] [CrossRef]
- Saint-Cyr, M.J.; Guyard-Nicodème, M.; Messaoudi, S.; Chemaly, M.; Cappelier, J.M.; Dousset, X.; Haddad, N. Recent advances in screening of anti-Campylobacter activity in probiotics for use in poultry. Front. Microbiol. 2016, 7, 553. [Google Scholar] [CrossRef]
- Nishiyama, K.; Seto, Y.; Yoshioka, K.; Kakuda, T.; Takai, S.; Yamamoto, Y.; Mukai, T. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni. PLoS ONE 2014, 9, e108827. [Google Scholar] [CrossRef]
- Taverniti, V.; Guglielmetti, S. Health-promoting properties of Lactobacillus helveticus. Front. Microbiol. 2012, 3, 392. [Google Scholar] [CrossRef]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Rahman, M.T.; Fliss, I.; Biron, E. Insights into the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef]
- Lehri, B.; Seddon, A.M.; Karlyshev, A.V. Lactobacillus fermentum 3872 as a potential tool for combating Campylobacter jejuni infections. Virulence 2017, 8, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Leistikow, K.R.; Beattie, R.E.; Hristova, K.R. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. Front. Antibiot. 2022, 1, 1003912. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Administrative Guidance for the Preparation of Applications on Additives For use in Animal Nutrition; European Food Safety Authority (EFSA): Parma, Italy, 2021; Volume 18, p. 6508E. [Google Scholar]
- Neltner, T.G.; Kulkarni, N.R.; Alger, H.M.; Maffini, M.V.; Bongard, E.D.; Fortin, N.D.; Olson, E.D. Navigating the US food additive regulatory program. Compr. Rev. Food Sci. Food Saf. 2011, 10, 342–368. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Durjava, M.; Dusemund, B.; Kouba, M.; López-Alonso, M.; López Puente, S.; et al. Safety and efficacy of a feed additive consisting of Lactiplantibacillus plantarum DSM 34271 as a silage additive for all animal species (Lactosan GmbH & Co. KG). EFSA J. 2024, 22, e8903. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Safety and efficacy of Lactobacillus acidophilus D2/CSL (Lactobacillus acidophilus CECT 4529) as a feed additive for chickens for fattening. EFSA J. 2017, 15, e04762. [Google Scholar]
- Prentza, Z.; Castellone, F.; Legnardi, M.; Antlinger, B.; Segura-Wang, M.; Kefalas, G.; Fortomaris, P.; Argyriadou, A.; Papaioannou, N.; Stylianaki, I.; et al. Effects of a multi-genus synbiotic (PoultryStar® sol) on gut health and performance of broiler breeders. J. World’s Poult. Res. 2022, 12, 212–229. [Google Scholar] [CrossRef]
- Guyard-Nicodème, M.; Keita, A.; Quesne, S.; Amelot, M.; Poezevara, T.; Le Berre, B.; Sánchez, J.; Vesseur, P.; Martín, Á.; Medel, P.; et al. Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult. Sci. 2016, 95, 298–305. [Google Scholar] [CrossRef]
- Ortiz, A.; Yañez, P.; Gracia, M.; Mallo, J. Effect of probiotic Ecobiol on broiler performance. In Proceedings of the 19th European Symposium on Poultry Nutrition, Potsdam, Germany, 26–29 August 2013. [Google Scholar]
- Mountzouris, K.C.; Tsitrsikos, P.; Palamidi, I.; Arvaniti, A.; Mohnl, M.; Schatzmayr, G.; Fegeros, K. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 2010, 89, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Mollea, C.; Marmo, L.; Bosco, F. Valorisation of cheese whey, a by-product from the dairy industry. In Food Industry; InTech: Rijeka, Croatia, 2013; pp. 1–28. [Google Scholar] [CrossRef]
- Abish, Z.A.; Alibekov, R.S.; Tarapoulouzi, M.; Bakhtybekova, A.R.; Kobzhasarova, Z.I. Review in deep processing of whey. Cogent Food Agric. 2024, 10, 2415380. [Google Scholar] [CrossRef]
- Rachwał, K.; Gustaw, K. Lactic acid bacteria in sustainable food production. Sustainability 2024, 16, 3362. [Google Scholar] [CrossRef]
- Olvera-Rosales, L.B.; Cruz-Guerrero, A.E.; García-Garibay, J.M.; Gómez-Ruíz, L.C.; Contreras-López, E.; Guzmán-Rodríguez, F.; González-Olivares, L.G. Bioactive peptides of whey: Obtaining, activity, mechanism of action, and further applications. Crit. Rev. Food Sci. Nutr. 2022, 63, 10351–10381. [Google Scholar] [CrossRef]
- Jameel, F.R.; Hizlisoy, H.; Cinar, M.U. Investigation of the effects of antimicrobials to control Campylobacter jejuni in chicken carcasses. Ann. Rom. Soc. Cell Biol. 2021, 25, 6590–6607. [Google Scholar]
- Zabot, G.L.; Schaefer Rodrigues, F.; Polano Ody, L.; Vinícius Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.S.; Best, I.; Olivera-Montenegro, L. Encapsulation of bioactive compounds for food and agricultural applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef]
- Kareb, O.; Aïder, M. Whey and its derivatives for probiotics, prebiotics, synbiotics, and functional foods: A critical review. Probiotics Antimicrob. Proteins 2019, 11, 348–369. [Google Scholar] [CrossRef]
- Tsiouris, V.; Kontominas, M.G.; Filioussis, G.; Chalvatzi, S.; Giannenas, I.; Papadopoulos, G.; Koutoulis, K.; Fortomaris, P.; Georgopoulou, I. The effect of whey on performance, gut health, and bone morphology parameters in broiler chicks. Foods 2020, 9, 588. [Google Scholar] [CrossRef]
- Hussain, M.A.; Liu, H.; Wang, Q.; Zhong, F.; Guo, Q.; Balamurugan, S. Use of encapsulated bacteriophages to enhance farm-to-fork food safety. Crit. Rev. Food Sci. Nutr. 2017, 57, 2801–2810. [Google Scholar] [CrossRef]
- Lamuka, P.O.; Sunki, G.R.; Chawan, C.B.; Rao, D.R.; Shackelford, L.A. Bacteriological quality of freshly processed broiler chickens as affected by carcass pretreatment and gamma irradiation. J. Food Sci. 1992, 57, 330–332. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. General Standard for Food Additives (CODEX STAN 192-1995); Codex Alimentarius Commission: Rome, Italy, 2018. [Google Scholar]
- Hayek, S.A.; Ibrahim, S.A. Current limitations and challenges with lactic acid bacteria: A review. Food Nutr. Sci. 2013, 4, 73–87. [Google Scholar] [CrossRef]
- Garsa, A.K.; Kumariya, R.; Sood, S.K.; Kumar, A.; Kapila, S. Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrob. Proteins 2014, 6, 47–58. [Google Scholar] [CrossRef]
- Stern, N.J.; Svetoch, E.A.; Eruslanov, B.V.; Perelygin, V.V.; Mitsevich, E.V.; Mitsevich, I.P.; Pokhilenko, V.D.; Levchuk, V.P.; Svetoch, O.E.; Seal, B.S. Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Chemother. 2006, 50, 3111–3116. [Google Scholar] [CrossRef]
- El-Aidie, S.A.; Khalifa, G.S. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives. A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13319. [Google Scholar] [CrossRef]
- Sohaib, M.; Anjum, F.M.; Sahar, A.; Arshad, M.S.; Rahman, U.U.; Imran, A.; Hussain, S. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. Int. J. Food Prop. 2017, 20, 2581–2593. [Google Scholar] [CrossRef]
- Novik, G.; Meerovskaya, O.; Savich, V. Waste Degradation and Utilization by Lactic Acid Bacteria: Use of Lactic Acid Bacteria in Production of Food Additives, Bioenergy and Bioga; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy by-products: A review on the valorization of whey and second cheese whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef]
- Tian, X.; Chen, H.; Liu, H.; Chen, J. Recent advances in lactic acid production by lactic acid bacteria. Appl. Biochem. Biotechnol. 2021, 193, 4151–4171. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.B.; Iversen, S.L.; Sørensen, K.I.; Johansen, E. The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiol. Rev. 2005, 29, 611–624. [Google Scholar] [CrossRef]
- Rocha, J.M.; Guerra, A. On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. Eur. Food Res. Technol. 2020, 246, 2161–2174. [Google Scholar] [CrossRef]
- Moretti, A.F.; Brizuela, N.S.; Bravo-Ferrada, B.M.; Tymczyszyn, E.E.; Golowczyc, M.A. Current applications and future trends of dehydrated lactic acid bacteria for incorporation in animal feed products. Fermentation 2023, 9, 742. [Google Scholar] [CrossRef]
- Silva, F.; Domingues, F.C.; Nerín, C. Trends in microbial control techniques for poultry products. Crit. Rev. Food Sci. Nutr. 2018, 58, 591–609. [Google Scholar] [CrossRef]
- Moretti, A.F.; Gamba, R.; De Antoni, G.; Peláez, Á.L.; Golowczyc, M.A. Probiotic characterization of indigenous lactic acid bacteria isolates from chickens to be used as biocontrol agents in the poultry industry. J. Food Process Preserv. 2022, 46, e17145. [Google Scholar] [CrossRef]
- Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 2012, 4, 124–140. [Google Scholar] [CrossRef]
- Iriondo-DeHond, M.; Miguel, E.; Del Castillo, M.D. Food byproducts as sustainable ingredients for innovative and healthy dairy foods. Nutrients 2018, 10, 1358. [Google Scholar] [CrossRef] [PubMed]
- Usmani, Z.; Sharma, M.; Gaffey, J.; Sharma, M.; Dewhurst, R.; Moreau, B.; Newbold, J.; Clark, W.; Thakur, V.; Gupta, V. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 2021, 346, 126444. [Google Scholar] [CrossRef] [PubMed]
- Saubenova, M.; Oleinikova, Y.; Rapoport, A.; Maksimovich, S.; Yermekbay, Z.; Khamedova, E. Bioactive peptides derived from whey proteins for health and functional beverages. Fermentation 2024, 10, 359. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Tarapoulouzi, M.; Varzakas, T.; Jafari, S.M. Application of encapsulation strategies for probiotics: From individual loading to co-encapsulation. Microorganisms 2023, 11, 2896. [Google Scholar] [CrossRef]
- Itakura Silveira, V.A.; Nishio, E.K.; Urzedo Queiroz Freitas, C.A.; Amador, I.R.; Takayama Kobayashi, R.K.; de Oliveira Caretta, T.; Pedrine Colabone Celligoi, M.A. Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatal. Agric. Biotechnol. 2019, 23, 101287. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Nedovic, V.; Goyal, A.; Kourkoutas, Y. Immobilization technologies in probiotic food production. J. Nutr. Metab. 2013, 2013, 716861. [Google Scholar] [CrossRef]
- Barroug, S.; Chaple, S.; Bourke, P. Combination of natural compounds with novel non-thermal technologies for poultry products: A review. Front. Nutr. 2021, 8, 628723. [Google Scholar] [CrossRef]
- Chourasia, R.; Phukon, L.C.; Abedin, M.M.; Padhi, S.; Singh, S.P.; Rai, A.K. Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresour. Technol. Rep. 2022, 19, 101144. [Google Scholar] [CrossRef]
Lactobacillus Strain | Mechanism of Action Against Campylobacter | Effectiveness in Poultry |
---|---|---|
L. crispatus [8,48] | Competitive exclusion Production of lactic acid | Reduced C. jejuni colonization in the ceca of broilers Decreased shedding of C. jejuni |
L. salivarius [44,54] | Production of antimicrobial compounds Competitive exclusion | Enhanced growth performance of white leghorn chickens Reduced C. jejuni colonization |
L. helveticus [51,52] | Production of bacteriocins Improvement of gut health Elevation of beneficial bacteria levels | Significant reduction in Campylobacter colonization Improved overall gut health of poultry |
L. paracasei [51,54] | Production of antimicrobial compounds Competitive exclusion Modulation of intestinal microbiota | Prevention of C. jejuni colonization in poultry Improved resistance to pathogens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonnagiri, N.P.K.R.; Zakariene, G.; Nawaz, N.; Gabinaitiene, A.; Stimbirys, A. The Potential of Lactic Acid Bacteria and Dairy By-Products in Controlling Campylobacter jejuni in Poultry. Microorganisms 2025, 13, 996. https://doi.org/10.3390/microorganisms13050996
Jonnagiri NPKR, Zakariene G, Nawaz N, Gabinaitiene A, Stimbirys A. The Potential of Lactic Acid Bacteria and Dairy By-Products in Controlling Campylobacter jejuni in Poultry. Microorganisms. 2025; 13(5):996. https://doi.org/10.3390/microorganisms13050996
Chicago/Turabian StyleJonnagiri, Naga Pavan Kumar Reddy, Gintare Zakariene, Naila Nawaz, Ausra Gabinaitiene, and Artūras Stimbirys. 2025. "The Potential of Lactic Acid Bacteria and Dairy By-Products in Controlling Campylobacter jejuni in Poultry" Microorganisms 13, no. 5: 996. https://doi.org/10.3390/microorganisms13050996
APA StyleJonnagiri, N. P. K. R., Zakariene, G., Nawaz, N., Gabinaitiene, A., & Stimbirys, A. (2025). The Potential of Lactic Acid Bacteria and Dairy By-Products in Controlling Campylobacter jejuni in Poultry. Microorganisms, 13(5), 996. https://doi.org/10.3390/microorganisms13050996