Candida albicans as a Trailblazer for Herpes Simplex Virus-2 Infection Against an In Vitro Reconstituted Human Vaginal Epithelium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Epithelial Cells
2.2. Fungal Strain and Growth Conditions
2.3. HSV-2 Strain
2.4. Establishment of A-431 Monolayer Cultures and Reconstituted Epithelium (RVE)
2.5. Immunohistochemical (IHC) Staining for Cytokeratin 5/6 Detection
2.6. Infection Protocol
2.7. Evaluation of Microorganisms-Induced Cell Damage by Quantification of LDH Release
2.8. Pathogen Growth Quantification
2.9. Oxidative Stress Determination
2.10. Quantification of IL-1α, IL-1β, IL-8 and Mucin-1 Production
2.11. Statistical Analysis
3. Results
3.1. Cytokeratin-5/6 Expression in A-431 Epithelial Cells Maintained at Different Culture Conditions
3.2. Candida albicans and HSV-2 Load in A-431 RVE Infected with or Without SFV
3.3. Damage of A-431 RVE upon Infection with One or Two Pathogens, in the Presence or Absence of SFV
3.4. Oxidative Stress in A-431 RVE Infected with Candida albicans and/or HSV-2, With or Without SFV
3.5. Secretion Pattern of A-431 Epithelial Cells Exposed to Single or Dual Infection, With or Without SVF
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSV-2 | Herpes Simplex Virus-2 |
DMEM | Dulbecco’s Modified Eagle Medium |
YPD | Yeast Peptone Dextrose |
RVE | Reconstituted vaginal epithelium |
IHC | Immunohistochemistry |
SVF | Synthetic vaginal fluid |
MOI | Multiplicity of Infection |
LDH | Lactate dehydrogenase |
CFU | Colony Forming Unit |
mtROS | Mitochondrial reactive oxygen species |
References
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR Recomm. Rep. 2021, 70, 1–187. [Google Scholar] [CrossRef] [PubMed]
- Nyirjesy, P.; Brookhart, C.; Lazenby, G.; Schwebke, J.; Sobel, J.D. Vulvovaginal Candidiasis: A Review of the Evidence for the 2021 Centers for Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin. Infect. Dis. 2022, 74 (Suppl. S2), S162–S168. [Google Scholar] [CrossRef] [PubMed]
- Omarova, S.; Cannon, A.; Weiss, W.; Bruccoleri, A.; Puccio, J. Genital Herpes Simplex Virus-An Updated Review. Adv. Pediatr. 2022, 69, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE 2015, 10, e0140765. [Google Scholar] [CrossRef]
- Gupta, R.; Warren, T.; Wald, A. Genital herpes. Lancet 2007, 370, 2127–2137. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef]
- Gaziano, R.; Sabbatini, S.; Monari, C. The Interplay between Candida albicans, Vaginal Mucosa, Host Immunity and Resident Microbiota in Health and Disease: An Overview and Future Perspectives. Microorganisms 2023, 11, 1211. [Google Scholar] [CrossRef]
- Farr, A.; Effendy, I.; Frey Tirri, B.; Hof, H.; Mayser, P.; Petricevic, L.; Ruhnke, M.; Schaller, M.; Schaefer, A.P.A.; Sustr, V.; et al. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses 2021, 64, 583–602. [Google Scholar] [CrossRef]
- Frisan, T. Co-and polymicrobial infections in the gut mucosa: The host-microbiota-pathogen perspective. Cell. Microbiol. 2021, 23, e13279. [Google Scholar] [CrossRef]
- Murray, J.L.; Connell, J.L.; Stacy, A.; Turner, K.H.; Whiteley, M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 2014, 52, 188–199. [Google Scholar] [CrossRef]
- Higgins, E.; Gupta, A.; Cummins, N.W. Polymicrobial Infections in the Immunocompromised Host: The COVID-19 Realm and Beyond. Med. Sci. 2022, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Panasiti, V.; Devirgiliis, V.; Borroni, R.; Spataro, A.; Melis, L.; Petrella, M.; Pala, S. Atypical cutaneous manifestation of HSV-2 with Candida albicans co-infection in a patient with HIV-1. J. Infect. 2007, 54, e55–e57. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, B.J.; Sigar, I.M.; Kaminski, A.; Kreamer, J.; Ito, B.; Kacmar, J. Kinetics of Candida albicans and Staphylococcus aureus Biofilm Initiation on Herpes Simplex Virus (HSV-1 and HSV-2) Infected Cells. Adv. Microbiol. 2020, 10, 583–598. [Google Scholar] [CrossRef]
- Jayaraman, M.; Leela, K.V.; Rajalakshmi, E. Superadded bacterial and fungal infections in oral and genital herpes simplex lesions. Int. J. Med. Sci. Public Health 2020, 9, 468–474. [Google Scholar] [CrossRef]
- Kaul, R.; Nagelkerke, N.J.; Kimani, J.; Ngugi, E.; Bwayo, J.J.; Macdonald, K.S.; Rebbaprgada, A.; Fonck, K.; Temmerman, M.; Ronald, A.R.; et al. Prevalent herpes simplex virus type 2 infection is associated with altered vaginal flora and an increased susceptibility to multiple sexually transmitted infections. J. Infect. Dis. 2007, 196, 1692–1697. [Google Scholar] [CrossRef]
- Suazo, P.A.; Tognarelli, E.I.; Kalergis, A.M.; González, P.A. Herpes simplex virus 2 infection: Molecular association with HIV and novel microbicides to prevent disease. Med. Microbiol. Immunol. 2015, 204, 161–176. [Google Scholar] [CrossRef]
- Fichorova, R.N.; Morrison, C.S.; Chen, P.-L.; Yamamoto, H.S.; Govender, Y.; Junaid, D.; Ryan, S.; Kwok, C.; Chipato, T.; Salata, R.A.; et al. Aberrant cervical innate immunity predicts onset of dysbiosis and sexually transmitted infections in women of reproductive age. PLoS ONE 2020, 15, e0224359. [Google Scholar] [CrossRef]
- Biswas, M.; Nurunnabi, M.; Khatun, Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS Appl. Bio Mater. 2024, 7, 5037–5056. [Google Scholar] [CrossRef]
- Schaller, M.; Zakikhany, K.; Naglik, J.R.; Weindl, G.; Hube, B. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat. Protoc. 2006, 1, 2767–2773. [Google Scholar] [CrossRef]
- Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. JNCI J. Natl. Cancer Inst. 1973, 51, 1417–1423. [Google Scholar] [CrossRef]
- Sala, A.; Ricchi, F.; Giovati, L.; Conti, S.; Ciociola, T.; Cermelli, C. Anti-Herpetic Activity of Killer Peptide (KP): An In Vitro Study. Int. J. Mol. Sci. 2024, 25, 10602. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.H.; Katz, D.F. A vaginal fluid simulant. Contraception 1999, 59, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Del Gaudio, G.; Lombardi, L.; Maisetta, G.; Esin, S.; Batoni, G.; Sanguinetti, M.; Senesi, S.; Tavanti, A. Antifungal Activity of the Noncytotoxic Human Peptide Hepcidin 20 against Fluconazole-Resistant Candida glabrata in Human Vaginal Fluid. Antimicrob. Agents Chemother. 2013, 57, 4314–4321. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, K.S.; Bhatia, P.; Bhatnagar, K.; Shandilay, S.; Chaudhary, S. Roadmap to Cytotoxicity: Exploring Assays and Mechanisms. ASSAY Drug Dev. Technol. 2025. [Google Scholar] [CrossRef]
- Sala, A.; Ardizzoni, A.; Spaggiari, L.; Vaidya, N.; van der Schaaf, J.; Rizzato, C.; Cermelli, C.; Mogavero, S.; Krüger, T.; Himmel, M.; et al. A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis-Associated Strains. mBio 2023, 14, e00107-23. [Google Scholar] [CrossRef]
- Mazaheritehrani, E.; Sala, A.; Orsi, C.F.; Neglia, R.G.; Morace, G.; Blasi, E.; Cermelli, C. Human pathogenic viruses are retained in and released by Candida albicans biofilm in vitro. Virus Res. 2014, 179, 153–160. [Google Scholar] [CrossRef]
- Ascione, C.; Sala, A.; Mazaheri-Tehrani, E.; Paulone, S.; Palmieri, B.; Blasi, E.; Cermelli, C. Herpes simplex virus-1 entrapped in Candida albicans biofilm displays decreased sensitivity to antivirals and UVA1 laser treatment. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 72. [Google Scholar] [CrossRef]
- Cermelli, C.; Cenacchi, V.; Beretti, F.; Pezzini, F.; Luca, D.D.; Blasi, E. Human herpesvirus-6 dysregulates monocyte-mediated anticryptococcal defences. J. Med. Microbiol. 2006, 55, 695–702. [Google Scholar] [CrossRef]
- Cermelli, C.; Orsi, C.F.; Ardizzoni, A.; Lugli, E.; Cenacchi, V.; Cossarizza, A.; Blasi, E. Herpes simplex virus type 1 dysregulates anti-fungal defenses preventing monocyte activation and downregulating toll-like receptor-2. Microbiol. Immunol. 2008, 52, 575–584. [Google Scholar] [CrossRef]
- Ridge, J.; Muller, J.; Noguchi, P.; Chang, E.H. Dynamics of differentiation in human epidermoid squamous carcinoma cells (A431) with continuous, long-term γ-IFN treatment. Vitr. Cell. Dev. Biol. Anim. 1991, 27, 417–424. [Google Scholar] [CrossRef]
- Wahl, M.; Carpenter, G. Regulation of epidermal growth factor-stimulated formation of inositol phosphates in A-431 cells by calcium and protein kinase C. J. Biol. Chem. 1988, 263, 7581–7590. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, T.; Hosoi, K.; Ueha, T. Involvement of high-affinity binding site for EGF receptor in formation of rounding in A-431 epidermoid carcinoma cells. Horm. Metab. Res. 1994, 26, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Waseem, A.; Alam, Y.; Lalli, A.; Dogan, B.; Tidman, N.; Purkis, P.; Jackson, S.; Machesney, M.; Leigh, I.M. Keratin 15 expression in stratified epithelia: Downregulation in activated keratinocytes. J. Investig. Dermatol. 1999, 112, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Pinna, D.; Oreste, P.; Coradin, T.; Kajaste-Rudnitski, A.; Ghezzi, S.; Zoppetti, G.; Rotola, A.; Argnani, R.; Poli, G.; Manservigi, R.; et al. Inhibition of herpes simplex virus types 1 and 2 in vitro infection by sulfated derivatives of Escherichia coli K5 polysaccharide. Antimicrob. Agents Chemother. 2008, 52, 3078–3084. [Google Scholar] [CrossRef]
- Ray, B.; Ali, I.; Jana, S.; Mukherjee, S.; Pal, S.; Ray, S.; Schütz, M.; Marschall, M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021, 14, 35. [Google Scholar] [CrossRef]
- Foo, J.; Bellot, G.; Pervaiz, S.; Alonso, S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022, 30, 679–692. [Google Scholar] [CrossRef]
- Gain, C.; Song, S.; Angtuaco, T.; Satta, S.; Kelesidis, T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front. Microbiol. 2023, 13, 1111930. [Google Scholar] [CrossRef]
- Protto, V.; Tramutola, A.; Fabiani, M.; Marcocci, M.E.; Napoletani, G.; Iavarone, F.; Vincenzoni, F.; Castagnola, M.; Perluigi, M.; Di Domenico, F.; et al. Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer’s Disease Progression. Microorganisms 2020, 8, 972. [Google Scholar] [CrossRef]
- Dantas Ada, S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules 2015, 5, 142–165. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, D.; Nobile, C.J.; Dong, D.; Ni, Q.; Su, T.; Jiang, C.; Peng, Y. Systematic identification and characterization of five transcription factors mediating the oxidative stress response in Candida albicans. Microb. Pathog. 2023, 187, 106507. [Google Scholar] [CrossRef]
- Milora, K.A.; Miller, S.L.; Sanmiguel, J.C.; Jensen, L.E. Interleukin-1α released from HSV-1-infected keratinocytes acts as a functional alarmin in the skin. Nat. Commun. 2014, 5, 5230. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.B.; Herbert, J.J.; Truong, N.R.; Cunningham, A.L. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front. Immunol. 2022, 13, 936235. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Fakioglu, E.; Wilson, S.S.; Mesquita, P.M.M.; Hazrati, E.; Cheshenko, N.; Blaho, J.A.; Herold, B.C. Herpes simplex virus downregulates secretory leukocyte protease inhibitor: A novel immune evasion mechanism. J. Virol. 2008, 82, 9337–9344. [Google Scholar] [CrossRef]
- Wüthrich, M.; LeBert, V.; Galles, K.; Hu-Li, J.; Ben-Sasson, S.Z.; Paul, W.E.; Klein, B.S. Interleukin 1 enhances vaccine-induced antifungal T-helper 17 cells and resistance against Blastomyces dermatitidis infection. J. Infect. Dis. 2013, 208, 1175–1182. [Google Scholar] [CrossRef]
- Caffrey-Carr, A.K.; Kowalski, C.H.; Beattie, S.R.; Blaseg, N.A.; Upshaw, C.R.; Thammahong, A.; Lust, H.E.; Tang, Y.-W.; Hohl, T.M.; Cramer, R.A.; et al. Interleukin 1α Is Critical for Resistance against Highly Virulent Aspergillus fumigatus Isolates. Infect. Immun. 2017, 85, 1–19. [Google Scholar] [CrossRef]
- Fang, X.; Lian, H.; Liu, S.; Dong, J.; Hua, X.; Li, W.; Liao, C.; Yuan, X. A positive feedback cycle between the alarmin S100A8/A9 and NLRP3 inflammasome-GSDMD signalling reinforces the innate immune response in Candida albicans keratitis. Inflamm. Res. 2023, 72, 1485–1500. [Google Scholar] [CrossRef]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An evolving chemokine. Cytokine 2022, 153, 155828. [Google Scholar] [CrossRef]
- Dhar, P.; McAuley, J. The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation. Front. Cell. Infect. Microbiol. 2019, 9, 117. [Google Scholar] [CrossRef]
- Ballester, B.; Milara, J.; Cortijo, J. The role of mucin 1 in respiratory diseases. Eur. Respir. Rev. 2021, 30, 200149. [Google Scholar] [CrossRef]
- Trybala, E.; Peerboom, N.; Adamiak, B.; Krzyzowska, M.; Liljeqvist, J.; Bally, M.; Bergström, T. Herpes Simplex Virus Type 2 Mucin-Like Glycoprotein mgG Promotes Virus Release from the Surface of Infected Cells. Viruses 2021, 13, 887. [Google Scholar] [CrossRef] [PubMed]
- Dühring, S.; Germerodt, S.; Skerka, C.; Zipfel, P.F.; Dandekar, T.; Schuster, S. Host-pathogen interactions between the human innate immune system and Candida albicans—Understanding and modeling defense and evasion strategies. Front. Microbiol. 2015, 6, 625. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricchi, F.; Caramaschi, S.; Sala, A.; Franceschini, L.; Fabbiani, L.; Ardizzoni, A.; Blasi, E.; Cermelli, C. Candida albicans as a Trailblazer for Herpes Simplex Virus-2 Infection Against an In Vitro Reconstituted Human Vaginal Epithelium. Microorganisms 2025, 13, 905. https://doi.org/10.3390/microorganisms13040905
Ricchi F, Caramaschi S, Sala A, Franceschini L, Fabbiani L, Ardizzoni A, Blasi E, Cermelli C. Candida albicans as a Trailblazer for Herpes Simplex Virus-2 Infection Against an In Vitro Reconstituted Human Vaginal Epithelium. Microorganisms. 2025; 13(4):905. https://doi.org/10.3390/microorganisms13040905
Chicago/Turabian StyleRicchi, Francesco, Stefania Caramaschi, Arianna Sala, Laura Franceschini, Luca Fabbiani, Andrea Ardizzoni, Elisabetta Blasi, and Claudio Cermelli. 2025. "Candida albicans as a Trailblazer for Herpes Simplex Virus-2 Infection Against an In Vitro Reconstituted Human Vaginal Epithelium" Microorganisms 13, no. 4: 905. https://doi.org/10.3390/microorganisms13040905
APA StyleRicchi, F., Caramaschi, S., Sala, A., Franceschini, L., Fabbiani, L., Ardizzoni, A., Blasi, E., & Cermelli, C. (2025). Candida albicans as a Trailblazer for Herpes Simplex Virus-2 Infection Against an In Vitro Reconstituted Human Vaginal Epithelium. Microorganisms, 13(4), 905. https://doi.org/10.3390/microorganisms13040905