Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis
Abstract
:1. Introduction
2. Innate Immune Responses to Viral Infections
3. General Innate Immune Responses to Viral Infections
4. Chemokines and the Homing of Innate Immune Cells
5. Adaptive Immune Responses to Viral Infections
6. Immune Responses to Enterovirus A71 (EV-A71)
7. Immune Responses to Coxsackievirus B3 (CVB3)
8. Immune Responses to Echovirus 11 (E11)
9. Immune Responses to Poliovirus (PV)
10. Immune Responses to Human Rhinovirus (HRV)
11. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andino, R.; Kirkegaard, K.; Macadam, A.; Racaniello, V.R.; Rosenfeld, A.B. The Picornaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J. Infect. Dis. 2023, 228 (Suppl. S6), S427–S445. [Google Scholar] [CrossRef] [PubMed]
- Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 1971, 35, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Heckenberg, E.; Steppe, J.T.; Coyne, C.B. Enteroviruses: The role of receptors in viral pathogenesis. Adv. Virus Res. 2022, 113, 89–110. [Google Scholar] [PubMed]
- Payne, S. Viruses: From Understanding to Investigation, 2nd ed.; Academic Press: London, UK, 2022; pp. 129–407. [Google Scholar]
- Berman, J.J. Group IV Viruses: Single-Stranded (+) Sense RNA. In Taxonomic Guide to Infectious Diseases, 2nd ed.; Academic Press: London, UK, 2022; pp. 288–297. [Google Scholar]
- Poliomyelitis. Available online: https://www.who.int/news-room/fact-sheets/detail/poliomyelitis (accessed on 14 February 2025).
- Bednarska, N.G.; Smith, S.; Bardsley, M.; Loveridge, P.; Byford, R.; Elson, W.H.; Hughes, H.E.; de Lusignan, S.; Todkill, D.; Elliot, A.J. Trends in general practitioner consultations for hand foot and mouth disease in England between 2017 and 2022. Epidemiol Infect. 2025, 153, e22. [Google Scholar] [CrossRef]
- Hu, K.; Onintsoa Diarimalala, R.; Yao, C.; Li, H.; Wei, Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023, 15, 785. [Google Scholar] [CrossRef]
- Muto, T.; Imaizumi, S.; Kamoi, K. Viral Conjunctivitis. Viruses 2023, 15, 676. [Google Scholar] [CrossRef]
- Wells, A.I.; Coyne, C.B. Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion. Viruses 2019, 11, 460. [Google Scholar] [CrossRef]
- Auvray, C.; Perez-Martin, S.; Schuffenecker, I.; Pitoiset, C.; Tarris, G.; Ambert-Balay, K.; Martin, L.; Dullier-Taillefumier, N.; Bour, J.B.; Manoha, C. Sudden Infant Death Associated with Rhinovirus Infection. Viruses 2024, 16, 518. [Google Scholar] [CrossRef]
- Abi Abdallah, G.; Diop, S.; Jamme, M.; Legriel, S.; Ferré, A. Respiratory Infection Triggering Severe Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct Pulmon Dis. 2024, 19, 555–565. [Google Scholar] [CrossRef]
- Lang, J.; Soddemann, M.; Edwards, M.J.; Wilson, G.C.; Lang, K.S.; Gulbins, E. Sphingosine Prevents Rhinoviral Infections. Int. J. Mol. Sci. 2024, 25, 2486. [Google Scholar] [CrossRef]
- Moss, D.L.; Paine, A.C.; Krug, P.W.; Kanekiyo, M.; Ruckwardt, T.J. Enterovirus virus-like-particle and inactivated poliovirus vaccines do not elicit substantive cross-reactive antibody responses. PLoS Pathog. 2024, 20, e1012159. [Google Scholar] [CrossRef] [PubMed]
- Gambadauro, A.; Galletta, F.; Li Pomi, A.; Manti, S.; Piedimonte, G. Immune Response to Respiratory Viral Infections. Int. J. Mol. Sci. 2024, 25, 6178. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Jing, D.; Lan, J.; Lv, M.; Wang, T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun. Inflamm. Dis. 2024, 12, e1316. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, L.; Liu, B.; Ouyang, L. The role of trained immunity in sepsis. Front. Immunol. 2024, 15, 1449986. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, M.; Zhang, Y.; Kong, W.; Fan, L.; Wang, K.; Xu, Q.; Chen, B.; Dong, J.; Shi, Y.; et al. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis. 2024, 15, 115–152. [Google Scholar] [CrossRef]
- Doni, A.; Sironi, M.; Del Prete, A.; Pasqualini, F.; Valentino, S.; Cuccovillo, I.; Parente, R.; Calvi, M.; Tosoni, A.; Vago, G.; et al. PTX3 is expressed in terminal lymphatics and shapes their organization and function. Front. Immunol. 2024, 15, 1426869. [Google Scholar] [CrossRef]
- Sun, R.; Jiang, H. Border-associated macrophages in the central nervous system. J. Neuroinflamm. 2024, 21, 67. [Google Scholar] [CrossRef]
- Shen, J.; Bian, N.; Zhao, L.; Wei, J. The role of T-lymphocytes in central nervous system diseases. Brain Res. Bull. 2024, 209, 110904. [Google Scholar] [CrossRef]
- Dermitzakis, I.; Chatzi, D.; Kyriakoudi, S.A.; Evangelidis, N.; Vakirlis, E.; Meditskou, S.; Theotokis, P.; Manthou, M.E. Skin Development and Disease: A Molecular Perspective. Curr. Issues Mol. Biol. 2024, 46, 8239–8267. [Google Scholar] [CrossRef]
- Zibandeh, N.; Li, Z.; Ogg, G.; Bottomley, M.J. Cutaneous adaptive immunity and uraemia: A narrative review. Front. Immunol. 2024, 15, 1464338. [Google Scholar] [CrossRef]
- Ebner, B.; Volz, Y.; Mumm, J.N.; Stief, C.G.; Magistro, G. The COVID-19 pandemic—What have urologists learned? Nat. Rev. Urol. 2022, 19, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, P.; García-Perdomo, H.A.; Karpiński, T.M. Toll-Like Receptors: General Molecular and Structural Biology. J. Immunol. Res. 2021, 2021, 9914854. [Google Scholar] [CrossRef] [PubMed]
- Mertowska, P.; Smolak, K.; Mertowski, S.; Grywalska, E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int. J. Mol. Sci. 2023, 24, 10115. [Google Scholar] [CrossRef]
- Schenten, D.; Medzhitov, R. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 2011, 109, 87–124. [Google Scholar]
- Kienes, I.; Weidl, T.; Mirza, N.; Chamaillard, M.; Kufer, T.A. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int. J. Mol. Sci. 2021, 22, 1301. [Google Scholar] [CrossRef]
- Chambers, M.J.; Scobell, S.B.; Sadhu, M.J. Systematic genetic characterization of the human PKR kinase domain highlights its functional malleability to escape a poxvirus substrate mimic. eLife 2024, 13, RP99575. [Google Scholar] [CrossRef]
- Torices, S.; Teglas, T.; Naranjo, O.; Fattakhov, N.; Frydlova, K.; Cabrera, R.; Osborne, O.M.; Sun, E.; Kluttz, A.; Toborek, M. Occludin regulates HIV-1 infection by modulation of the interferon stimulated OAS gene family. Res. Sq. 2023, 60, 4966–4982. [Google Scholar] [CrossRef]
- Choudhury, S.M.; Ma, X.; Abdullah, S.W.; Zheng, H. Activation and Inhibition of the NLRP3 Inflammasome by RNA Viruses. J. Inflamm. Res. 2021, 14, 1145–1163. [Google Scholar] [CrossRef]
- Rathinam, V.A.; Jiang, Z.; Waggoner, S.N.; Sharma, S.; Cole, L.E.; Waggoner, L.; Vanaja, S.K.; Monks, B.G.; Ganesan, S.; Latz, E.; et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 2010, 11, 395–402. [Google Scholar] [CrossRef]
- Lanier, L.L. Five decades of natural killer cell discovery. J. Exp. Med. 2024, 221, e20231222. [Google Scholar] [CrossRef]
- van der Heide, S.L.; Xi, Y.; Upham, J.W. Natural Killer Cells and Host Defense Against Human Rhinoviruses Is Partially Dependent on Type I IFN Signaling. Front. Cell Infect. Microbiol. 2020, 10, 510619. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.S.; Casanova, J.M.; Santos-Rosa, M.; Tarazona, R.; Solana, R.; Rodrigues-Santos, P. Natural Killer T-like Cells: Immunobiology and Role in Disease. Int. J. Mol. Sci. 2023, 24, 2743. [Google Scholar] [CrossRef] [PubMed]
- Ribot, J.C.; Lopes, N.; Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 2021, 21, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Kaisho, T.; Akira, S. Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 2006, 117, 979–987. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.M.; Yuan, R.; Yi, X.; Li, L.; Gong, W.; Yang, T.; Li, L.; Su, S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. Int. Immunopharmacol. 2016, 34, 1–15. [Google Scholar] [CrossRef]
- Yin, X.; Chen, S.; Eisenbarth, S.C. Dendritic Cell Regulation of T Helper Cells. Annu. Rev. Immunol. 2021, 39, 759–790. [Google Scholar] [CrossRef]
- Johansson, C.; Kirsebom, F.C.M. Neutrophils in respiratory viral infections. Mucosal Immunol. 2021, 14, 815–827. [Google Scholar] [CrossRef]
- Lujan, E.; Zhang, I.; Garon, A.C.; Liu, F. The Interactions of the Complement System with Human Cytomegalovirus. Viruses 2024, 16, 1171. [Google Scholar] [CrossRef]
- Mellors, J.; Tipton, T.; Longet, S.; Miles, C. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front. Immuno. 2020, 11, 1450. [Google Scholar] [CrossRef]
- Mantovani, A.; Garlanda, C. Humoral Innate Immunity and Acute-Phase Proteins. N. Engl. J. Med. 2023, 388, 439–452. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Zhuang, R.; Yang, K.; Chen, L.; Jin, B.; Ma, Y.; Zhang, Y.; Tang, K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int. J. Mol. Sci. 2024, 25, 4451. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.W.; Sokol, C.L.; Luster, A.D. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu. Rev. Immunol. 2014, 32, 659–702. [Google Scholar] [CrossRef] [PubMed]
- Melchjorsen, J.; Sørensen, L.N.; Paludan, S.R. Expression and function of chemokines during viral infections: From molecular mechanisms to in vivo function. J. Leukoc. Biol. 2003, 74, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Elemam, N.M.; Talaat, I.M.; Maghazachi, A.A. CXCL10 Chemokine: A Critical Player in RNA and DNA Viral Infections. Viruses 2022, 14, 2445. [Google Scholar] [CrossRef]
- Chen, M.Y.; Zhang, F.; Goedegebuure, S.P.; Gillanders, W.E. Dendritic cell subsets and implications for cancer immunotherapy. Front. Immunol. 2024, 15, 1393451. [Google Scholar] [CrossRef]
- Howard, F.H.N.; Kwan, A.; Winder, N.; Mughal, A.; Collado-Rojas, C.; Muthana, M. Understanding Immune Responses to Viruses-Do Underlying Th1/Th2 Cell Biases Predict Outcome? Viruses 2022, 14, 1493. [Google Scholar] [CrossRef]
- Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014, 41, 529–542. [Google Scholar] [CrossRef]
- Martynova, E.; Rizvanov, A.; Urbanowicz, R.A.; Khaiboullina, S. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses. Front. Microbiol. 2022, 13, 851835. [Google Scholar] [CrossRef]
- Gong, S.; Ruprecht, R.M. Immunoglobulin M: An Ancient Antiviral Weapon—Rediscovered. Front. Immunol. 2020, 11, 1943. [Google Scholar] [CrossRef]
- Czajkowsky, D.M.; Shao, Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc. Natl. Acad. Sci. USA 2009, 106, 14960–14965. [Google Scholar] [CrossRef]
- Mostov, K.E. Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 1994, 12, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Frey, A.; Lunding, L.P.; Wegmann, M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023, 12, 2208. [Google Scholar] [CrossRef] [PubMed]
- StoStoler-Barak, L.; Harris, E.; Peres, A.; Hezroni, H.; Kuka, M.; Di Lucia, P.; Grenov, A.; Gurwicz, N.; Kupervaser, M.; Yip, B.H.; et al. B cell class switch recombination is regulated by DYRK1A through MSH6 phosphorylation. Nat. Commun. 2023, 14, 1462. [Google Scholar] [CrossRef]
- Tezuka, H.; Ohteki, T. Regulation of IgA Production by Intestinal Dendritic Cells and Related Cells. Front. Immunol. 2019, 10, 1891. [Google Scholar] [CrossRef] [PubMed]
- Muleta, K.G.; Ulmert, I.; Hamza, K.H.; van Dijl, S.; Nakawesi, J.; Lahl, K. Rotavirus-Induced Expansion of Antigen-Specific CD8 T Cells Does Not Require Signaling via TLR3, MyD88 or the Type I Interferon Receptor. Front. Immunol. 2022, 13, 814491. [Google Scholar] [CrossRef]
- Sun, P.P.; Li, D.; Su, M.; Ren, Q.; Guo, W.P.; Wang, J.L.; Du, L.Y.; Xie, G.C. Cell membrane-bound toll-like receptor-1/2/4/6 monomers and -2 heterodimer inhibit enterovirus 71 replication by activating the antiviral innate response. Front. Immunol. 2023, 14, 1187035. [Google Scholar] [CrossRef]
- Chi, C.; Sun, Q.; Wang, S.; Zhang, Z.; Li, X.; Cardona, C.J.; Jin, Y.; Xing, Z. Robust antiviral responses to enterovirus 71 infection in human intestinal epithelial cells. Virus Res. 2013, 176, 53–60. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, M.; Liu, B.; Yuan, M.; Chen, D.; Wang, Y.; Wu, Z. DEAD-Box Helicase DDX6 Facilitated RIG-I-Mediated Type-I Interferon Response to EV71 Infection. Front. Cell Infect. Microbiol. 2021, 11, 725392. [Google Scholar]
- Kuo, R.L.; Kao, L.T.; Lin, S.J.; Wang, R.Y.; Shih, S.R. MDA5 plays a crucial role in enterovirus 71 RNA-mediated IRF3 activation. PLoS ONE 2013, 8, e63431. [Google Scholar] [CrossRef]
- Li, D.; Su, M.; Sun, P.P.; Guo, W.P.; Wang, C.Y.; Wang, J.L.; Wang, H.; Zhang, Q.; Du, L.Y.; Xie, G.C. Global profiling of the alternative splicing landscape reveals transcriptomic diversity during the early phase of enterovirus 71 infection. Virology 2020, 548, 213–225. [Google Scholar] [CrossRef]
- Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Xu, M.Y.; Xu, H.M.; Li, X.J.; Ding, S.J.; Wang, X.J.; Li, T.Y.; Lu, Q.B. Immunologic Characterization of Cytokine Responses to Enterovirus 71 and Coxsackievirus A16 Infection in Children. Medicine 2015, 94, e1137. [Google Scholar] [CrossRef] [PubMed]
- Koyasu, S.; Moro, K. Type 2 innate immune responses and the natural helper cell. Immunology 2011, 132, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, Y.; Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Investig. 2006, 116, 1218–1222. [Google Scholar] [CrossRef]
- Gong, Z.; Gao, X.; Yang, Q.; Lun, J.; Xiao, H.; Zhong, J.; Cao, H. Phosphorylation of ERK-Dependent NF-κB Triggers NLRP3 Inflammasome Mediated by Vimentin in EV71-Infected Glioblastoma Cells. Molecules 2022, 27, 4190. [Google Scholar] [CrossRef]
- Helgers, L.C.; Bhoekhan, M.S.; Pajkrt, D.; Wolthers, K.C.; Geijtenbeek, T.B.H.; Sridhar, A. Human Dendritic Cells Transmit Enterovirus A71 via Heparan Sulfates to Target Cells Independent of Viral Replication. Microbiol. Spectr. 2022, 10, e0282222. [Google Scholar] [CrossRef]
- Zhu, P.; Ji, W.; Li, D.; Wang, F.; Sun, T.; Yang, H.; Chen, S.; Zhang, W.; Jin, Y.; Duan, G. The activation of complement C5a-C5aR1 axis in astrocytes facilitates the neuropathogenesis due to EV-A71 infection by upregulating CXCL1. J. Virol. 2025, 99, e0151424. [Google Scholar] [CrossRef]
- Huang, K.Y.; Lin, J.J.; Chiu, C.H.; Yang, S.; Tsao, K.C.; Huang, Y.C.; Lin, T.Y. A Potent Virus-Specific Antibody-Secreting Cell Response to Acute Enterovirus 71 Infection in Children. J. Infect. Dis. 2015, 212, 808–817. [Google Scholar] [CrossRef]
- Shen, J.; Zhao, C.; Cao, P.; Shi, P.; Cao, L.; Zhu, Q. Relationship between serologic response and clinical symptoms in children with enterovirus 71-infected hand-foot-mouth disease. Int. J. Clin. Exp. Pathol. 2015, 8, 11608–11614. [Google Scholar]
- Jordan-Paiz, A.; Martrus, G.; Steinert, F.L.; Kaufmann, M.; Sagebiel, A.F.; Schreurs, R.R.C.E.; Rechtien, A.; Baumdick, M.E.; Jung, J.M.; Möller, K.J.; et al. CXCR5+PD-1++ CD4+ T cells colonize infant intestines early in life and promote B cell maturation. Cell Mol. Immunol. 2023, 20, 201–213. [Google Scholar] [CrossRef]
- Zhu, L.; Xu KWang, N.; Cao, L.; Wu, J.; Gao, Q.; Fry, E.E.; Stuart, D.I.; Rao, Z.; Wang, J.; Wang, X. Neutralization Mechanisms of Two Highly Potent Antibodies against Human Enterovirus 71. mBio 2018, 9, e01013-18. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Chen, J.; Cheng, Y.; Li, Y.; Chen, Y.Q.; Ying, T.; Turtle, L.; Yu, H. Antibody signatures in hospitalized hand, foot and mouth disease patients with acute enterovirus A71 infection. PLoS Pathog. 2023, 19, e1011420. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.L.; Lin, Y.L.; Cheng, P.Y.; Lee, P.; Chiang, B.L. Effective Mucosal Adjuvantation of the Intranasal Enterovirus A71 Vaccine with Zymosan. Immunology 2025, 174, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, X.; Chen, S.; Sun, X.; Zhou, C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023, 14, 2180951. [Google Scholar] [CrossRef]
- Bao, J.; Sun, T.; Yue, Y.; Xiong, S. Macrophage NLRP3 inflammasome activated by CVB3 capsid proteins contributes to the development of viral myocarditis. Mol. Immunol. 2019, 114, 41–48. [Google Scholar] [CrossRef]
- Rivadeneyra, L.; Charó, N.; Kviatcovsky, D.; de la Barrera, S.; Gómez, R.M.; Schattner, M. Role of neutrophils in CVB3 infection and viral myocarditis. J. Mol. Cell Cardiol. 2018, 125, 149–161. [Google Scholar] [CrossRef]
- Kostin, S.; Krizanic, F.; Kelesidis, T.; Pagonas, N. The role of NETosis in heart failure. Heart Fail. Rev. 2024, 29, 1097–1106. [Google Scholar] [CrossRef]
- Martens, C.R.; Accornero, F. Viruses in the Heart: Direct and Indirect Routes to Myocarditis and Heart Failure. Viruses 2021, 13, 1924. [Google Scholar] [CrossRef]
- Rasquinha, M.T.; Mone, K.; Sur, M.; Lasrado, N.; Massilamany, C.; Kachman, S.D.; Steffen, D.; Reddy, J. Mt10 Vaccine Protects Diversity Outbred Mice from CVB3 Infection by Producing Virus-Specific Neutralizing Antibodies and Diverse Antibody Isotypes. Vaccines 2024, 12, 266. [Google Scholar] [CrossRef]
- Basavalingappa, R.H.; Arumugam, R.; Lasrado, N.; Yalaka, B.; Massilamany, C.; Gangaplara, A.; Riethoven, J.J.; Xiang, S.H.; Steffen, D.; Reddy, J. Viral myocarditis involves the generation of autoreactive T cells with multiple antigen specificities that localize in lymphoid and non-lymphoid organs in the mouse model of CVB3 infection. Mol. Immunol. 2020, 124, 218–228. [Google Scholar] [CrossRef]
- Morosky, S.; Wells, A.I.; Lemon, K.; Evans, A.S.; Schamus, S.; Bakkenist, C.J.; Coyne, C.B. The neonatal Fc receptor is a pan-echovirus receptor. Proc. Natl. Acad. Sci. USA 2019, 116, 3758–3763. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.I.; Grimes, K.A.; Kim, K.; Branche, E.; Bakkenist, C.J.; DePas, W.H.; Shresta, S.; Coyne, C.B. Human FcRn expression and Type I Interferon signaling control Echovirus 11 pathogenesis in mice. PLoS Pathog. 2021, 17, e1009252. [Google Scholar] [CrossRef] [PubMed]
- Pyzik, M.; Kozicky, L.K.; Gandhi, A.K.; Blumberg, R.S. The therapeutic age of the neonatal Fc receptor. Nat. Rev. Immunol. 2023, 23, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, R.; Yang, F.; Han, Y.; Ren, Y.; Xiong, X.; Wang, X.; Bi, Y.; Li, L.; Qiu, Y.; et al. Echovirus 11 infection induces pyroptotic cell death by facilitating NLRP3 inflammasome activation. PLoS Pathog. 2022, 18, e1010787. [Google Scholar] [CrossRef]
- Riller, Q.; Schmutz, M.; Fourgeaud, J.; Fischer, A.; Neven, B. Protective role of antibodies in enteric virus infections: Lessons from primary and secondary immune deficiencies. Immunol. Rev. 2024, 328, 243–264. [Google Scholar] [CrossRef]
- Hirade, T.; Abe, Y.; Ito, S.; Suzuki, T.; Katano, H.; Takahashi, N.; Koike, D.; Nariai, A.; Kato, F. Congenital Echovirus 11 Infection in a Neonate. Pediatr. Infect. Dis. J. 2023, 42, 1002–1006. [Google Scholar] [CrossRef]
- Hu, Y.L.; Lin, S.Y.; Lee, C.N.; Shih, J.C.; Cheng, A.L.; Chen, S.H.; Chang, L.Y.; Fang, C.T. Serostatus of echovirus 11, coxsackievirus B3 and enterovirus D68 in cord blood: The implication of severe newborn enterovirus infection. J. Microbiol. Immunol. Infect. 2023, 56, 766–771. [Google Scholar] [CrossRef]
- Lockhart, A.; Mucida, D.; Parsa, R. Immunity to enteric viruses. Immunity 2022, 55, 800–818. [Google Scholar] [CrossRef]
- Su, R.; Shereen, M.A.; Zeng, X.; Liang, Y.; Li, W.; Ruan, Z.; Li, Y.; Liu, W.; Liu, Y.; Wu, K.; et al. The TLR3/IRF1/Type III IFN Axis Facilitates Antiviral Responses against Enterovirus Infections in the Intestine. mBio 2020, 11, e02540-20. [Google Scholar] [CrossRef]
- Devaux, C.A.; Pontarotti, P.; Levasseur, A.; Colson, P.; Raoult, D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front. Public Health 2024, 11, 1284337. [Google Scholar] [CrossRef]
- Ida-Hosonuma, M.; Iwasaki, T.; Yoshikawa, T.; Nagata, N.; Sato, Y.; Sata, T.; Yoneyama, M.; Fujita, T.; Taya, C.; Yonekawa, H.; et al. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J. Virol. 2005, 79, 4460–4469. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Bird, C.; Holland, D.; Joshi, S.B.; Volkin, D.B. Current and next-generation formulation strategies for inactivated polio vaccines to lower costs, increase coverage, and facilitate polio eradication. Hum. Vaccin. Immunother. 2022, 18, 2154100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, Y.; Xiang, Z.; Chen, L.; Wang, Y.; Wang, X.; Dong, X.; Ren, L.; Wang, J. Statistical Analysis of Common Respiratory Viruses Reveals the Binary of Virus-Virus Interaction. Microbiol. Spectr. 2023, 11, e0001923. [Google Scholar] [CrossRef] [PubMed]
- Mettelman, R.C.; Allen, E.K.; Thomas, P.G. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022, 55, 749–780. [Google Scholar] [CrossRef]
- Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol. 2013, 4, 185. [Google Scholar] [CrossRef]
- Renegar, K.B.; Small PAJr Boykins, L.G.; Wright, P.F. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 2004, 173, 1978–1986. [Google Scholar] [CrossRef]
- Kim, K.J.; Malik, A.B. Protein transport across the lung epithelial barrier. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 284, L247–L259. [Google Scholar] [CrossRef]
- Lee, W.M.; Lemanske, R.F., Jr.; Evans, M.D.; Vang, F.; Pappas, T.; Gangnon, R.; Jackson, D.J.; Gern, J.E. Human rhinovirus species and season of infection determine illness severity. Am. J. Respir. Crit. Care Med. 2012, 186, 886–891. [Google Scholar] [CrossRef]
- Gern, J.E. The ABCs of rhinoviruses, wheezing, and asthma. J. Virol. 2010, 84, 7418–7426. [Google Scholar] [CrossRef]
- Lemanske, R.F.; Jackson, D.J.; Gangnon, R.E.; Evans, M.E.; Li, Z.; Shult, P.; Kirk, C.J.; Reisdorf, E.; Roberg, K.A.; Anderson, E.L.; et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J. Allergy Clin. Immunol. 2005, 116, 571–577. [Google Scholar] [CrossRef]
- Jackson, D.J.; Gangnon, R.E.; Evans, M.D.; Roberg, K.A.; Anderson, E.L.; Pappas, T.E.; Printz, M.C.; Lee, W.M.; Shult, P.A.; Reisdorf, E.; et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am. J. Respir. Crit. Care Med. 2008, 178, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Harker, J.A.; Lloyd, C.M. T helper 2 cells in asthma. J. Exp. Med. 2023, 220, e20221094. [Google Scholar] [CrossRef]
- Luo, W.; Hu, J.; Xu, W.; Dong, J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front. Immunol. 2022, 13, 974066. [Google Scholar] [CrossRef] [PubMed]
- Triantafilou, K.; Vakakis, E.; Richer, E.A.; Evans, G.L.; Villiers, J.P.; Triantafilou, M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011, 2, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Stancheva, V.G.; Sanyal, S. Positive-strand RNA virus replication organelles at a glance. J. Cell Sci. 2024, 137, jcs262164. [Google Scholar] [CrossRef]
- Triantafilou, M.; Ramanjulu, J.; Booty, L.M.; Jimenez-Duran, G.; Keles, H.; Saunders, K.; Nevins, N.; Koppe, E.; Modis, L.K.; Pesiridis, G.S.; et al. Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication. Nat. Commun. 2022, 13, 1406. [Google Scholar] [CrossRef]
- Bochkov, Y.A.; Devries, M.; Tetreault, K.; Gangnon, R.; Lee, S.; Bacharier, L.B.; Busse, W.W.; Camargo, C.A.; Choi, T.; Cohen, R.; et al. Rhinoviruses A and C elicit long-lasting antibody responses with limited cross-neutralization. J. Med. Virol. 2023, 95, e29058. [Google Scholar] [CrossRef]
- Sinclair, W.; Omar, M. Enterovirus. In StatPearls; Internet; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562330/ (accessed on 31 July 2023).
- Visser, L.J.; Langereis, M.A.; Rabouw, H.H.; Wahedi, M.; Muntjewerff, E.M.; de Groot, R.J.; van Kuppeveld, F.J.M. Essential Role of Enterovirus 2A Protease in Counteracting Stress Granule Formation and the Induction of Type I Interferon. J. Virol. 2019, 93, e00222-19. [Google Scholar] [CrossRef]
- Mosaheb, M.M.; Brown, M.C.; Dobrikova, E.Y.; Dobrikov, M.I.; Gromeier, M. Harnessing virus tropism for dendritic cells for vaccine design. Curr. Opin. Virol. 2020, 44, 73–80. [Google Scholar] [CrossRef]
- Ciapponi, A.; Bardach, A.; Rey Ares, L.; Glujovsky, D.; Cafferata, M.L.; Cesaroni, S.; Bhatti, A. Sequential inactivated (IPV) and live oral (OPV) poliovirus vaccines for preventing poliomyelitis. Cochrane Database Syst. Rev. 2019, 12, CD011260. [Google Scholar] [CrossRef]
- Mbani, C.J.; Nekoua, M.P.; Moukassa, D.; Hober, D. The Fight against Poliovirus Is Not Over. Microorganisms 2023, 11, 1323. [Google Scholar] [CrossRef] [PubMed]
- Mone, K.; Lasrado, N.; Sur, M.; Reddy, J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines 2023, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, Z.; Rao, Q.; Wang, X.; Wang, M.; Du, T.; Tang, J.; Long, S.; Zhang, J.; Luo, J.; et al. The epidemiological characteristics of enterovirus infection before and after the use of enterovirus 71 inactivated vaccine in Kunming, China. Emerg. Microbes Infect. 2021, 10, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; Lakshmi, R. Vaccines—Safety in pregnancy. Best. Pract. Res. Clin. Obstet. Gynaecol. 2021, 76, 23–40. [Google Scholar] [CrossRef]
- Röbl-Mathieu, M.; Kunstein, A.; Liese, J.; Mertens, T.; Wojcinski, M. Vaccination in Pregnancy. Dtsch. Arztebl. Int. 2021, 118, 262–268. [Google Scholar] [CrossRef]
- Álvarez Aldeán, J.; José Álvarez García, F.; de la Calle Fernández-Miranda, M.; Figueras Falcón, T.; Iofrío de Arce, A.; López Rojano, M.; Rivero Calle, I.; Suy Franch, A. Vaccination in pregnancy. Consensus document of the CAV-AEP and the SEGO. An. Pediatr. Engl. Ed. 2024, 100, 268–274. [Google Scholar] [CrossRef]
- Grapin, M.; Mirand, A.; Pinquier, D.; Basset, A.; Bendavid, M.; Bisseux, M.; Jeannoël, M.; Kireche, B.; Kossorotoff, M.; L’Honneur, A.S.; et al. Severe and fatal neonatal infections linked to a new variant of echovirus 11, France, July 2022 to April 2023. Euro Surveill. 2023, 28, 2300253. [Google Scholar] [CrossRef]
Enterovirus (EV) | Viral Attachment Protein/Receptor | Pathogenesis |
---|---|---|
Enterovirus A71 (EV–A71) | VP1 and VP2 capsid proteins/SCARB2, PSGL-1 | Hand, foot, and mouth disease (HFMD), brainstem encephalitis, aseptic meningitis, acute flaccid paralysis, and pulmonary complications |
Coxsackievirus A6 (CV–A6) | VP2/KREMEN1 (KRM1) | HFMD, herpangina, conjunctivitis, and pneumonia |
Coxsackievirus B1 (CVB1) | VP1/CAR, DAF | Type 1 diabetes (T1D), pleurodynia, aseptic meningitis, and neonatal sepsis |
Coxsackievirus B2 (CVB2) | VP1/CAR, DAF | Acute myocarditis, aseptic meningitis, and acute meningoencephalitis |
Coxsackievirus B3 (CVB3) | VP1/CAR, DAF | Myocarditis and heart failure |
Coxsackievirus B4 (CVB4) | VP1/CAR, DAF | T1D |
Coxsackievirus B5 (CBV6) | VP1/CAR, DAF | HFMD, aseptic meningitis, viral encephalitis, acute flaccid paralysis (AFP), myocarditis, and T1D |
Coxsackievirus B6 (CBV6) | VP1/CAR, DAF | Myocarditis, pericarditis, meningitis, and pancreatitis |
Echoviruses (E6, E9, E11, EV30) | VP1/FcRn | Aseptic meningitis, encephalitis, fever, respiratory illness, and gastrointestinal |
Enterovirus C (Poliovirus 1,23) | VP1 Canyon/CD155 | Poliomyelitis |
Enterovirus C95 (EV–C95) | VP1 | AFP |
Enterovirus D68 | /Sialic acid, ICAM-5, Sulfated glycosaminoglycans | Pneumonia and acute flaccid myelitis (AFM) |
Rhinovirus A (80 serotypes) | VP1 Canyon/ICAM-1, LDLR, CDHR3 | Rhinitis, otitis media, sinusitis, mainly upper respiratory tract infections (URTIs) with lower respiratory tract infections (LRTIs) in vulnerable populations |
Rhinovirus B (32 types) | VP1 Canyon/ICAM-1, LDLR, CDHR3 | Rhinitis, pharyngitis, bronchiolitis, bronchopneumonia, and asthma |
Rhinovirus C (C1–C57) | VP1 Canyon/ICAM-1, LDLR, CDHR3 | URTIs to serious LRTIs, bronchiolitis, pneumonia, wheezing, and asthma |
Anatomical System/Region | Physiological Structures and Processes | Innate Immunity | Adaptive Immunity |
---|---|---|---|
Upper respiratory tract | Mucous blanket, cilia, turbinates, rhinorrhea, microbiota, nasopharynx-associated lymphoid tissue (NALT) | α, β-defensins, cathelicidin LL-37, mucins, complement, surfactant-associated proteins (SPs), SP-A and SP-D, PRRs, cytokines, NK cells, neutrophils, interstitial macrophages, dendritic cells, innate lymphoid cells (ILCs) | Predominantly secretory IgA and IgM, CD8+ T cells, CD4+ T cells |
Lower respiratory tract | Mucous blanket, cilia, branched bronchi and bronchioles, mucociliary clearance, coughing, lung microbiota, bronchus-associated lymphoid tissue (BALT) in the LRT | α, β-defensins, cathelicidin LL-37, mucins, complement, SP-A and SP-D, PRRs, cytokines, NK cells, neutrophils, interstitial macrophages, dendritic cells, ILCs | Predominantly secretory IgA and IgM, CD8+ T cells, CD4+ T cells |
Gas exchange | Distal location to upper respiratory tract, surfactant | α, β-defensins, cathelicidin LL-37, SP-A and SP-D, PRRs, cytokines, NK cells, neutrophils, mast cells, alveolar macrophages, dendritic cells | Predominately IgG, CD8+ T cells, CD4+ T cells |
Oral cavity | Saliva, mastication, oral microbiota, deglutition | Lysozyme, α, β-defensins, lactoferrin, mucins, salivary agglutinin | Predominantly secretory IgA, CD8+ T cells, CD4+ T cells |
Esophagus | Mucous blanket, saliva, peristalsis, microbiota | α, β-defensins, cathelicidin LL-37, PRRs, Cytokines, NK cells, neutrophils, interstitial macrophages, dendritic cells, Lysozyme, lactoferrin, mucins, salivary agglutinin (SAG), NK cells, NK T cells and IFN-γ, | Secretory IgA and IgM, IgG, CD8+ T cells, CD4+ T cells |
Stomach | Mucous, low pH, digestion, gastric epithelial cells | Gastric acid, pepsin, ribonucleases, interferons, mucins, α, β-defensins, cathelicidin LL-37 | Secretory IgA, CD8+ T cells, CD4+ T cells |
Small intestine | Mucous blanket, peristalsis, Peyer’s patches, isolated lymphoid follicles, mucosal-associated lymphoid tissue (MALT), intestinal intraepithelial cells, differentiated enterocytes and Paneth cells, pancreatic secretions, gall bladder secretions, mesenteric lymph nodes, small intestinal microbiota | α, β-defensins, cathelicidin LL-37, PRRs, cytokines, ribonucleases and proteases, SAG, bile acids, NK cells, neutrophils, interstitial macrophages, dendritic cells, lysozyme, lactoferrin, mucins, Bacteriocins, Short-Chain Fatty Acids (SCFAs), exopolysaccharides, ribonucleases, bacterial-produced antiviral metabolites, γδ T cells, NK cells, NK T cells, IFN-γ | Secretory IgA and IgM, IgG, CD8+ T cells, CD4+ T cells |
Large intestine | Mucous blanket, peristalsis, defecation, Peyer’s patches, Isolated lymphoid follicles, Intestinal intraepithelial cells, differentiated enterocytes and Paneth cells, pancreatic secretions, gall bladder secretions, mesenteric lymph nodes, large intestinal microbiota | α, β-defensins, cathelicidin LL-37, PRRs, cytokines, ribonucleases and proteases, SAG, bile acids, NK cells, neutrophils, interstitial macrophages, dendritic cells, lysozyme, lactoferrin, mucins, Bacteriocins, Short-Chain Fatty Acids (SCFAs), exopolysaccharides, ribonucleases, bacterial-produced antiviral metabolites, γδ T cells, NK cells, NK T cells, IFN-γ | Secretory IgA and IgM, IgG, CD8+ T cells, CD4+ T cells |
Blood circulation | Smooth endothelial lining, blood pressure, bone marrow, thymus, spleen | Complement, PRRs, cytokines, macrophages, dendritic cells, γδ T cells, NK cells, NK T cells, IFN-γ | IgM, IgG, serum IgA, CD8+ T cells, CD4+ T cells |
Lymphatic system | Internal, regional lymph nodes, meningeal lymphatic vessels and the glymphatic system, one-way valves | Complement, PRRs, cytokines, chemokines, lymphatic endothelial cells (LECs), macrophages, dendritic cells, γδ T cells, NK cells, NK T cells, IFN-γ | IgM, IgG, serum IgA, CD8+ T cells, CD4+ T cells, B cells |
Nervous system | CSF, enosseous sequestration, meningeal layers, choroid plexus, connective tissue barriers | Complement, chemokines, astrocytes and IL-15, parenchymal microglia and non-parenchymal border-associated macrophages, dendritic cells, γδ T cells, NK cells, NK T cells, IFN-γ | IgM, IgG, serum IgA, CD8+ cells, CD4+ T cells |
Epidermis/dermis | Stratum corneum, desquamation, skin microbiota, sebaceous glands, eccrine and apocrine sweat glands | Sebum, sweat, bacterial antivirals, defensins, SCFAs, Langerhans cells, keratinocytes, fibroblasts, melanocytes, eosinophils, basophils, mast cells, NK cells, γδ T cells, dermal dendritic cells | IgM, secretory IgA, IgG, IgE, CD8+ T cells; Th1, Th2 and Th17 CD4+ T cells |
Mucoepithelium in the urogenital system | Mucous, desquamation into lumen, urine flow, low pH, MALT | Mucin, defensins and cathelicidins, cytokines, chemokines, complement, TLRs, macrophages, neutrophils, mast cells, NK cells, γδ T cells, dendritic cells | Secretory IgA, IgM and IgG, CD8+ T cells |
Virus | Portal of Entry | Tropism | Pathogenesis | Innate Immunity | Adaptive Immunity | TRM |
---|---|---|---|---|---|---|
EV-A71 | Oral, Resp, Gastro | SCARB2, PSGL-1, HS | HFMD, CNS disease | TLR2, 7, 8, RIG-1, MDA5, DCs, complement, P-cytos | IgM, IgG, IgA, CD8+ and Th1 CD4+ T cells | MALT, GALT, spleen, circulation |
CVB3 | Resp, mainly Gastro | CAR, DAF | Myocarditis | TLR3, 7, 8, IFN-α and IFN-β, Mφs, DCs, complement, P-cytos | IgM, IgG, IgA, CD8+ and Th1 CD4+ T cells | MALT, GALT, spleen, heart tissue, circulation |
E11 | Gastro | FcRn | CNS disease | TLR3, 7, RIG-1, MDA5, IFN-α and IFN-β, NK cells, P-cytos | IgM, IgG, IgA, CD8+ and Th1 CD4+ T cells | MALT, GALT, spleen, circulation |
PV | Intestinal epithelium, viremia to CNS | CD-155 | Poliomyelitis, meningitis | TLR7, TLR8, RIG-1, IFN-α and IFN-β, IL-1α, IL-1b, NK cells, Mφs, complement, γδ T cells, IFN-γ, DCs, P-cytos | Th1 (Dominant) and Th2 CD4+ T Cells, CD8+ T cells, secretory IgA and IgM, circulatory IgG | MALT, GALT, bone marrow, lymph nodes, spleen, circulation |
Rhinovirus | Respiratory tract, mucoepithelium | ICAM-1, LDLR, CDHR3 | Rhinitis, pharyngitis, bronchiolitis, bronchopneumonia, asthma | TLR3 and TLR7/8, IFN-α and IFN-β, NK cells, Mφs, DCs, complement, P-cytos | IgM, IgG, IgA, Th1 and Th2 CD4 T cells, CD8+ T cells | Deep cervical lymph nodes, tonsils and adenoids, mucosal lamina propria, BALT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coffman, J.A. Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms 2025, 13, 870. https://doi.org/10.3390/microorganisms13040870
Coffman JA. Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms. 2025; 13(4):870. https://doi.org/10.3390/microorganisms13040870
Chicago/Turabian StyleCoffman, Jonathan A. 2025. "Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis" Microorganisms 13, no. 4: 870. https://doi.org/10.3390/microorganisms13040870
APA StyleCoffman, J. A. (2025). Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms, 13(4), 870. https://doi.org/10.3390/microorganisms13040870