Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Extraction from Isolates
2.2. Establishment of RPA-LFD Assay for P. pini
2.2.1. P. pini-RPA-LFD Primer Design and Probe Design
2.2.2. Establishment of an RPA-LFD Reaction System
2.3. RPA-CRISPR/Cas12a Primer and crRNA and Optimization of Reaction Conditions
2.3.1. RPA-CRISPR/Cas12a Primer Design and crRNA Design
2.3.2. Optimization of RPA-CRISPR/Cas12a Reaction Conditions
2.4. Specificity Validation of the RPA-LFD and RPA-CRISPR/Cas12a Reaction Systems
2.5. Sensitivity Validation of the RPA-LFD and RPA-CRISPR/Cas12a Reaction Systems
2.6. Validation of the Two Reaction Systems via Artificially Inoculated Leaves
2.7. Detecting P. pini from Leaves Samples Using RPA-LFD and RPA-CRISPR/Cas12a Assay
3. Results
3.1. Optimization of Ppini05588-CrRNA and the ssDNA Reporter Based on the Ppini05588-RPA-CRISPR/Cas12a Detection System
3.2. Comparative Validation of P. pini Specificity Using the RPA-LFD and RPA-CRISPR/Cas12a Reaction Systems
3.3. Comparative Validation of Sensitivity to P. pini Using the RPA-LFD and RPA-CRISPR/Cas12a Reaction Systems
3.4. Evaluation Results of RPA-LFD and RPA-CRISPR/Cas12a Detection Techniques for Artificially Inoculated Samples
3.5. Comparative Assessment of Detection Methods Using Leaf Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davison, E.M. Phytophthora Diseases Worldwide. Plant Pathol. 1998, 47, 224–225. [Google Scholar] [CrossRef]
- Leonian, L.H. Physiological Studies on the Genus Phytophthora. Am. J. Bot. 1925, 12, 444–498. [Google Scholar] [CrossRef]
- Hickman, C.J. Key to the Species of Phytophthora de Bary. Trans. Br. Mycol. Soc. 1964, 47, 304–305. [Google Scholar] [CrossRef]
- Hong, C.; Gallegly, M.E.; Richardson, P.A.; Kong, P. Phytophthora pini Leonian Resurrected to Distinct Species Status. Mycologia 2011, 103, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Bienapfl, J.C.; Balci, Y. Movement of Phytophthora spp. in Maryland’s Nursery Trade. Plant Dis. 2014, 98, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.N.; Blair, J.E.; Coffey, M.D. A Combined Mitochondrial and Nuclear Multilocus Phylogeny of the Genus Phytophthora. Fungal Genet. Biol. 2014, 66, 19–32. [Google Scholar] [CrossRef]
- McKeever, K.M.; Chastagner, G.A. A Survey of Phytophthora spp. Associated with Abies in U.S. Christmas Tree Farms. Plant Dis. 2016, 100, 1161–1169. [Google Scholar] [CrossRef]
- Reed, S.E.; English, J.T.; Muzika, R.-M. Phytophthora Species Detected in Two Ozark Forests with Unusual Patterns of White Oak Mortality. Plant Dis. 2019, 103, 102–109. [Google Scholar] [CrossRef]
- Rooney-Latham, S.; Blomquist, C.L.; Kosta, K.L.; Gou, Y.Y.; Woods, P.W. Phytophthora Species Are Common on Nursery Stock Grown for Restoration and Revegetation Purposes in California. Plant Dis. 2019, 103, 448–455. [Google Scholar] [CrossRef]
- Yang, X.; Tyler, B.M.; Hong, C. An Expanded Phylogeny for the Genus Phytophthora. IMA Fungus 2017, 8, 355–384. [Google Scholar] [CrossRef]
- Lilja, A.; Rytkönen, A.; Hantula, J. Introduced Pathogens Found on Ornamentals, Strawberry and Trees in Finland over the Past 20 Years. Agric. Food Sci. 2011, 20, 74–85. [Google Scholar] [CrossRef]
- Linaldeddu, B.T.; Bregant, C.; Montecchio, L.; Favaron, F.; Sella, L. First Report of Phytophthora acerina, P. pini, and P. plurivora Causing Root Rot and Sudden Death of Olive Trees in Italy. Plant Dis. 2020, 104, 996. [Google Scholar] [CrossRef]
- Milenković, I.; Keča, N.; Karadžić, D.; Radulović, Z.; Nowakowska, J.A.; Oszako, T.; Sikora, K.; Corcobado, T.; Jung, T. Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia. Forests 2018, 9, 330. [Google Scholar] [CrossRef]
- Rytkönen, A.; Lilja, A.; Werres, S.; Sirkiä, S.; Hantula, J. Infectivity, Survival and Pathology of Finnish Strains of Phytophthora plurivora and Ph. pini in Norway Spruce. Scand. J. For. Res. 2013, 28, 307–318. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Li, Y.; Chen, Z.; Dai, T. First Report of Phytophthora pini Causing Foliage Blight and Shoot Dieback of Rhododendron pulchrum in China. Plant Dis. 2021, 105, 1229. [Google Scholar] [CrossRef]
- Jung, T.; Nechwatal, J.; Cooke, D.E.L.; Hartmann, G.; Blaschke, M.; Osswald, W.F.; Duncan, J.M.; Delatour, C. Phytophthora Pseudosyringae Sp. Nov., a New Species Causing Root and Collar Rot of Deciduous Tree Species in Europe. Mycol. Res. 2003, 107, 772–789. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.B.; Temple, T.N. Comparison of Methods of Acibenzolar-S-Methyl Application for Post-Infection Fire Blight Suppression in Pear and Apple. Plant Dis. 2016, 100, 1125–1131. [Google Scholar] [CrossRef]
- Sacher, G.O.; Scagel, C.F.; Davis, E.A.; Beck, B.R.; Weiland, J.E. Virulence of Five Phytophthora Species Causing Rhododendron Root Rot in Oregon. Plant Dis. 2021, 105, 2494–2502. [Google Scholar] [CrossRef]
- Grote, D.; Olmos, A.; Kofoet, A.; Tuset, J.J.; Bertolini, E.; Cambra, M. Specific and Sensitive Detection of Phytophthora nicotianae by Simple and Nested-PCR. Eur. J. Plant Pathol. 2002, 108, 197–207. [Google Scholar] [CrossRef]
- Ippolito, A.; Schena, L.; Nigro, F.; Soleti Ligorio, V.; Yaseen, T. Real-Time Detection of Phytophthora nicotianae and P. citrophthorain Citrus Roots and Soil. Eur. J. Plant Pathol. 2004, 110, 833–843. [Google Scholar] [CrossRef]
- Li, G.-R.; Huang, G.-M.; Zhu, L.-H.; Lv, D.; Cao, B.; Liao, F.; Luo, J.-F. Loop-Mediated Isothermal Amplification (LAMP) Detection of Phytophthora hibernalis, P. syringae and P. cambivora. J. Plant Pathol. 2019, 101, 51–57. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Madritch, M.; Trout, C.L.; Parra, G. PCR Amplification of Ribosomal DNA for Species Identification in the Plant Pathogen Genus Phytophthora. Appl. Environ. Microbiol. 1998, 64, 948–954. [Google Scholar] [CrossRef] [PubMed]
- YueTing, L.; LinHui, Z.; PeiJiang, L.; Fang, L.; XueYi, R.; GuanRong, L. Triplex-PCR molecular detection of two quarantine fungal diseases of Prunus spp., Phytophthora syringae and P. cambivora. Acta Phytophylacica Sin. 2015, 42, 571–577. [Google Scholar]
- Zhang, Z.G.; Li, Y.Q.; Fan, H.; Wang, Y.C.; Zheng, X.B. Molecular Detection of Phytophthora capsici in Infected Plant Tissues, Soil and Water. Plant Pathol. 2006, 55, 770–775. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, H.; Wang, M.; Wu, M.; Khan, M.R.; Luo, A.; Deng, S.; Busquets, R.; He, G.; Deng, R. Label-Free Detection of Transgenic Crops Using an Isothermal Amplification Reporting CRISPR/Cas12 Assay. ACS Synth. Biol. 2022, 11, 317–324. [Google Scholar] [CrossRef]
- Zhou, J.; Dai, H.; Dai, T.; Liu, T. Rapid Detection of Phytophthora cambivora Using Recombinase Polymerase Amplification Combined with CRISPR/Cas12a. Forests 2023, 14, 2141. [Google Scholar] [CrossRef]
- Dai, T.; Zhou, Z.; Jiao, B.; Xia, H.; Yang, J.; Wu, C.; Cao, F. Utilizing a New Target Gene, Ppinihp1, Identified from Genome Sequences to Detect Phytophthora pini. Crop Prot. 2023, 172, 106327. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA Detection Using Recombination Proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef]
- Magrina Lobato, I.; O’Sullivan, C.K. Recombinase Polymerase Amplification: Basics, Applications and Recent Advances. Trac-Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef]
- Ayfan, A.K.S.; Macdonald, J.; Harris, P.N.A.; Heney, C.; Paterson, D.L.; Trembizki, E.; Wang, C.Y.T.; Whiley, D.M.; Zowawi, H.M.; Irwin, A.D. Rapid Detection of NDM and VIM Carbapenemase Encoding Genes by Recombinase Polymerase Amplification and Lateral Flow–Based Detection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2447–2453. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, S.; Liu, Y.; Shao, L.; Ye, Y.; Jiang, N.; Yang, K. Rapid Visual Detection of Plasmodium Using Recombinase-Aided Amplification with Lateral Flow Dipstick Assay. Front. Cell. Infect. Microbiol. 2022, 12, 922146. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Chen, K.; Liu, W.; Yin, Y.; Yao, Q.; Ban, Y.; Pu, Y.; Zhan, X.; Bian, H.; Yu, S.; et al. Rapid and Visual Detection of Mycoplasma synoviae by Recombinase-Aided Amplification Assay Combined with a Lateral Flow Dipstick. Poult. Sci. 2022, 101, 101860. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; David, C.; Lin, S.L.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic Acid Detection with CRISPR Nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xiao, J.; Yang, H.; Yao, Y.; Li, J.; Zheng, H.; Guo, Q.; Wang, X.; Chen, Y.; Guo, Y.; et al. Development of a Rapid and Efficient RPA-CRISPR/Cas12a Assay for Mycoplasma pneumoniae Detection. Front. Microbiol. 2022, 13, 858806. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Xiao, X.; Lin, Z.; Huang, X.; Lu, J.; Zhou, Y.; Zheng, L.; Lou, Y. Rapid and Sensitive Detection of Vibrio Vulnificus Using CRISPR/Cas12a Combined with a Recombinase-Aided Amplification Assay. Front. Microbiol. 2021, 12, 767315. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Li, P.; Bai, L.; Jia, J.; Pan, A.; Long, X.; Cui, W.; Tang, X. Rapid Detection of P–35S and T-Nos in Genetically Modified Organisms by Recombinase Polymerase Amplification Combined with a Lateral Flow Strip. Food Control 2020, 107, 106775. [Google Scholar] [CrossRef]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR–Cas12-Based Detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Miles, T.D.; Martin, F.N.; Coffey, M.D. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora Spp. in Plant Tissue. Phytopathology 2015, 105, 265–278. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, Y.; Wang, Z.; Wang, H.; Zhang, X.; Lu, Q. Rapid On-Site Detection of the Bursaphelenchus xylophilus Using Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick That Eliminates Interference From Primer-Dependent Artifacts. Front. Plant Sci. 2022, 13, 856109. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Kwon, S.-H.; Lee, S.-C.; Moon, Y.-E. Sensitive and Rapid Detection of Citrus Scab Using an RPA-CRISPR/Cas12a System Combined with a Lateral Flow Assay. Plants 2021, 10, 2132. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xia, H.; Dai, T.; Liu, T. RPA-CRISPR/Cas12a Mediated Isothermal Amplification for Visual Detection of Phytophthora sojae. Front. Cell. Infect. Microbiol. 2023, 13, 1208837. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xia, H.; Dai, T.; Liu, T.; Shamoun, S.F.; CuiPing, W. CRISPR/Cas12a-Based Approaches for Efficient and Accurate Detection of Phytophthora ramorum. Front. Cell. Infect. Microbiol. 2023, 13, 1218105. [Google Scholar] [CrossRef]
- Wang, F.; Ge, D.; Wang, L.; Li, N.; Chen, H.; Zhang, Z.; Zhu, W.; Wang, S.; Liang, W. Rapid and Sensitive Recombinase Polymerase Amplification Combined with Lateral Flow Strips for Detecting Candida Albicans. Anal. Biochem. 2021, 633, 114428. [Google Scholar] [CrossRef]
- Meagher, R.J.; Priye, A.; Light, Y.K.; Huang, C.; Wang, E. Impact of Primer Dimers and Self-Amplifying Hairpins on Reverse Transcription Loop-Mediated Isothermal Amplification Detection of Viral RNA. Analyst 2018, 143, 1924–1933. [Google Scholar] [CrossRef]
- Li, S.-Y.; Cheng, Q.-X.; Wang, J.-M.; Li, X.-Y.; Zhang, Z.-L.; Gao, S.; Cao, R.-B.; Zhao, G.-P.; Wang, J. CRISPR-Cas12a-Assisted Nucleic Acid Detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Tsai, S.Q.; Prew, M.S.; Nguyen, N.T.; Welch, M.M.; Lopez, J.M.; McCaw, Z.R.; Aryee, M.J.; Joung, J.K. Genome-Wide Specificities of CRISPR-Cas Cpf1 Nucleases in Human Cells. Nat. Biotechnol. 2016, 34, 869–874. [Google Scholar] [CrossRef]
- Kim, H.K.; Song, M.; Lee, J.; Menon, A.V.; Jung, S.; Kang, Y.-M.; Choi, J.W.; Woo, E.; Koh, H.C.; Nam, J.-W.; et al. In Vivo High-Throughput Profiling of CRISPR–Cpf1 Activity. Nat. Methods 2017, 14, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.; Lin, L.; Cheng, Y.; He, X.; Sun, H.; Xie, H.; Fu, J.; Liu, C.; Li, J.; Chen, D.; et al. A “New Lease of Life”: FnCpf1 Possesses DNA Cleavage Activity for Genome Editing in Human Cells. Nucleic Acids Res. 2017, 45, 11295–11304. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhao, W.; Luo, X.; Zhang, X.; Li, C.; Zeng, C.; Dong, Y. Engineering CRISPR-Cpf1 crRNAs and mRNAs to Maximize Genome Editing Efficiency. Nat. Biomed. Eng. 2017, 1, 0066. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Soenksen, L.R.; Donghia, N.M.; Angenent-Mari, N.M.; de Puig, H.; Huang, A.; Lee, R.; Slomovic, S.; Galbersanini, T.; Lansberry, G.; et al. Wearable Materials with Embedded Synthetic Biology Sensors for Biomolecule Detection. Nat. Biotechnol. 2021, 39, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Rybnicky, G.A.; Dixon, R.A.; Kuhn, R.M.; Karim, A.S.; Jewett, M.C. Development of a Freeze-Dried CRISPR-Cas12 Sensor for Detecting Wolbachia in the Secondary Science Classroom. ACS Synth. Biol. 2022, 11, 835–842. [Google Scholar] [CrossRef]
- Hu, S.; Yu, H.; Zhang, C. Development of Recombinase Polymerase Amplification-Lateral Flow Dipstick (RPA-LFD) as a Rapid On-Site Detection Technique for Fusarium oxysporum. Bio Protoc. 2024, 14, e4915. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Kokane, S.B.; Gowda, S. Development of a Reverse Transcription Recombinase Polymerase Based Isothermal Amplification Coupled with Lateral Flow Immunochromatographic Assay (CTV-RT-RPA-LFICA) for Rapid Detection of Citrus Tristeza Virus. Sci. Rep. 2020, 10, 20593. [Google Scholar] [CrossRef]
Sample Number | Location a | Detection of P. pini | ||
---|---|---|---|---|
PCR | RPA-LFD | RPA-CRISPR/Cas12a | ||
1 | JS, China | + | + | + |
2 | JS, China | − | + | + |
3 | JS, China | + | + | + |
4 | JS, China | − | + | + |
5 | JS, China | − | + | + |
6 | JS, China | + | + | + |
7 | JS, China | + | + | + |
8 | JS, China | + | + | + |
9 | JS, China | − | + | + |
10 | JS, China | + | + | + |
11 | JS, China | − | + | + |
12 | JS, China | + | + | + |
13 | JS, China | + | + | + |
14 | JS, China | − | + | + |
15 | JS, China | + | + | + |
P1 b | JS, China | + | + | + |
P2 | JS, China | + | + | + |
P3 | JS, China | + | + | + |
NC1 c | JS, China | − | − | − |
NC2 | JS, China | − | − | − |
NC3 | JS, China | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Guo, Y.; Wen, T.; Yu, S.; Tao, Y.; Liu, Z. Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini. Microorganisms 2025, 13, 863. https://doi.org/10.3390/microorganisms13040863
Dai T, Guo Y, Wen T, Yu S, Tao Y, Liu Z. Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini. Microorganisms. 2025; 13(4):863. https://doi.org/10.3390/microorganisms13040863
Chicago/Turabian StyleDai, Tingting, Yufang Guo, Tongyue Wen, Sinong Yu, Yuan Tao, and Zhuo Liu. 2025. "Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini" Microorganisms 13, no. 4: 863. https://doi.org/10.3390/microorganisms13040863
APA StyleDai, T., Guo, Y., Wen, T., Yu, S., Tao, Y., & Liu, Z. (2025). Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini. Microorganisms, 13(4), 863. https://doi.org/10.3390/microorganisms13040863