Emergence and Characterization of Three Pseudorabies Variants with Moderate Pathogenicity in Growing Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Isolation and Identification
2.2. Growth Curves
2.3. Identity, Genetic Variations, and Phylogenetic Analysis
2.4. Animal Experiments of Three Isolates
2.5. Statistical Analysis
3. Results
3.1. Isolation and Identification of SD1501, SD1701, and SD1801
3.2. Whole-Genome Sequencing
3.3. Identity Alignment and Phylogenetic Analysis
3.4. Amino Acid Variations in SD1501, SD1701, and SD1801 Compared to Variant Strain HN1201
3.5. Pathogenicity Analysis of SD1501, SD1701, and SD1801
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PRV | Pseudorabies virus |
TCID50 | 50% tissue culture infective dose |
DMEM | Dulbecco’s modified Eagle medium |
PBS | Phosphate-buffered saline |
CPE | Cytopathic effects |
IFA | Immunofluorescent assay |
CSFV | Classical swine fever virus |
PRRSV | Porcine reproductive and respiratory syndrome virus |
ADWG | Average daily weight gain |
ORF | Open reading frame |
ASFV | African swine fever virus |
PEDV | Porcine epidemic diarrhea virus |
References
- Hanson, R.P. The history of pseudorabies in the United States. J. Am. Vet. Med. Assoc. 1954, 124, 259–261. [Google Scholar] [PubMed]
- Lee, J.Y.; Wilson, M.R. A review of pseudorabies (Aujeszky’s disease) in pigs. Can. Vet. J. 1979, 20, 65–69. [Google Scholar] [PubMed]
- Pomeranz, L.E.; Reynolds, A.E.; Hengartner, C.J. Molecular biology of pseudorabies virus: Impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. 2005, 69, 462–500. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Xue, T.; Zhao, X.; Zou, J.; Pu, H.; Hu, X.; Tian, Z. Pseudorabies Virus Associations in Wild Animals: Review of Potential Reservoirs for Cross-Host Transmission. Viruses 2022, 14, 2254. [Google Scholar] [CrossRef]
- Liu, Q.; Kuang, Y.; Li, Y.; Guo, H.; Zhou, C.; Guo, S.; Tan, C.; Wu, B.; Chen, H.; Wang, X. The Epidemiology and Variation in Pseudorabies Virus: A Continuing Challenge to Pigs and Humans. Viruses 2022, 14, 1463. [Google Scholar] [CrossRef]
- Kolb, A.W.; Lewin, A.C.; Moeller Trane, R.; McLellan, G.J.; Brandt, C.R. Phylogenetic and recombination analysis of the herpesvirus genus varicellovirus. BMC Genom. 2017, 18, 887. [Google Scholar] [CrossRef]
- Papageorgiou, K.; Stoikou, A.; Papadopoulos, D.K.; Tsapouri-Kanoula, E.; Giantsis, I.A.; Papadopoulos, D.; Stamelou, E.; Sofia, M.; Billinis, C.; Karapetsiou, C.; et al. Pseudorabies Virus Prevalence in Lung Samples of Hunted Wild Boars in Northwestern Greece. Pathogens 2024, 13, 929. [Google Scholar] [CrossRef]
- Deng, J.; Wu, Z.; Liu, J.; Ji, Q.; Ju, C. The Role of Latency-Associated Transcripts in the Latent Infection of Pseudorabies Virus. Viruses 2022, 14, 1379. [Google Scholar] [CrossRef]
- Patil, A.; Goldust, M.; Wollina, U. Herpes zoster: A Review of Clinical Manifestations and Management. Viruses 2022, 14, 192. [Google Scholar] [CrossRef]
- Zheng, H.H.; Fu, P.F.; Chen, H.Y.; Wang, Z.Y. Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022, 14, 1638. [Google Scholar] [CrossRef]
- Klupp, B.G.; Hengartner, C.J.; Mettenleiter, T.C.; Enquist, L.W. Complete, annotated sequence of the pseudorabies virus genome. J. Virol. 2004, 78, 424–440. [Google Scholar] [CrossRef]
- Freuling, C.M.; Müller, T.F.; Mettenleiter, T.C. Vaccines against pseudorabies virus (PrV). Vet. Microbiol. 2017, 206, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Bo, Z.; Li, X. A Review of Pseudorabies Virus Variants: Genomics, Vaccination, Transmission, and Zoonotic Potential. Viruses 2022, 14, 1003. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, J.; Hua, R.; Zhang, G. Pseudorabies virus as a zoonosis: Scientific and public health implications. Virus Genes 2025, 61, 9–25. [Google Scholar] [CrossRef]
- He, W.; Auclert, L.Z.; Zhai, X.; Wong, G.; Zhang, C.; Zhu, H.; Xing, G.; Wang, S.; He, W.; Li, K.; et al. Interspecies Transmission, Genetic Diversity, and Evolutionary Dynamics of Pseudorabies Virus. J. Infect. Dis. 2019, 219, 1705–1715. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, Z.; Hu, D.; Zhang, Q.; Han, T.; Li, X.; Gu, X.; Yuan, L.; Zhang, S.; Wang, B.; et al. Pathogenic pseudorabies virus, China, 2012. Emerg. Infect. Dis. 2014, 20, 102–104. [Google Scholar] [CrossRef]
- An, T.Q.; Peng, J.M.; Tian, Z.J.; Zhao, H.Y.; Li, N.; Liu, Y.M.; Chen, J.Z.; Leng, C.L.; Sun, Y.; Chang, D.; et al. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012. Emerg. Infect. Dis. 2013, 19, 1749–1755. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Sun, Z.; Tan, F.F.; Guo, L.H.; Wang, Y.Z.; Wang, J.; Wang, Z.Y.; Wang, L.L.; Li, X.D.; Xiao, Y.; et al. Pathogenicity of a currently circulating Chinese variant pseudorabies virus in pigs. World J. Virol. 2016, 5, 23–30. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, S.L.; Lei, J.L.; Cong, X.; Xiang, G.T.; Luo, Y.; Sun, Y.; Qiu, H.J. Dose-dependent pathogenicity of a pseudorabies virus variant in pigs inoculated via intranasal route. Vet. Immunol. Immunopathol. 2015, 168, 147–152. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Wang, C.H.; Yuan, J.; Li, N.; Song, K.; Qiu, H.J. Control of swine pseudorabies in China: Opportunities and limitations. Vet. Microbiol. 2016, 183, 119–124. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Wei, Q.T.; Wu, C.Y.; Ye, Z.Q.; Qin, L.T.; Chen, T.; Sun, Z.; Tian, K.G.; Li, X.D. Isolation and pathogenicity of a novel recombinant pseudorabies virus from the attenuated vaccine and classical strains. Front. Vet. Sci. 2025, 12, 1579148. [Google Scholar] [CrossRef]
- Verpoest, S.; Cay, B.; Favoreel, H.; De Regge, N. Age-Dependent Differences in Pseudorabies Virus Neuropathogenesis and Associated Cytokine Expression. J. Virol. 2017, 91, e02058-16. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, W.; Liu, Q.; Zhao, T.; Zhu, H.; Hua, L.; Peng, Z.; Tang, X.; Stratton, C.W.; Zhou, D.; et al. Epidemiological and genetic characteristics of swine pseudorabies virus in mainland China between 2012 and 2017. PeerJ 2018, 6, e5785. [Google Scholar] [CrossRef]
- Huang, X.; Qin, S.; Wang, X.; Xu, L.; Zhao, S.; Ren, T.; Ouyang, K.; Chen, Y.; Wei, Z.; Qin, Y.; et al. Molecular epidemiological and genetic characterization of pseudorabies virus in Guangxi, China. Arch. Virol. 2023, 168, 285. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, L.; Liu, H.; Ye, G.; Huang, L.; Weng, C. Isolation and Characterization of Two Pseudorabies Virus and Evaluation of Their Effects on Host Natural Immune Responses and Pathogenicity. Viruses 2022, 14, 712. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Tao, Q.; Xu, T.; Yang, Y.; Zhang, Y.; Liu, Z.; Zhou, Y.; Zhu, L.; Xu, Z. Pathogenicity characteristics of different subgenotype pseudorabies virus in newborn piglets. Front. Vet. Sci. 2024, 11, 1438354. [Google Scholar] [CrossRef]
- Cheng, X.J.; Cheng, N.; Yang, C.; Li, X.L.; Sun, J.Y.; Sun, Y.F. Emergence and etiological characteristics of novel genotype II pseudorabies virus variant with high pathogenicity in Tianjin, China. Microb. Pathog. 2024, 197, 107061. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Soler, A.; Nurmoja, I.; Cano-Gómez, C.; Cvetkova, S.; Frant, M.; Woźniakowski, G.; Simón, A.; Pérez, C.; Nieto, R.; et al. Dynamics of African swine fever virus (ASFV) infection in domestic pigs infected with virulent, moderate virulent and attenuated genotype II ASFV European isolates. Transbound. Emerg. Dis. 2021, 68, 2826–2841. [Google Scholar] [CrossRef]
- Jenckel, M.; Blome, S.; Beer, M.; Höper, D. Quasispecies composition and diversity do not reveal any predictors for chronic classical swine fever virus infection. Arch. Virol. 2017, 162, 775–786. [Google Scholar] [CrossRef]
- Bian, T.; Sun, Y.; Hao, M.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. A recombinant type 2 porcine reproductive and respiratory syndrome virus between NADC30-like and a MLV-like: Genetic characterization and pathogenicity for piglets. Infect. Genet. Evol. 2017, 54, 279–286. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Zhou, J.; Wang, X.; Ma, L.; Li, J.; Yang, L.; Yuan, H.; Pang, D.; Ouyang, H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022, 14, 2434. [Google Scholar] [CrossRef] [PubMed]
- Bo, Z.; Miao, Y.; Xi, R.; Gao, X.; Miao, D.; Chen, H.; Jung, Y.S.; Qian, Y.; Dai, J. Emergence of a novel pathogenic recombinant virus from Bartha vaccine and variant pseudorabies virus in China. Transbound. Emerg. Dis. 2021, 68, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Qin, S.; Huang, X.; Xu, L.; Ouyang, K.; Chen, Y.; Wei, Z.; Huang, W. Isolation and identification of two novel pseudorabies viruses with natural recombination or TK gene deletion in China. Vet. Microbiol. 2023, 280, 109703. [Google Scholar] [CrossRef]
- Mulder, W.A.; Pol, J.M.; Gruys, E.; Jacobs, L.; De Jong, M.C.; Peeters, B.P.; Kimman, T.G. Pseudorabies virus infections in pigs. Role of viral proteins in virulence, pathogenesis and transmission. Vet. Res. 1997, 28, 1–17. [Google Scholar]
- Sehl, J.; Teifke, J.P. Comparative Pathology of Pseudorabies in Different Naturally and Experimentally Infected Species-A Review. Pathogens 2020, 9, 633. [Google Scholar] [CrossRef]
Strain | Accession Number | Country | Isolation Date |
---|---|---|---|
SX1911 | OP376823.1 | China | 2019 |
HN1201 | KP722022.1 | China | 2016 |
FJ_tiger | OP727804.1 | China | 2018 |
SD18-2020 | MT949536.1 | China | 2020 |
PRV-GD | OK338076.1 | China | 2021 |
GD_YH-2014 | MT197597.1 | China | 2014 |
HLJ-2023 | OR365764.1 | China | 2023 |
JS-2012 | KP257591.1 | China | 2012 |
DL14-2014 | KU360259.1 | China | 2014 |
SC-2024 | PQ189460.1 | China | 2024 |
PRV XJ | MW893682.1 | China | 2015 |
Fa | KM189913.1 | China | 2012 |
Ea-Hubei | KX423960.1 | China | 1993 |
JS-2020 | OR271601.1 | China | 2020 |
HLJ-2013 | MK080279.1 | China | 2013 |
Bartha | JF797217.1 | Hungary | 1961 |
Kaplan | KJ717942.1 | Hungary | 2014 |
Kolchis-2010 | KT983811.1 | Greece | 2010 |
Becker | JF797219.1 | USA | 1970 |
LA | KU552118.1 | China | 1997 |
Strain | Nucleotide Identities (%) | |||||
---|---|---|---|---|---|---|
Classical Strain | Variant Strain | Genotype I | ||||
Ea | Fa | HN1201 | JS-2012 | Bartha | Becker | |
SD1501 | 99.7 | 99.4 | 99.8 | 99.4 | 96.6 | 96.7 |
SD1701 | 99.5 | 99.6 | 99.9 | 99.3 | 97.0 | 97.1 |
SD1801 | 99.6 | 99.6 | 99.9 | 99.3 | 97.0 | 97.1 |
Strain | Protein | Amino Acid Identities (%) | |||||
---|---|---|---|---|---|---|---|
Classical Strain | Variant Strain | Genotype I | |||||
Ea | Fa | HN1201 | JS-2012 | Bartha | Becker | ||
SD1501 | gB | 99.5 | 99.5 | 100.0 | 100.0 | 96.9 | 97.5 |
gC | 99.2 | 99.4 | 100.0 | 99.8 | 93.1 | 93.3 | |
gD | 99.6 | 99.6 | 100.0 | 100.0 | 98.9 | 99.3 | |
gE | 83.3 | 99.1 | 100.0 | 100.0 | \ | 95.8 | |
gI | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 94.5 | |
TK | 100.0 | 100.0 | 100.0 | 100.0 | 99.4 | 99.4 | |
SD1701 | gB | 99.5 | 99.5 | 100.0 | 100.0 | 96.9 | 97.5 |
gC | 99.0 | 99.2 | 99.8 | 99.6 | 92.9 | 93.1 | |
gD | 99.6 | 99.6 | 100.0 | 100.0 | 98.9 | 99.3 | |
gE | 83.3 | 99.1 | 100.0 | 100.0 | \ | 95.8 | |
gI | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 94.5 | |
TK | 100.0 | 100.0 | 100.0 | 100.0 | 99.4 | 99.4 | |
SD1801 | gB | 99.3 | 99.3 | 99.9 | 99.9 | 96.8 | 97.4 |
gC | 99.2 | 99.4 | 100.0 | 99.8 | 93.1 | 93.3 | |
gD | 99.5 | 99.5 | 99.9 | 99.9 | 98.8 | 99.2 | |
gE | 83.3 | 99.1 | 100.0 | 100.0 | \ | 95.8 | |
gI | 99.7 | 99.7 | 99.7 | 99.7 | 100.0 | 94.3 | |
TK | 100.0 | 100.0 | 100.0 | 100.0 | 99.4 | 99.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, C.; Wu, C.; Wei, Q.; Ye, Z.; Wang, W.; Sun, Z.; Tian, K.; Li, X. Emergence and Characterization of Three Pseudorabies Variants with Moderate Pathogenicity in Growing Pigs. Microorganisms 2025, 13, 851. https://doi.org/10.3390/microorganisms13040851
Zhang Z, Wang C, Wu C, Wei Q, Ye Z, Wang W, Sun Z, Tian K, Li X. Emergence and Characterization of Three Pseudorabies Variants with Moderate Pathogenicity in Growing Pigs. Microorganisms. 2025; 13(4):851. https://doi.org/10.3390/microorganisms13040851
Chicago/Turabian StyleZhang, Zhendong, Cong Wang, Chengyue Wu, Qingteng Wei, Zhengqin Ye, Wenqiang Wang, Zhe Sun, Kegong Tian, and Xiangdong Li. 2025. "Emergence and Characterization of Three Pseudorabies Variants with Moderate Pathogenicity in Growing Pigs" Microorganisms 13, no. 4: 851. https://doi.org/10.3390/microorganisms13040851
APA StyleZhang, Z., Wang, C., Wu, C., Wei, Q., Ye, Z., Wang, W., Sun, Z., Tian, K., & Li, X. (2025). Emergence and Characterization of Three Pseudorabies Variants with Moderate Pathogenicity in Growing Pigs. Microorganisms, 13(4), 851. https://doi.org/10.3390/microorganisms13040851